Skip to main content

Some common tripled fixed point results in two quasi-partial metric spaces

Abstract

In this paper, we establish some new common tripled fixed point theorems for mappings defined on a set equipped with two quasi-partial metrics. We also provide illustrative examples in support of our new results. The results presented in this paper generalize the well-known comparable results in the literature due to Karapinar et al. [Math. Comput. Model. 57:2442-2448, 2013], and Shatanawi and Pitea [Fixed Point Theory Appl. 2013:153, 2013].

MSC:47H10, 54H25.

1 Introduction and preliminaries

In 1994, Matthews [1] introduced the notion of partial metric spaces and extended the Banach contraction principle from metric spaces to partial metric spaces. Based on the notion of partial metric spaces, several authors (for example, [232]) obtained some fixed point results for mappings satisfying different contractive conditions. Very recently, Haghi et al. [33] showed in their interesting paper that some of fixed point theorems in partial metric spaces can be obtained from metric spaces.

In 2013, Karapinar et al. [34] introduced the concept of quasi-partial metric spaces and studied some fixed point problems on quasi-partial metric spaces.

The notion of partial metric space is given as follows.

Definition 1.1 (Matthews [1])

A partial metric on a nonempty set X is a function p:X×X R + such that for all x,y,zX:

(p1) x=yp(x,x)=p(x,y)=p(y,y),

(p2) p(x,x)p(x,y),

(p3) p(x,y)=p(y,x),

(p4) p(x,y)p(x,z)+p(z,y)p(z,z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric on X.

Following Karapinar et al. [34], the notion of quasi-partial metric spaces is given as follows.

Definition 1.2 (Karapinar et al. [34])

A quasi-partial metric on nonempty set X is a function q:X×X R + which satisfies:

(QPM1) If q(x,x)=q(x,y)=q(y,y), then x=y,

(QPM2) q(x,x)q(x,y),

(QPM3) q(x,x)q(y,x), and

(QPM4) q(x,y)+q(z,z)q(x,z)+q(z,y) for all x,y,zX.

A quasi-partial metric space is a pair (X,q) such that X is a nonempty set and q is a quasi-partial metric on X.

Let q be a quasi-partial metric on set X. Then

d q (x,y)=q(x,y)+q(y,x)q(x,x)q(y,y)

is a metric on X.

Definition 1.3 (Karapinar et al. [34])

Let (X,q) be a quasi-partial metric space. Then we have the following.

  1. (i)

    A sequence { x n } converges to a point xX if and only if

    q(x,x)= lim n q(x, x n )= lim n q( x n ,x).
  2. (ii)

    A sequence { x n } is called a Cauchy sequence if lim n , m q( x n , x m ) and lim n , m q( x m , x n ) exist (and are finite).

  3. (iii)

    The quasi-partial metric space (X,q) is said to be complete if every Cauchy sequence { x n } in X converges, with respect to τ q , to a point xX such that

    q(x,x)= lim n , m q( x n , x m )= lim n , m q( x n , x m ).

Bhaskar and Lakshmikantham [35] introduced the concept of coupled fixed point and studied some nice coupled fixed point theorems. Later, Lakshmikantham and Ćirić [36] introduced the notion of a coupled coincidence point of mappings. For some works on a coupled fixed point, we refer the reader to [3768].

For simplicity, we denote from now on X × X × × X k  terms by X k where kN and X is a nonempty set. We start by recalling some definitions.

Definition 1.4 (Bhaskar and Lakshmikantham [35])

An element (x,y) X 2 is called a coupled fixed point of the mapping F: X 2 X if F(x,y)=x and F(y,x)=y.

Definition 1.5 (Lakshmikantham and Ćirić [36])

An element (x,y) X 2 is called

  1. (i)

    a coupled coincidence point of the mappings F: X 2 X and g:XX if F(x,y)=gx and F(y,x)=gy, and (gx,gy) is called a coupled point of coincidence;

  2. (ii)

    a common coupled fixed point of mappings F: X 2 X and g:XX if F(x,y)=gx=x and F(y,x)=gy=y.

Definition 1.6 (Abbas et al. [37])

The mappings F: X 2 X and g:XX are called w-compatible if gF(x,y)=F(gx,gy) whenever F(x,y)=gx and F(y,x)=gy.

In 2010, Samet and Vetro [38] introduced a fixed point of order N3. In particular, for N=3. we have the following definition.

Definition 1.7 (Samet and Vetro [38])

An element (x,y,z) X 3 is called a tripled fixed point of a given mapping F: X 3 X if F(x,y,z)=x, F(y,z,x)=y, and F(z,x,y)=z.

Note that Berinde and Borcut [39] defined differently the notion of tripled fixed point in the case of ordered sets in order to keep true the mixed monotone property. For more details, see [39].

Definition 1.8 (Aydi et al. [40])

An element (x,y,z) X 3 is called

  1. (i)

    a tripled coincidence point of mappings F: X 3 X and g:XX if F(x,y,z)=gx, F(y,z,x)=gy, and F(z,x,y)=gz. In this case (gx,gy,gz) is called a tripled point of coincidence;

  2. (ii)

    a common tripled fixed point of mappings F: X 3 X and g:XX if F(x,y,z)=gx=x, F(y,z,x)=gy=y, and F(z,x,y)=gz=z.

Definition 1.9 (Aydi et al. [40])

The mappings F: X 3 X and g:XX are called w-compatible if gF(x,y,z)=F(gx,gy,gz) whenever F(x,y,z)=gx, F(y,z,x)=gy, and F(z,x,y)=gz.

Recently, Aydi and Abbas [41] obtained some tripled coincidence and fixed point results in partial metric space.

Very recently, Shatanawi and Pitea [42] obtained some common coupled fixed point results for a pair of mappings in quasi-partial metric space.

Theorem 1.1 (Shatanawi and Pitea [42])

Let (X,q) be a quasi-partial metric space, g:XX and F: X 2 X be two mappings. Suppose that there exist k 1 , k 2 , and k 3 in [0,1) with k 1 + k 2 + k 3 <1 such that the condition

q ( F ( x , y ) , F ( u , v ) ) + q ( F ( y , x ) , F ( v , u ) ) k 1 [ q ( g x , g u ) + q ( g y , g v ) ] + k 2 [ q ( g x , F ( x , y ) ) + q ( g y , F ( y , x ) ) ] + k 3 [ q ( g u , F ( u , v ) ) + q ( g v , F ( v , u ) ) ]
(1.1)

holds for all x,y,u,vX. Also, suppose we have the following hypotheses:

  1. (i)

    F(X×X)g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q.

Then the mappings F and g have a coincidence point (x,y) satisfying gx=F(x,y) and gy=F(y,x).

Moreover, if F and g are w-compatible, then F and g have a unique common coupled fixed point of the form (x,x).

The aim of this article is to prove some new common tripled fixed point theorems for mappings defined on a set equipped with two quasi-partial metrics.

The following lemma is crucial in our work.

Lemma 1.1 (Shatanawi and Pitea [42])

Let (X,q) be a quasi-partial metric space. Then the following statements hold true:

  1. (i)

    If q(x,y)=0, then x=y.

  2. (ii)

    If xy, then q(x,y)>0 and q(y,x)>0.

In this manuscript, we generalize, improve, enrich, and extend the above coupled common fixed point results. We also state some examples to illustrate our results. This paper can be considered as a continuation of the remarkable works of Karapinar et al. [34] and Shatanawi and Pitea [42].

2 Main results

Theorem 2.1 Let q 1 and q 2 be two quasi-partial metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X, g:XX be two mappings. Suppose that there exist k 1 , k 2 , k 3 , k 4 , and k 5 in [0,1) with

k 1 + k 2 + k 3 +2 k 4 + k 5 <1
(2.1)

such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k 1 [ q 2 ( g x , g u ) + q 2 ( g y , g v ) + q 2 ( g z , g w ) ] + k 2 [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] + k 3 [ q 2 ( g u , F ( u , v , w ) ) + q 2 ( g v , F ( v , w , u ) ) + q 2 ( g w , F ( w , u , v ) ) ] + k 4 [ q 2 ( g x , F ( u , v , w ) ) + q 2 ( g y , F ( v , w , u ) ) + q 2 ( g z , F ( w , u , v ) ) ] + k 5 [ q 2 ( g u , F ( x , y , z ) ) + q 2 ( g v , F ( y , z , x ) ) + q 2 ( g w , F ( z , x , y ) ) ]
(2.2)

holds for all x,y,z,u,v,wX. Also, suppose we have the following hypotheses:

  1. (i)

    F( X 3 )g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying

gx=F(x,y,z)=gy=F(y,z,x)=gz=F(z,x,y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of the form (u,u,u).

Proof Let x 0 , y 0 , z 0 X. Since F( X 3 )g(X), we can choose x 1 , y 1 , z 1 X such that g x 1 =F( x 0 , y 0 , z 0 ), g y 1 =F( y 0 , z 0 , x 0 ) and g z 1 =F( z 0 , x 0 , y 0 ). Similarly, we can choose x 2 , y 2 , z 2 X such that g x 2 =F( x 1 , y 1 , z 1 ), g y 2 =F( y 1 , z 1 , x 1 ), and g z 2 =F( z 1 , x 1 , y 1 ). Continuing in this way we construct three sequences { x n }, { y n }, and { z n } in X such that

g x n + 1 = F ( x n , y n , z n ) , g y n + 1 = F ( y n , z n , x n ) and g z n + 1 = F ( z n , x n , y n ) , n 0 .
(2.3)

It follows from (2.2), (2.3), (QPM2), and (QMP4) that

q 1 ( g x n , g x n + 1 ) + q 1 ( g y n , g y n + 1 ) + q 1 ( g z n , g z n + 1 ) = q 1 ( F ( x n 1 , y n 1 , z n 1 ) , F ( x n , y n , z n ) ) + q 1 ( F ( y n 1 , z n 1 , x n 1 ) , F ( y n , z n , x n ) ) + q 1 ( F ( z n 1 , x n 1 , y n 1 ) , F ( z n , x n , y n ) ) k 1 [ q 2 ( g x n 1 , g x n ) + q 2 ( g y n 1 , g y n ) + q 2 ( g z n 1 , g z n ) ] + k 2 [ q 2 ( g x n 1 , F ( x n 1 , y n 1 , z n 1 ) ) + q 2 ( g y n 1 , F ( y n 1 , z n 1 , x n 1 ) ) + q 2 ( g z n 1 , F ( z n 1 , x n 1 , y n 1 ) ) ] + k 3 [ q 2 ( g x n , F ( x n , y n , z n ) ) + q 2 ( g y n , F ( y n , z n , x n ) ) + q 2 ( g z n , F ( z n , x n , y n ) ) ] + k 4 [ q 2 ( g x n 1 , F ( x n , y n , z n ) ) + q 2 ( g y n 1 , F ( y n , z n , x n ) ) + q 2 ( g z n 1 , F ( z n , x n , y n ) ) ] + k 5 [ q 2 ( g x n , F ( x n 1 , y n 1 , z n 1 ) ) + q 2 ( g y n , F ( y n 1 , z n 1 , x n 1 ) ) + q 2 ( g z n , F ( z n 1 , x n 1 , y n 1 ) ) ] = ( k 1 + k 2 ) [ q 2 ( g x n 1 , g x n ) + q 2 ( g y n 1 , g y n ) + q 2 ( g z n 1 , g z n ) ] + k 3 [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) + q 2 ( g z n , g z n + 1 ) ] + k 4 [ q 2 ( g x n 1 , g x n + 1 ) + q 2 ( g y n 1 , g y n + 1 ) + q 2 ( g z n 1 , g z n + 1 ) ] + k 5 [ q 2 ( g x n , g x n ) + q 2 ( g y n , g y n ) + q 2 ( g z n , g z n ) ] ( k 1 + k 2 ) [ q 2 ( g x n 1 , g x n ) + q 2 ( g y n 1 , g y n ) + q 2 ( g z n 1 , g z n ) ] + k 3 [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) + q 2 ( g z n , g z n + 1 ) ] + k 4 [ q 2 ( g x n 1 , g x n ) + q 2 ( g x n , g x n + 1 ) q 2 ( g x n , g x n ) + q 2 ( g y n 1 , g y n ) + q 2 ( g y n , g y n + 1 ) q 2 ( g y n , g y n ) + q 2 ( g z n 1 , g z n ) + q 2 ( g z n , g z n + 1 ) q 2 ( g z n , g z n ) ] + k 5 [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) + q 2 ( g z n , g z n + 1 ) ] ( k 1 + k 2 + k 4 ) [ q 2 ( g x n 1 , g x n ) + q 2 ( g y n 1 , g y n ) + q 2 ( g z n 1 , g z n ) ] + ( k 3 + k 4 + k 5 ) [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) + q 2 ( g z n , g z n + 1 ) ] ( k 1 + k 2 + k 4 ) [ q 1 ( g x n 1 , g x n ) + q 1 ( g y n 1 , g y n ) + q 1 ( g z n 1 , g z n ) ] + ( k 3 + k 4 + k 5 ) [ q 1 ( g x n , g x n + 1 ) + q 1 ( g y n , g y n + 1 ) + q 1 ( g z n , g z n + 1 ) ] ,

which implies that

q 1 ( g x n , g x n + 1 ) + q 1 ( g y n , g y n + 1 ) + q 1 ( g z n , g z n + 1 ) k 1 + k 2 + k 4 1 k 3 k 4 k 5 [ q 1 ( g x n 1 , g x n ) + q 1 ( g y n 1 , g y n ) + q 1 ( g z n 1 , g z n ) ] .
(2.4)

Put k= k 1 + k 2 + k 4 1 k 3 k 4 k 5 . Obviously, 0k<1. Repetition of the above inequality (2.4) n times, we get

q 1 ( g x n , g x n + 1 ) + q 1 ( g y n , g y n + 1 ) + q 1 ( g z n , g z n + 1 ) k n [ q 1 ( g x 0 , g x 1 ) + q 1 ( g y 0 , g y 1 ) + q 1 ( g z 0 , g z 1 ) ] .
(2.5)

Next, we shall prove that {g x n }, {g y n }, and {g z n } are Cauchy sequences in g(X).

In fact, for each n,mN, m>n, from (QPM4) and (2.5) we have

q 1 ( g x n , g x m ) + q 1 ( g y n , g y m ) + q 1 ( g z n , g z m ) i = n m 1 [ q 1 ( g x i , g x i + 1 ) + q 1 ( g y i , g y i + 1 ) + q 1 ( g z i , g z i + 1 ) ] i = n m 1 k i [ q 1 ( g x 0 , g x 1 ) + q 1 ( g y 0 , g y 1 ) + q 1 ( g z 0 , g z 1 ) ] k n 1 k [ q 1 ( g x 0 , g x 1 ) + q 1 ( g y 0 , g y 1 ) + q 1 ( g z 0 , g z 1 ) ] .
(2.6)

This implies that

lim n , m [ q 1 ( g x n , g x m ) + q 1 ( g y n , g y m ) + q 1 ( g z n , g z m ) ] =0,

and so

lim n , m q 1 ( g x n , g x m ) = 0 , lim n , m q 1 ( g y n , g y m ) = 0 and lim n , m q 1 ( g z n , g z m ) = 0 .
(2.7)

By similar arguments as above, we can show that

lim n , m q 1 ( g x m , g x n ) = 0 , lim n , m q 1 ( g y m , g y n ) = 0 and lim n , m q 1 ( g z m , g z n ) = 0 .
(2.8)

Hence {g x n }, {g y n }, and {g z n } are Cauchy sequences in (gX, q 1 ). Since (gX, q 1 ) is complete, there exist gx,gy,gzg(X) such that {g x n }, {g y n }, and {g z n } converge to gx, gy, and gz with respect to τ q 1 , that is,

q 1 ( g x , g x ) = lim n q 1 ( g x , g x n ) = lim n q 1 ( g x n , g x ) = lim n , m q 1 ( g x m , g x n ) = lim n , m q 1 ( g x n , g x m ) ,
(2.9)
q 1 ( g y , g y ) = lim n q 1 ( g y , g y n ) = lim n q 1 ( g y n , g y ) = lim n , m q 1 ( g y m , g y n ) = lim n , m q 1 ( g y n , g y m ) ,
(2.10)

and

q 1 ( g z , g z ) = lim n q 1 ( g z , g z n ) = lim n q 1 ( g z n , g z ) = lim n , m q 1 ( g z m , g z n ) = lim n , m q 1 ( g z n , g z m ) .
(2.11)

Combining (2.7)-(2.11), we have

q 1 ( g x , g x ) = lim n q 1 ( g x , g x n ) = lim n q 1 ( g x n , g x ) = lim n , m q 1 ( g x m , g x n ) = lim n , m q 1 ( g x n , g x m ) = 0 ,
(2.12)
q 1 ( g y , g y ) = lim n q 1 ( g y , g y n ) = lim n q 1 ( g y n , g y ) = lim n , m q 1 ( g y m , g y n ) = lim n , m q 1 ( g y n , g y m ) = 0 ,
(2.13)

and

q 1 ( g z , g z ) = lim n q 1 ( g z , g z n ) = lim n q 1 ( g z n , g z ) = lim n , m q 1 ( g z m , g z n ) = lim n , m q 1 ( g z n , g z m ) = 0 .
(2.14)

On the other hand, by (QMP4) we obtain

q 1 ( g x n + 1 , F ( x , y , z ) ) q 1 ( g x n + 1 , g x ) + q 1 ( g x , F ( x , y , z ) ) q 1 ( g x , g x ) q 1 ( g x n + 1 , g x ) + q 1 ( g x , F ( x , y , z ) ) q 1 ( g x n + 1 , g x ) + q 1 ( g x , g x n + 1 ) + q 1 ( g x n + 1 , F ( x , y , z ) ) q 1 ( g x n + 1 , g x n + 1 ) q 1 ( g x n + 1 , g x ) + q 1 ( g x , g x n + 1 ) + q 1 ( g x n + 1 , F ( x , y , z ) ) .

Letting n in the above inequalities and using (2.12), we have

lim n q 1 ( g x n + 1 , F ( x , y , z ) ) q 1 ( g x , F ( x , y , z ) ) lim n q 1 ( g x n + 1 , F ( x , y , z ) ) .

That is,

lim n q 1 ( g x n + 1 , F ( x , y , z ) ) = q 1 ( g x , F ( x , y , z ) ) .
(2.15)

Similarly, we have

lim n q 1 ( g y n + 1 , F ( y , z , x ) ) = q 1 ( g y , F ( y , z , x ) )
(2.16)

and

lim n q 1 ( g y n + 1 , F ( z , x , y ) ) = q 1 ( g z , F ( z , x , y ) ) .
(2.17)

Now we prove that F(x,y,z)=gx, F(y,z,x)=gy, and F(z,x,y)=gz. In fact, it follows from (2.2) and (2.3) that

q 1 ( g x n + 1 , F ( x , y , z ) ) + q 1 ( g y n + 1 , F ( y , z , x ) ) + q 1 ( g z n + 1 , F ( z , x , y ) ) = q 1 ( F ( x n , y n , z n ) , F ( x , y , z ) ) + q 1 ( F ( y n , z n , x n ) , F ( y , z , x ) ) + q 1 ( F ( z n , x n , y n ) , F ( z , x , y ) ) k 1 [ q 2 ( g x n , g x ) + q 2 ( g y n , g y ) + q 2 ( g z n , g z ) ] + k 2 [ q 2 ( g x n , F ( x n , y n , z n ) ) + q 2 ( g y n , F ( y n , z n , x n ) ) + q 2 ( g z n , F ( z n , x n , y n ) ) ] + k 3 [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] + k 4 [ q 2 ( g x n , F ( x , y , z ) ) + q 2 ( g y n , F ( y , z , x ) ) + q 2 ( g z n , F ( z , x , y ) ) ] + k 5 [ q 2 ( g x , F ( x n , y n , z n ) ) + q 2 ( g y , F ( y n , z n , x n ) ) + q 2 ( g z , F ( z n , x n , y n ) ) ] = k 1 [ q 2 ( g x n , g x ) + q 2 ( g y n , g y ) + q 2 ( g z n , g z ) ] + k 2 [ q 2 ( g x n , g x n + 1 ) + q 2 ( g y n , g y n + 1 ) + q 2 ( g z n , g z n + 1 ) ] + k 3 [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] + k 4 [ q 2 ( g x n , F ( x , y , z ) ) + q 2 ( g y n , F ( y , z , x ) ) + q 2 ( g z n , F ( z , x , y ) ) ] + k 5 [ q 2 ( g x , g x n + 1 ) + q 2 ( g y , g y n + 1 ) + q 2 ( g z , g z n + 1 ) ] k 1 [ q 1 ( g x n , g x ) + q 1 ( g y n , g y ) + q 1 ( g z n , g z ) ] + k 2 [ q 1 ( g x n , g x n + 1 ) + q 1 ( g y n , g y n + 1 ) + q 1 ( g z n , g z n + 1 ) ] + k 3 [ q 1 ( g x , F ( x , y , z ) ) + q 1 ( g y , F ( y , z , x ) ) + q 1 ( g z , F ( z , x , y ) ) ] + k 4 [ q 1 ( g x n , F ( x , y , z ) ) + q 1 ( g y n , F ( y , z , x ) ) + q 1 ( g z n , F ( z , x , y ) ) ] + k 5 [ q 1 ( g x , g x n + 1 ) + q 1 ( g y , g y n + 1 ) + q 1 ( g z , g z n + 1 ) ] .

Letting n in the above inequality, using (2.12)-(2.17), we obtain

q 1 ( g x , F ( x , y , z ) ) + q 1 ( g y , F ( y , z , x ) ) + q 1 ( g z , F ( z , x , y ) ) ( k 3 + k 4 ) [ q 1 ( g x , F ( x , y , z ) ) + q 1 ( g y , F ( y , z , x ) ) + q 1 ( g z , F ( z , x , y ) ) ] .
(2.18)

By (2.1) we have k 3 + k 4 <1. Hence, it follows from (2.18) that

q 1 ( g x , F ( x , y , z ) ) + q 1 ( g y , F ( y , z , x ) ) + q 1 ( g z , F ( z , x , y ) ) =0.

This implies that

q 1 ( g x , F ( x , y , z ) ) = q 1 ( g y , F ( y , z , x ) ) = q 1 ( g z , F ( z , x , y ) ) =0.

By Lemma 1.1, we get F(x,y,z)=gx, F(y,z,x)=gy, and F(z,x,y)=gz. Hence, (gx,gy,gz) is a tripled point of coincidence of mappings F and g.

Next, we will show that the tripled point of coincidence is unique. Suppose that ( x , y , z ) X 3 with F( x , y , z )=g x , F( y , z , x )=g y , and F( z , x , y )=g z . Using (2.2), (2.12), (2.13), (2.14), and (QPM3), we obtain

q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) = q 1 ( F ( x , y , z ) , F ( x , y , z ) ) + q 1 ( F ( y , z , x ) , F ( y , z , x ) ) + q 1 ( F ( z , x , y ) , F ( z , x , y ) ) k 1 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) + q 2 ( z , z ) ] + k 2 [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] + k 3 [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] + k 4 [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] + k 5 [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] = k 1 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) + q 2 ( g z , g z ) ] + k 2 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) + q 2 ( g z , g z ) ] + k 3 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) + q 2 ( g z , g z ) ] + k 4 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) + q 2 ( g z , g z ) ] + k 5 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) + q 2 ( g z , g z ) ] ( k 1 + k 4 ) [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] + k 2 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] + k 3 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] + k 5 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] ( k 1 + k 3 + k 4 ) [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] + k 5 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] .

This implies that

q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) k 5 1 k 1 k 3 k 4 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] .
(2.19)

Similarly, we have

q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) k 5 1 k 1 k 3 k 4 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] .
(2.20)

Substituting (2.20) into (2.19), we obtain

q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ( k 5 1 k 1 k 3 k 4 ) 2 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] .
(2.21)

Since k 5 1 k 1 k 3 k 4 <1, from (2.21), we must have q 1 (gx,g x )= q 1 (gy,g y )= q 1 (gz,g z )=0. By Lemma 1.1, we get gx=g x , gy=g y , and gz=g z , which implies that the uniqueness of the tripled point of coincidence of F and g, that is, (gx,gy,gz).

Next, we will show that gx=gy=gz. In fact, from (2.2), (2.12)-(2.14) we have

q 1 ( g x , g y ) + q 1 ( g y , g z ) + q 1 ( g z , g x ) = q 1 ( F ( x , y , z ) , F ( y , z , x ) ) + q 1 ( F ( y , z , x ) , F ( z , x , y ) ) + q 1 ( F ( z , x , y ) , F ( x , y , z ) ) k 1 [ q 2 ( g x , g y ) + q 2 ( g y , g z ) + q 2 ( g z , g x ) ] + k 2 [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] + k 3 [ q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) + q 2 ( g x , F ( x , y , z ) ) ] + k 4 [ q 2 ( g x , F ( y , z , x ) ) + q 2 ( g y , F ( z , x , y ) ) + q 2 ( g z , F ( x , y , z ) ) ] + k 5 [ q 2 ( g y , F ( x , y , z ) ) + q 2 ( g z , F ( y , z , x ) ) + q 2 ( g x , F ( z , x , y ) ) ] = k 1 [ q 2 ( g x , g y ) + q 2 ( g y , g z ) + q 2 ( g z , g x ) ] + k 2 [ q 2 ( g x , g x ) + q 2 ( g y , g y ) + q 2 ( g z , g z ) ] + k 3 [ q 2 ( g y , g y ) + q 2 ( g z , g z ) + q 2 ( g x , g x ) ] + k 4 [ q 2 ( g x , g y ) + q 2 ( g y , g z ) + q 2 ( g z , g x ) ] + k 5 [ q 2 ( g y , g x ) + q 2 ( g z , g y ) + q 2 ( g x , g z ) ] k 1 [ q 1 ( g x , g y ) + q 1 ( g y , g z ) + q 1 ( g z , g x ) ] + k 2 [ q 1 ( g x , g x ) + q 1 ( g y , g y ) + q 1 ( g z , g z ) ] + k 3 [ q 1 ( g y , g y ) + q 1 ( g z , g z ) + q 1 ( g x , g x ) ] + k 4 [ q 1 ( g x , g y ) + q 1 ( g y , g z ) + q 1 ( g z , g x ) ] + k 5 [ q 1 ( g y , g x ) + q 1 ( g z , g y ) + q 1 ( g x , g z ) ] = ( k 1 + k 4 ) [ q 1 ( g x , g y ) + q 1 ( g y , g z ) + q 1 ( g z , g x ) ] + k 5 [ q 1 ( g y , g x ) + q 1 ( g z , g y ) + q 1 ( g x , g z ) ] .

This implies that

q 1 ( g x , g y ) + q 1 ( g y , g z ) + q 1 ( g z , g x ) k 5 1 k 1 k 4 [ q 1 ( g y , g x ) + q 1 ( g z , g y ) + q 1 ( g x , g z ) ] .
(2.22)

By similar arguments as above, we can show that

q 1 ( g y , g x ) + q 1 ( g z , g y ) + q 1 ( g x , g z ) k 5 1 k 1 k 4 [ q 1 ( g x , g y ) + q 1 ( g y , g z ) + q 1 ( g z , g x ) ] .
(2.23)

Substituting (2.23) into (2.22), we have

q 1 ( g x , g y ) + q 1 ( g y , g z ) + q 1 ( g z , g x ) ( k 5 1 k 1 k 4 ) 2 [ q 1 ( g x , g y ) + q 1 ( g y , g z ) + q 1 ( g z , g x ) ] .
(2.24)

Since k 5 1 k 1 k 4 <1, from (2.24), we must have q 1 (gx,gy)= q 1 (gy,gz)= q 1 (gz,gx)=0. By Lemma 1.1, we get gx=gy=gz.

Finally, assume that F and g are w-compatible. Let u=gx, then we have u=gx=F(x,y,z)=gy=F(y,z,x)=gz=F(z,x,y), and so that

gu=ggx=g ( F ( x , y , z ) ) =F(gx,gy,gz)=F(u,u,u).
(2.25)

Consequently, (u,u,u) is a tripled coincidence point of F and g, and so (gu,gu,gu) is a tripled point of coincidence of F and g, and by its uniqueness, we get gu=gx. Thus, we obtain F(u,u,u)=gu=u. Therefore, (u,u,u) is the unique common tripled fixed point of F and g. This completes the proof of Theorem 2.1. □

Remark 2.1 Theorem 2.1 improves and extends Theorem 2.1 of Shatanawi and Pitea [42] in the following aspects:

  1. (1)

    The single quasi-partial metric extends to two quasi-partial metrics.

  2. (2)

    The coupled fixed point extends to a tripled fixed point.

  3. (3)

    The contractive condition defined by (1.1) is replaced by the new contractive condition defined by (2.2).

In Theorem 2.1, if we take q 1 (x,y)= q 2 (x,y) for all x,yX, then we get the following.

Corollary 2.1 Let (X,q) be a quasi-partial metric space, F: X 3 X and g:XX be two mappings. Suppose that there exist k 1 , k 2 , k 3 , k 4 , and k 5 in [0,1) with k 1 + k 2 + k 3 +2 k 4 + k 5 <1 such that the condition

q ( F ( x , y , z ) , F ( u , v , w ) ) + q ( F ( y , z , x ) , F ( v , w , u ) ) + q ( F ( z , x , y ) , F ( w , u , v ) ) k 1 [ q ( g x , g u ) + q ( g y , g v ) + q ( z , w ) ] + k 2 [ q ( g x , F ( x , y , z ) ) + q ( g y , F ( y , z , x ) ) + q ( g z , F ( z , x , y ) ) ] + k 3 [ q ( g u , F ( u , v , w ) ) + q ( g v , F ( v , w , u ) ) + q ( g w , F ( w , u , v ) ) ] + k 4 [ q ( g x , F ( u , v , w ) ) + q ( g y , F ( v , w , u ) ) + q ( g z , F ( w , u , v ) ) ] + k 5 [ q ( g u , F ( x , y , z ) ) + q ( g v , F ( y , z , x ) ) + q ( g w , F ( z , x , y ) ) ]
(2.26)

holds for all x,y,z,u,v,wX. Also, suppose we have the following hypotheses:

  1. (i)

    F( X 3 )g(X).

  2. (ii)

    g(X) is a complete subspace of X.

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying

gx=F(x,y,z)=gy=F(y,z,x)=F(z,x,y)=gz.

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of the form (u,u,u).

Remark 2.2 Corollary 2.1 improves and extends Corollary 2.2 of Aydi and Abbas [41] to quasi-partial metric spaces.

Corollary 2.2 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X, g:XX be two mappings. Suppose that there exist a i [0,1) (i=1,2,3,,15) with

( i = 1 9 a i ) +2 ( i = 10 12 a i ) + ( i = 13 15 a i ) <1
(2.27)

such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) a 1 q 2 ( g x , g u ) + a 2 q 2 ( g y , g v ) + a 3 q 2 ( g z , g w ) + a 4 q 2 ( g x , F ( x , y , z ) ) + a 5 q 2 ( g y , F ( y , z , x ) ) + a 6 q 2 ( g z , F ( z , x , y ) ) + a 7 q 2 ( g u , F ( u , v , w ) ) + a 8 q 2 ( g v , F ( v , w , u ) ) + a 9 q 2 ( g w , F ( w , u , v ) ) + a 10 q 2 ( g x , F ( u , v , w ) ) + a 11 q 2 ( g y , F ( v , w , u ) ) + a 12 q 2 ( g z , F ( w , u , v ) ) + a 13 q 2 ( g u , F ( x , y , z ) ) + a 14 q 2 ( g v , F ( y , z , x ) ) + a 15 q 2 ( g w , F ( z , x , y ) )
(2.28)

holds for all x,y,z,u,v,wX. Also, suppose we have the following hypotheses:

  1. (i)

    F( X 3 )g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying

gx=F(x,y,z)=gy=F(y,z,x)=gz=F(z,x,y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of the form (u,u,u).

Proof Given x,y,z,u,v,wX. It follows from (2.29) that

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) a 1 q 2 ( g x , g u ) + a 2 q 2 ( g y , g v ) + a 3 q 2 ( g z , g w ) + a 4 q 2 ( g x , F ( x , y , z ) ) + a 5 q 2 ( g y , F ( y , z , x ) ) + a 6 q 2 ( g z , F ( z , x , y ) ) + a 7 q 2 ( g u , F ( u , v , w ) ) + a 8 q 2 ( g v , F ( v , w , u ) ) + a 9 q 2 ( g w , F ( w , u , v ) ) + a 10 q 2 ( g x , F ( u , v , w ) ) + a 11 q 2 ( g y , F ( v , w , u ) ) + a 12 q 2 ( g z , F ( w , u , v ) ) + a 13 q 2 ( g u , F ( x , y , z ) ) + a 14 q 2 ( g v , F ( y , z , x ) ) + a 15 q 2 ( g w , F ( z , x , y ) ) ,
(2.29)
q 1 ( F ( y , z , x ) , F ( v , w , u ) ) a 1 q 2 ( g y , g v ) + a 2 q 2 ( g z , g w ) + a 3 q 2 ( g x , g u ) + a 4 q 2 ( g y , F ( y , z , x ) ) + a 5 q 2 ( g z , F ( z , x , y ) ) + a 6 q 2 ( g x , F ( x , y , z ) ) + a 7 q 2 ( g v , F ( v , w , u ) ) + a 8 q 2 ( g w , F ( w , u , v ) ) + a 9 q 2 ( g u , F ( u , v , w ) ) + a 10 q 2 ( g y , F ( v , w , u ) ) + a 11 q 2 ( g z , F ( w , u , v ) ) + a 12 q 2 ( g x , F ( u , v , w ) ) + a 13 q 2 ( g v , F ( y , z , x ) ) + a 14 q 2 ( g w , F ( z , x , y ) ) + a 15 q 2 ( g u , F ( x , y , z ) ) ,
(2.30)

and

q 1 ( F ( z , x , y ) , F ( w , u , v ) ) a 1 q 2 ( g z , g w ) + a 2 q 2 ( g x , g u ) + a 3 q 2 ( g y , g v ) + a 4 q 2 ( g z , F ( z , x , y ) ) + a 5 q 2 ( g x , F ( x , y , z ) ) + a 6 q 2 ( g y , F ( y , z , x ) ) + a 7 q 2 ( g w , F ( w , u , v ) ) + a 8 q 2 ( g u , F ( u , v , w ) ) + a 9 q 2 ( g v , F ( v , w , u ) ) + a 10 q 2 ( g z , F ( w , u , v ) ) + a 11 q 2 ( g x , F ( u , v , w ) ) + a 12 q 2 ( g y , F ( v , w , u ) ) + a 13 q 2 ( g w , F ( z , x , y ) ) + a 14 q 2 ( g u , F ( x , y , z ) ) + a 15 q 2 ( g v , F ( y , z , x ) ) .
(2.31)

Adding inequality (2.29) and (2.30) to inequality (2.31), we get

q 1 ( q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) ( a 1 + a 2 + a 3 ) [ q 2 ( g x , g u ) + q 2 ( g y , g v ) + q 2 ( g z , g w ) ] + ( a 4 + a 5 + a 6 ) [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( g z , F ( z , x , y ) ) ] + ( a 7 + a 8 + a 9 ) [ q 2 ( g u , F ( u , v , w ) ) + q 2 ( g v , F ( v , w , u ) ) + q 2 ( g w , F ( w , u , v ) ) ] + ( a 10 + a 11 + a 12 ) [ q 2 ( g x , F ( u , v , w ) ) + q 2 ( g y , F ( v , w , u ) ) + q 2 ( g z , F ( w , u , v ) ) ] + ( a 13 + a 14 + a 15 ) [ q 2 ( g u , F ( x , y , z ) ) + q 2 ( g v , F ( y , z , x ) ) + q 2 ( g w , F ( z , x , y ) ) ] .
(2.32)

Therefore, the result follows from Theorem 2.1. □

Remark 2.3 If we take q 1 (x,y)= q 2 (x,y)=p(x,y) for all x,yX, where p is a partial metric on X. Then Corollary 2.2 is reduced to Theorems 2.1 and 2.4 of Aydi and Abbas [41]. Corollary 2.2 also improves and extends Corollary 2.1 of Shatanawi and Pitea [35].

Corollary 2.3 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X, g:XX be two mappings. Suppose that there exists k[0,1) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( g x , g u ) + q 2 ( g y , g v ) + q 2 ( g z , g w ) ]
(2.33)

holds for all x,y,z,u,v,wX. Also, suppose we have the following hypotheses:

  1. (i)

    F( X 3 )g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying

gx=F(x,y,z)=gy=F(y,z,x)=gz=F(z,x,y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of the form (u,u,u).

Corollary 2.4 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X, g:XX be two mappings. Suppose that there exists k[0,1) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( g x , F ( x , y , z ) ) + q 2 ( g y , F ( y , z , x ) ) + q 2 ( F ( g z , F ( z , x , y ) ) ) ]
(2.34)

holds for all x,y,z,u,v,wX. Also, suppose we have the following hypotheses:

  1. (i)

    F( X 3 )g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying

gx=F(x,y,z)=gy=F(y,z,x)=gz=F(z,x,y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of the form (u,u,u).

Corollary 2.5 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X, g:XX be two mappings. Suppose that there exists k[0,1) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v . w ) ) + q 1 ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( g u , F ( u , v , w ) ) + q 2 ( g v , F ( v , w , u ) ) + q 2 ( g w , F ( w , u , v ) ) ]
(2.35)

holds for all x,y,z,u,v,wX. Also, suppose we have the following hypotheses:

  1. (i)

    F( X 3 )g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying

gx=F(x,y,z)=gy=F(y,z,x)=gz=F(z,x,y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of the form (u,u,u).

Remark 2.4 Corollaries 2.3-2.5 improve and extend Corollaries 2.2-2.4 of Shatanawi and Pitea [42] in the following aspects:

  1. (1)

    The single quasi-partial metric extends to two quasi-partial metrics.

  2. (2)

    The coupled fixed point extends to a tripled fixed point.

Corollary 2.6 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X, g:XX be two mappings. Suppose that there exists k[0, 1 2 ) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( g x , F ( u , v , w ) ) + q 2 ( g y , F ( v , w , u ) ) + q 2 ( g z , F ( w , u , v ) ) ]
(2.36)

holds for all x,y,z,u,v,wX. Also, suppose we have the following hypotheses:

  1. (i)

    F( X 3 )g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying

gx=F(x,y,z)=gy=F(y,z,x)=gz=F(z,x,y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of the form (u,u,u).

Corollary 2.7 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X, g:XX be two mappings. Suppose that there exists k[0,1) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( g u , F ( x , y , z ) ) + q 2 ( g v , F ( y , z , x ) ) + q 2 ( g w , F ( z , x , y ) ) ]
(2.37)

holds for all x,y,z,u,v,wX. Also, suppose we have the following hypotheses:

  1. (i)

    F( X 3 )g(X).

  2. (ii)

    g(X) is a complete subspace of X with respect to the quasi-partial metric q 1 .

Then the mappings F and g have a tripled coincidence point (x,y,z) satisfying

gx=F(x,y,z)=gy=F(y,z,x)=gz=F(z,x,y).

Moreover, if F and g are w-compatible, then F and g have a unique common tripled fixed point of the form (u,u,u).

Let g= I X (the identity mapping) in Theorem 2.1 and Corollaries 2.1-2.7. Then we have the following results.

Corollary 2.8 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X be a mapping. Suppose that there exist k 1 , k 2 , k 3 , k 4 , and k 5 in [0,1) with k 1 + k 2 + k 3 +2 k 4 + k 5 <1 such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k 1 [ q 2 ( x , u ) + q 2 ( y , v ) + q 2 ( z , w ) ] + k 2 [ q 2 ( x , F ( x , y , z ) ) + q 2 ( y , F ( y , z , x ) ) + q 2 ( z , F ( z , x , y ) ) ] + k 3 [ q 2 ( u , F ( u , v , w ) ) + q 2 ( v , F ( v , w , u ) ) + q 2 ( w , F ( w , u , v ) ) ] + k 4 [ q 2 ( x , F ( u , v , w ) ) + q 2 ( y , F ( v , w , u ) ) + q 1 ( z , F ( w , u , v ) ) ] + k 5 [ q 2 ( u , F ( x , y , z ) ) + q 2 ( v , F ( y , z , x ) ) + q 2 ( w , F ( z , x , y ) ) ]
(2.38)

holds for all x,y,z,u,v,wX. If (X, q 1 ) is a complete quasi-partial metric space, then the mapping F has a unique tripled fixed point of the form (u,u,u).

Corollary 2.9 Let (X,q) be a complete quasi-partial metric space, F: X 3 X be a mapping. Suppose that there exist k 1 , k 2 , k 3 , k 4 , and k 5 in [0,1) with k 1 + k 2 + k 3 +2 k 4 + k 5 <1 such that the condition

q ( F ( x , y , z ) , F ( u , v , w ) ) + q ( F ( y , z , x ) , F ( v , w , u ) ) + q ( F ( z , x , y ) , F ( w , u , v ) ) k 1 [ q ( x , u ) + q ( y , v ) + q ( z , w ) ] + k 2 [ q ( x , F ( x , y , z ) ) + q ( y , F ( y , z , x ) ) + q ( z , F ( z , x , y ) ) ] + k 3 [ q ( u , F ( u , v , w ) ) + q ( v , F ( v , w , u ) ) + q ( w , F ( w , u , v ) ) ] + k 4 [ q ( x , F ( u , v , w ) ) + q ( y , F ( v , w , u ) ) + q ( z , F ( w , u , v ) ) ] + k 5 [ q ( u , F ( x , y , z ) ) + q ( v , F ( y , z , x ) ) + q ( w , F ( z , x , y ) ) ]
(2.39)

holds for all x,y,z,u,v,wX. Then F has a unique tripled fixed point of the form (u,u,u).

Remark 2.5 Corollary 2.9 improves and extends Corollary 2.5 of Shatanawi and Pitea [42], the contractive condition is replaced by the new contractive condition defined by (2.39).

Corollary 2.10 Let (X,p) be a complete partial metric space, F: X 3 X be a mapping. Suppose that there exist k 1 , k 2 , k 3 , k 4 , and k 5 in [0,1) with k 1 + k 2 + k 3 +2 k 4 + k 5 <1 such that the condition

p ( F ( x , y , z ) , F ( u , v , w ) ) k 1 [ p ( x , u ) + p ( y , v ) + p ( z , w ) ] + k 2 [ p ( x , F ( x , y , z ) ) + p ( y , F ( y , z , x ) ) + p ( z , F ( z , x , y ) ) ] + k 3 [ p ( u , F ( u , v , w ) ) + p ( v , F ( v , w , u ) ) + p ( w , F ( w , u , v ) ) ] + k 4 [ p ( x , F ( u , v , w ) ) + p ( y , F ( v , w , u ) ) + p ( z , F ( w , u , v ) ) ] + k 5 [ p ( u , F ( x , y , z ) ) + p ( v , F ( y , z , x ) ) + p ( w , F ( z , x , y ) ) ]
(2.40)

holds for all x,y,z,u,v,wX. Then the mapping F has a unique tripled fixed point of the form (u,u,u).

Corollary 2.11 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X be a mapping. Suppose that there exist a i [0,1) (i=1,2,3,,15) with

( i = 1 9 a i ) +2 ( i = 10 12 a i ) + ( i = 13 15 a i ) <1
(2.41)

such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) a 1 q 2 ( x , u ) + a 2 q 2 ( y , v ) + a 3 q 2 ( z , w ) + a 4 q 2 ( x , F ( x , y , z ) ) + a 5 q 2 ( y , F ( y , z , x ) ) + a 6 q 2 ( z , F ( z , x , y ) ) + a 7 q 2 ( u , F ( u , v , w ) ) + a 8 q 2 ( v , F ( v , w , u ) ) + a 9 q 2 ( w , F ( w , u , v ) ) + a 10 q 2 ( x , F ( u , v , w ) ) + a 11 q 2 ( y , F ( v , w , u ) ) + a 12 q 2 ( z , F ( w , u , v ) ) + a 13 q 2 ( u , F ( x , y , z ) ) + a 14 q 2 ( v , F ( y , z , x ) ) + a 15 q 2 ( w , F ( z , x , y ) )
(2.42)

holds for all x,y,z,u,v,wX. If (X, q 1 ) is a complete quasi-partial metric space. Then the mapping F has a unique coupled fixed point of the form (u,u,u).

Remark 2.6 Corollary 2.11 improves and extends Corollary 2.6 of Shatanawi and Pitea [42] in the following aspects:

  1. (1)

    The single quasi-partial metric extends to two quasi-partial metrics.

  2. (2)

    The coupled fixed point extends to a tripled fixed point.

  3. (3)

    The contractive condition is replaced by the new contractive condition defined by (2.42).

Corollary 2.12 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X be a mapping. Suppose that there exists k[0,1) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( x , u ) + q 2 ( y , v ) + q 2 ( z , w ) ]
(2.43)

holds for all x,y,z,u,v,wX. If (X, q 1 ) is a complete quasi-partial metric space. Then the mapping F has a unique tripled fixed point of the form (u,u,u).

Corollary 2.13 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X be a mapping. Suppose that there exists k[0,1) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( x , F ( x , y , z ) ) + q 2 ( y , F ( y , z , x ) ) + q 2 ( z , F ( z , x , y ) ) ]
(2.44)

holds for all x,y,z,u,v,wX. If (X, q 1 ) is a complete quasi-partial metric space. Then the mapping F has a unique tripled fixed point of the form (u,u,u).

Corollary 2.14 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X be a mapping. Suppose that there exists k[0,1) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( u , F ( u , v , w ) ) + q 2 ( v , F ( v , w , u ) ) + q 2 ( w , F ( w , u , v ) ) ]
(2.45)

holds for all x,y,z,u,v,wX. If (X, q 1 ) is a complete quasi-partial metric space. Then the mapping F has a unique tripled fixed point of the form (u,u,u).

Remark 2.7 Corollaries 2.12-2.14 improve and extend Corollaries 2.7-2.9 of Shatanawi and Pitea [42] in the following aspects:

  1. (1)

    The single quasi-partial metric extends to two quasi-partial metrics.

  2. (2)

    The coupled fixed point extends to a tripled fixed point.

Corollary 2.15 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X be a mapping. Suppose that there exists k[0, 1 2 ) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( x , F ( u , v , w ) ) + q 2 ( y , F ( v , w , u ) ) + q 2 ( z , F ( w , u , v ) ) ]

holds for all x,y,z,u,v,wX. If (X, q 1 ) is a complete quasi-partial metric space. Then the mapping F has a unique tripled fixed point of the form (u,u,u).

Corollary 2.16 Let q 1 and q 2 be two quasi-metrics on X such that q 2 (x,y) q 1 (x,y), for all x,yX, and F: X 3 X be a mapping. Suppose that there exists k[0,1) such that the condition

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) , F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) k [ q 2 ( u , F ( x , y , z ) ) + q 2 ( v , F ( y , z , x ) ) + q 2 ( w , F ( z , x , y ) ) ]

holds for all x,y,z,u,v,wX. If (X, q 1 ) is a complete quasi-partial metric space. Then the mapping F has a unique tripled fixed point of the form (u,u,u).

Now, we introduce an example to support our results.

Example 2.1 Let X=[0,1], and two quasi-partial metrics q 1 , q 2 on X be given as

q 1 (x,y)=|xy|+xand q 2 (x,y)= 1 2 [ | x y | + x ]

for all x,yX. Also, define F: X 3 X and g:XX as

F(x,y,z)= x + y + z 27 andgx= x 3

for all x,y,zX. Then

  1. (1)

    (X, q 1 ) is a complete quasi-partial metric space.

  2. (2)

    F( X 3 )X.

  3. (3)

    F and g are w-compatible.

  4. (4)

    For any x,y,z,u,v,wX, we have

    q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) + F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) 1 3 ( q 2 ( g x , g u ) + q 2 ( g y , g v ) + q 2 ( g z , g w ) ) .

Proof The proofs of (1), (2), and (3) are clear. Next we show that (4). In fact, for x,y,z,u,v,wX, we have

q 1 ( F ( x , y , z ) , F ( u , v , w ) ) + q 1 ( F ( y , z , x ) + F ( v , w , u ) ) + q 1 ( F ( z , x , y ) , F ( w , u , v ) ) = q 1 ( x + y + z 27 , u + v + w 27 ) + q 1 ( y + z + x 27 , v + w + u 27 ) + q 1 ( z + x + y 27 , w + u + v 27 ) = 1 9 ( | x + y + z ( u + v + w ) | + ( x + y + z ) ) 1 9 ( | x u | + | y v | + | z w | + x + y + z ) = 1 3 ( | 1 3 x 1 3 u | + 1 3 x + | 1 3 y 1 3 v | + 1 3 y + | 1 3 z 1 3 w | + 1 3 z ) = 1 3 ( q 2 ( g x , g u ) + q 2 ( g y , g v ) + q 2 ( g z , g w ) ) .

Thus, F and g satisfy all the hypotheses of Corollary 2.3. So, F and g have a unique common coupled fixed point. Here (0,0,0) is the unique common tripled fixed point of F and g. □

References

  1. Matthews SG: Partial metric topology. Annals of the New York Academy of Sciences 728. In General Topology and Its Applications. New York Academy of Science, New York; 1994:183–197.

    Google Scholar 

  2. Abdeljawad T, Karapinar E, Taş K: Existence and uniqueness of a common fixed point on partial metric spaces. Appl. Math. Lett. 2011, 24(11):1900–1904. 10.1016/j.aml.2011.05.014

    Article  MathSciNet  Google Scholar 

  3. Abdeljawad T, Karapinar E, Taş K: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 2012, 63(3):716–719. 10.1016/j.camwa.2011.11.035

    Article  MathSciNet  Google Scholar 

  4. Abdeljawad T: Fixed points and generalized weakly contractive mappings in partial metric spaces. Math. Comput. Model. 2011, 54(11–12):2923–2927. 10.1016/j.mcm.2011.07.013

    Article  MathSciNet  Google Scholar 

  5. Altun I, Acar Ö: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol. Appl. 2012, 159: 2642–2648. 10.1016/j.topol.2012.04.004

    Article  MathSciNet  Google Scholar 

  6. Altun I, Erduran A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 508730 10.1155/2011/508730

    Google Scholar 

  7. Altun I, Simsek H: Some fixed point theorems on dualistic partial metric spaces. J. Adv. Math. Stud. 2008, 1(1–2):1–8.

    MathSciNet  Google Scholar 

  8. Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. Topol. Appl. 2010, 157(18):2778–2785. 10.1016/j.topol.2010.08.017

    Article  MathSciNet  Google Scholar 

  9. Altun I, Sadarangani K: Corrigendum to ‘Generalized contractions on partial metric spaces’ [Topology Appl. 157 (2010) 2778–2785]. Topol. Appl. 2011, 158(13):1738–1740. 10.1016/j.topol.2011.05.023

    Article  MathSciNet  Google Scholar 

  10. Amiri P, Rezapour S: Fixed point of multi-valued operators on partial metric spaces. Anal. Theory Appl. 2013, 29(2):158–168. 10.4208/ata.2013.v29.n2.7

    MathSciNet  Google Scholar 

  11. Aydi H: Some fixed point results in ordered partial metric spaces. J. Nonlinear Sci. Appl. 2011, 4(2):1–12.

    MathSciNet  Google Scholar 

  12. Aydi H: Some coupled fixed point results on partial metric spaces. Int. J. Math. Sci. 2011., 2011: Article ID 647091

    Google Scholar 

  13. Aydi H: Fixed point theorems for generalized weakly contractive in ordered partial metric spaces. J. Nonlinear Anal. Optim., Theory Appl. 2011, 2(2):269–284.

    MathSciNet  Google Scholar 

  14. Aydi H, Karapinar E, Shatanawi W:Coupled fixed point results for (ψ,φ)-weakly contractive condition in ordered partial metric spaces. Comput. Math. Appl. 2011, 62: 4449–4460. 10.1016/j.camwa.2011.10.021

    Article  MathSciNet  Google Scholar 

  15. Bari CD, Milojević M, Radenović S, Vetro P: Common fixed points for self-mappings on partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 140 10.1186/1687-1812-2012-140

    Google Scholar 

  16. Chakkrid K: Modified proof of Caristi’s fixed point theorem on partial metric spaces. J. Inequal. Appl. 2013., 2013: Article ID 210 10.1186/1029-242X-2013-210

    Google Scholar 

  17. Chen C, Zhu C: Fixed point theorems for weakly C -contractive mappings in partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 107 10.1186/1687-1812-2013-107

    Google Scholar 

  18. Ćirić L, Samet B, Aydi H, Vetro C: Common fixed point results of generalized contractions on partial metric spaces and application. Appl. Math. Comput. 2011, 218: 2398–2406. 10.1016/j.amc.2011.07.005

    Article  MathSciNet  Google Scholar 

  19. Golubović Z, Kadelburg Z, Radenović S: Coupled coincidence points of mappings in ordered partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 192581 10.1155/2012/192581

    Google Scholar 

  20. Karapinar E, Erhan I: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24: 1894–1899. 10.1016/j.aml.2011.05.013

    Article  MathSciNet  Google Scholar 

  21. Nashine HK, Kadelburg Z, Radenović S: Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces. Math. Comput. Model. 2013, 57: 2355–2365. 10.1016/j.mcm.2011.12.019

    Article  Google Scholar 

  22. Oltra S, Valero O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36(1–2):17–26.

    MathSciNet  Google Scholar 

  23. Romaguera S: A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 493298 10.1155/2010/493298

    Google Scholar 

  24. Romaguera S: Fixed point theorems for generalized contractions on partial metric spaces. Topol. Appl. 2010, 159: 194–199.

    Article  MathSciNet  Google Scholar 

  25. Samet B, Rajović M, Lazović R, Stoijković R: Common fixed point results for nonlinear contractions in ordered partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 71 10.1186/1687-1812-2011-71

    Google Scholar 

  26. Shatanawi W, Nashine HK: A generalization of Banach’s contraction principle of nonlinear contraction in a partial metric spaces. J. Nonlinear Sci. Appl. 2012, 5: 37–43.

    MathSciNet  Google Scholar 

  27. Shatanawi W, Nashine HK, Tahat N: Generalization of some coupled fixed point results on partial metric spaces. Int. J. Math. Math. Sci. 2012., 2012: Article ID 686801

    Google Scholar 

  28. Shatanawi W, Samet B, Abbas M: Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces. Math. Comput. Model. 2012, 55: 680–687. 10.1016/j.mcm.2011.08.042

    Article  MathSciNet  Google Scholar 

  29. Shatanawi W, Postolache M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 54 10.1186/1687-1812-2013-54

    Google Scholar 

  30. Radenović S: Remarks on some coupled fixed point results in partial metric spaces. Nonlinear Funct. Anal. Appl. 2013, 18(1):39–50.

    Google Scholar 

  31. Nashine HK, Kadelburg Z, Radenović S: Fixed point theorems via various cyclic contractive conditions in partial metric spaces. Publ. Inst. Math. (Beograd) (N.S.) 2013, 93(107):69–93. 10.2298/PIM1307069N

    Article  MathSciNet  Google Scholar 

  32. Valero O: On Banach fixed point theorems for partial metric spaces. Appl. Gen. Topol. 2005, 6(2):229–240. 10.4995/agt.2005.1957

    Article  MathSciNet  Google Scholar 

  33. Haghi RH, Rezapour Sh, Shahzad N: Be careful on partial metric fixed point results. Topol. Appl. 2013, 160: 450–454. 10.1016/j.topol.2012.11.004

    Article  MathSciNet  Google Scholar 

  34. Karapinar E, Erhan İ, Öztürk A: Fixed point theorems on quasi-partial metric spaces. Math. Comput. Model. 2013, 57: 2442–2448. 10.1016/j.mcm.2012.06.036

    Article  Google Scholar 

  35. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  Google Scholar 

  36. Lakshmikantham V, Ćirić L: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MathSciNet  Google Scholar 

  37. Abbas M, Khan MA, Radenović S: Common coupled fixed point theorem in cone metric space for w -compatible mappings. Appl. Math. Comput. 2010, 217: 195–202. 10.1016/j.amc.2010.05.042

    Article  MathSciNet  Google Scholar 

  38. Samet B, Vetro C: Coupled fixed point, f -invariant set and fixed point of N -order. Ann. Funct. Anal. 2010, 1(2):46–56. 10.15352/afa/1399900586

    Article  MathSciNet  Google Scholar 

  39. Berinde V, Borcut M: Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74(15):4889–4897. 10.1016/j.na.2011.03.032

    Article  MathSciNet  Google Scholar 

  40. Aydi H, Abbas M, Sintunavarat W, Kumam P: Tripled fixed point of W -compatible mappings in abstract metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 134 10.1186/1687-1812-2012-134

    Google Scholar 

  41. Aydi H, Abbas M: Tripled coincidence and fixed point results in partial metric spaces. Appl. Gen. Topol. 2012, 13(2):193–206.

    MathSciNet  Google Scholar 

  42. Shatanawi W, Pitea A: Some coupled fixed point theorems in quasi-partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 153 10.1186/1687-1812-2013-153

    Google Scholar 

  43. Abbas M, Khan AR, Nazir T: Coupled common fixed point results in two generalized metric spaces. Appl. Math. Comput. 2011, 217: 6328–6336. 10.1016/j.amc.2011.01.006

    Article  MathSciNet  Google Scholar 

  44. Aydi H, Karapinar E, Postolache M: Tripled coincidence point theorems for weak ϕ -contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 44

    Google Scholar 

  45. Abbas M, Nazir T, Radenović S: Common fixed point of generalized weakly contractive maps in partially ordered G -metric spaces. Appl. Math. Comput. 2012, 218(18):9383–9395. 10.1016/j.amc.2012.03.022

    Article  MathSciNet  Google Scholar 

  46. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for (ψ,ϕ) -weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012, 63(1):298–309. 10.1016/j.camwa.2011.11.022

    Article  MathSciNet  Google Scholar 

  47. Abbas M, Sintunavarat W, Kumam P: Coupled fixed point of generalized contractive mappings on partially ordered G -metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 31 10.1186/1687-1812-2012-31

    Google Scholar 

  48. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G -metric spaces. Math. Comput. Model. 2011, 54(9–10):2443–2450. 10.1016/j.mcm.2011.05.059

    Article  Google Scholar 

  49. Berinde V: Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74(18):7347–7355. 10.1016/j.na.2011.07.053

    Article  MathSciNet  Google Scholar 

  50. Berinde V: Coupled coincidence point theorems for mixed monotone nonlinear operators. Comput. Math. Appl. 2012, 64(6):1770–1777. 10.1016/j.camwa.2012.02.012

    Article  MathSciNet  Google Scholar 

  51. Berinde V: Coupled fixed point theorems for φ -contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2012, 75(6):3218–3228. 10.1016/j.na.2011.12.021

    Article  MathSciNet  Google Scholar 

  52. Berinde V, Păcurar M: Coupled fixed point theorems for generalized symmetric Meir-Keeler contractions in ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 115

    Google Scholar 

  53. Chandok S, Mustafa Z, Postolache M: Coupled common fixed point theorems for mixed g -monotone mappings in partially ordered G -metric spaces. Sci. Bull. “Politeh.” Univ. Buchar., Ser. A, Appl. Math. Phys. 2013, 75(4):13–26.

    MathSciNet  Google Scholar 

  54. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8 10.1186/1687-1812-2012-8

    Google Scholar 

  55. Choudhury BS, Metiya N, Postolache M: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013., 2013: Article ID 152 10.1186/1687-1812-2013-152

    Google Scholar 

  56. Gu F, Wang L: Some coupled fixed-point theorems in two quasi-partial metric spaces. Fixed Point Theory Appl. 2014., 2014: Article ID 19

    Google Scholar 

  57. Gu F, Yin Y: A new common coupled fixed point theorem in generalized metric space and applications to integral equations. Fixed Point Theory Appl. 2013., 2013: Article ID 266 10.1186/1687-1812-2013-266

    Google Scholar 

  58. Gu F, Zhou S: Coupled common fixed point theorems for a pair of commuting mappings in partially ordered G -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 64 10.1186/1687-1812-2013-64

    Google Scholar 

  59. Karapinar E: Coupled fixed point theorems for nonlinear contractions in cone metric spaces. Comput. Math. Appl. 2010, 59: 3656–3668. 10.1016/j.camwa.2010.03.062

    Article  MathSciNet  Google Scholar 

  60. Olatinwo MO, Postolache M: Stability results for Jungck-type iterative processes in convex metric spaces. Appl. Math. Comput. 2012, 218(12):6727–6732. 10.1016/j.amc.2011.12.038

    Article  MathSciNet  Google Scholar 

  61. Qiu Z, Hong S: Coupled fixed points for multivalued mappings in fuzzy metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 162 10.1186/1687-1812-2013-162

    Google Scholar 

  62. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 2010, 72: 4508–4517. 10.1016/j.na.2010.02.026

    Article  MathSciNet  Google Scholar 

  63. Shatanawi W: On w -compatible mappings and common coupled coincidence point in cone metric spaces. Appl. Math. Lett. 2012, 25: 925–931. 10.1016/j.aml.2011.10.037

    Article  MathSciNet  Google Scholar 

  64. Shatanawi W, Abbas M, Nazir T: Common coupled coincidence and coupled fixed point results in two generalized metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 80 10.1186/1687-1812-2011-80

    Google Scholar 

  65. Shatanawi W, Pitea A: Omega-distance and coupled fixed point in G -metrics spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 208

    Google Scholar 

  66. Shatanawi W, Pitea A: Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction. Fixed Point Theory Appl. 2013., 2013: Article ID 275

    Google Scholar 

  67. Shatanawi W, Postolache M: Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 60

    Google Scholar 

  68. Shatanawi W, Postolache M: Common fixed point theorems for dominating and weak annihilator mappings in ordered metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 271

    Google Scholar 

Download references

Acknowledgements

The author is grateful to the reviewers for suggestions which improved the contents of the article. This work is supported by the National Natural Science Foundation of China (11271105, 11071169), the Natural Science Foundation of Zhejiang Province (Y6110287, LY12A01030) and the Natural Science Foundation of Shandong Province (ZR2013AL015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gu.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gu, F. Some common tripled fixed point results in two quasi-partial metric spaces. Fixed Point Theory Appl 2014, 71 (2014). https://doi.org/10.1186/1687-1812-2014-71

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2014-71

Keywords