Open Access

Some fixed point theorems for mappings satisfying contractive conditions of integral type

Fixed Point Theory and Applications20142014:69

https://doi.org/10.1186/1687-1812-2014-69

Received: 3 December 2013

Accepted: 11 March 2014

Published: 20 March 2014

Abstract

Five fixed point theorems for mappings satisfying contractive conditions of integral type in complete metric spaces are proved. Two examples are added to illustrate the results obtained.

MSC:54H25.

Keywords

fixed point contractive conditions of integral type complete metric space

1 Introduction and preliminaries

Rhoades [1] and Branciari [2] proved the following fixed point theorems for the weakly contraction mapping and contractive mapping of integral type, respectively, which are generalizations of the Banach fixed point theorem.

Theorem 1.1 ([1])

Let T be a mapping from a complete metric space ( X , d ) into itself satisfying
d ( T x , T y ) d ( x , y ) ψ ( d ( x , y ) ) , x , y X ,
(1.1)

where ψ : R + R + is continuous and nondecreasing such that ψ is positive on R + { 0 } , ψ ( 0 ) = 0 and lim t + ψ ( t ) = + . Then T has a unique fixed point in X.

Theorem 1.2 ([2])

Let T be a mapping from a complete metric space ( X , d ) into itself satisfying
0 d ( T x , T y ) φ ( t ) d t c 0 d ( x , y ) φ ( t ) d t , x , y X ,
(1.2)

where c ( 0 , 1 ) is a constant and φ Φ 1 . Then T has a unique fixed point a X such that lim n T n x = a for each x X .

Recently several years, the researchers in [314] and others continued the study of Rhoades and Branciari, proved some fixed point and common fixed point theorems for various generalized weakly contraction mappings and contractive mappings of integral type in complete metric spaces, Banach spaces, modular spaces and symmetric spaces. Suzuki [15] proved that contractive condition of integral type in complete metric spaces is a special case of Meir-Keeler type.

The objective of this article is both to introduce several mappings satisfying contractive conditions of integral type, one of which extends the mapping (1.1) and is different from the mapping (1.2), and to provide sufficient conditions which ensure the existence of fixed points and convergence of iterative methods for these mappings in complete metric spaces. Two nontrivial examples are given to explain the main results obtained.

Throughout this paper, we assume that R + = [ 0 , + ) , N 0 = { 0 } N , denotes the set of all positive integers and
Φ 1 = { φ : φ : R + R +  is Lebesgue integrable, summable on each Φ 1 = compact subset of  R +  and  0 ε φ ( t ) d t > 0  for each  ε > 0 } ; Φ 2 = { ψ : ψ : R + R +  is a lower semicontinuous function with  ψ ( 0 ) = 0 Φ 2 = and  ψ ( t ) > 0  for each  t > 0 } .
For a self mapping T in a metric space ( X , d ) and ( x , y , n ) X 2 × N 0 , define
x n = T n x , d n = d ( x n , x n + 1 ) ; M ( x , y ) = max { d ( x , y ) , d ( x , T x ) , d ( y , T y ) , 1 2 [ d ( x , T y ) + d ( y , T x ) ] } ; N ( x , y ) = max { d ( x , T x ) , d ( y , T y ) } ; P ( x , y ) = max { d ( x , y ) , d ( x , T x ) , d ( y , T y ) } ; Q ( x , y ) = max { d ( x , T x ) , d ( y , T y ) , 1 2 [ d ( x , T y ) + d ( y , T x ) ] } .

Lemma 1.1 ([10])

Let φ Φ 1 and { r n } n N be a nonnegative sequence with lim n r n = a . Then
lim n 0 r n φ ( t ) d t = 0 a φ ( t ) d t .

Lemma 1.2 ([10])

Let φ Φ 1 and { r n } n N be a nonnegative sequence. Then
lim n 0 r n φ ( t ) d t = 0

if and only if lim n r n = 0 .

2 Main results

Now we prove the existence, uniqueness, and iterative approximations of fixed points for the mappings (2.1), (2.8), and (2.19)(2.21), respectively.

Theorem 2.1 Let ( φ , ψ ) be in Φ 1 × Φ 2 and T be a mapping from a complete metric space ( X , d ) into itself satisfying
0 d ( T x , T y ) φ ( t ) d t 0 d ( x , y ) φ ( t ) d t 0 ψ ( d ( x , y ) ) φ ( t ) d t , x , y X .
(2.1)

Then T has a unique fixed point a X such that lim n T n x = a for each x X .

Proof Let x be an arbitrary point in X. Suppose that there exists some n 0 N 0 with x n 0 = x n 0 + 1 . Clearly,
x n 0 = T x n 0 = T 2 x n 0 = = T m x n 0 = = lim n T n x n 0 ,
that is, x n 0 is a fixed point of T. Suppose that x n x n + 1 for each n N 0 . It follows from (2.1) and ( φ , ψ ) Φ 1 × Φ 2 that
0 d n + 1 φ ( t ) d t = 0 d ( x n + 1 , x n + 2 ) φ ( t ) d t = 0 d ( T n + 1 x , T n + 2 x ) φ ( t ) d t 0 d ( T n x , T n + 1 x ) φ ( t ) d t 0 ψ ( d ( T n x , T n + 1 x ) ) φ ( t ) d t = 0 d n φ ( t ) d t 0 ψ ( d n ) φ ( t ) d t < 0 d n φ ( t ) d t , n N 0 ,
which yields
d n + 1 < d n , n N 0 ,
which implies that there exists a constant c with lim n d n = c 0 . Suppose that c > 0 . Put lim inf n ψ ( d n ) = α . It is easy to see that there exists a subsequence { d n ( k ) } n N of { d n } n N 0 satisfying lim k ψ ( d n ( k ) ) = α . Since ψ is lower semicontinuous and ψ Φ 2 , it follows that α ψ ( c ) > 0 . Using (2.1), Lemma 1.1 and ( φ , ψ ) Φ 1 × Φ 2 , we get
0 < 0 c φ ( t ) d t = lim sup k 0 d n ( k ) + 1 φ ( t ) d t = lim sup k 0 d ( x n ( k ) + 1 , x n ( k ) + 2 ) φ ( t ) d t = lim sup k 0 d ( T n ( k ) + 1 x , T n ( k ) + 2 x ) φ ( t ) d t lim sup k ( 0 d ( T n ( k ) x , T n ( k ) + 1 x ) φ ( t ) d t 0 ψ ( d ( T n ( k ) x , T n ( k ) + 1 x ) ) φ ( t ) d t ) lim sup k ( 0 d n ( k ) φ ( t ) d t 0 ψ ( d n ( k ) ) φ ( t ) d t ) lim sup k 0 d n ( k ) φ ( t ) d t lim inf k 0 ψ ( d n ( k ) ) φ ( t ) d t = 0 c φ ( t ) d t 0 α φ ( t ) d t 0 c φ ( t ) d t 0 ψ ( c ) φ ( t ) d t < 0 c φ ( t ) d t ,
which is impossible. Hence c = 0 and
lim n d n = 0 .
(2.2)
Now we prove that { x n } n N 0 is a Cauchy sequence. If it is not a Cauchy sequence, then there exist a constant ε > 0 and two subsequences { x m ( k ) } k N and { x n ( k ) } k N of { x n } n N 0 such that n ( k ) is minimal in the sense that n ( k ) > m ( k ) > k and d ( x m ( k ) , x n ( k ) ) > ε . It follows that d ( x m ( k ) , x n ( k ) 1 ) ε . Observe that
ε < d ( x m ( k ) , x n ( k ) ) d ( x m ( k ) , x m ( k ) 1 ) + d ( x m ( k ) 1 , x n ( k ) 1 ) + d ( x n ( k ) 1 , x n ( k ) ) d m ( k ) 1 + d ( x m ( k ) 1 , x m ( k ) ) + d ( x m ( k ) , x n ( k ) 1 ) + d n ( k ) 1 2 d m ( k ) 1 + ε + d n ( k ) 1 , k N ,
(2.3)
and
| d ( x m ( k ) 1 , x n ( k ) 1 ) d ( x m ( k ) , x n ( k ) 1 ) | d m ( k ) 1 , k N .
(2.4)
Letting k in (2.3) and (2.4) and using (2.2), we infer that
lim k d ( x m ( k ) , x n ( k ) ) = lim k d ( x m ( k ) , x n ( k ) 1 ) = lim k d ( x m ( k ) 1 , x n ( k ) 1 ) = ε .
(2.5)
Put
lim inf k ψ ( d ( x m ( k ) 1 , x n ( k ) 1 ) ) = β .
Clearly, there exists a subsequence { d ( x m ( k j ) 1 , x n ( k j ) 1 ) } j N of { d ( x m ( k ) 1 , x n ( k ) 1 ) } k N such that
lim j ψ ( d ( x m ( k j ) 1 , x n ( k j ) 1 ) ) = β .
(2.6)
Since ψ is lower semicontinuous, it follows from (2.5), (2.6), and ψ Φ 2 that β ψ ( ε ) > 0 . By means of (2.1), (2.5), (2.6), Lemma 1.1, and φ Φ 1 , we deduce that
0 < 0 ε φ ( t ) d t = lim sup j 0 d ( x m ( k j ) , x n ( k j ) ) φ ( t ) d t = lim sup j 0 d ( T m ( k j ) x , T n ( k j ) x ) φ ( t ) d t lim sup j ( 0 d ( T m ( k j ) 1 x , T n ( k j ) 1 x ) φ ( t ) d t 0 ψ ( d ( T m ( k j ) 1 x , T n ( k j ) 1 x ) ) φ ( t ) d t ) = lim sup j ( 0 d ( x m ( k j ) 1 , x n ( k j ) 1 ) φ ( t ) d t 0 ψ ( d ( x m ( k j ) 1 , x n ( k j ) 1 ) ) φ ( t ) d t ) lim sup j 0 d ( x m ( k j ) 1 , x n ( k j ) 1 ) φ ( t ) d t lim inf j 0 ψ ( d ( x m ( k j ) 1 , x n ( k j ) 1 ) ) φ ( t ) d t = 0 ε φ ( t ) d t 0 β φ ( t ) d t 0 ε φ ( t ) d t 0 ψ ( ε ) φ ( t ) d t < 0 ε φ ( t ) d t ,
which is a contradiction. Thus { x n } n N 0 is a Cauchy sequence. Since ( X , d ) is complete, it follows that there exists a X such that
lim n T n x = a .
(2.7)
Next we prove that a is a fixed point of T. In view of (2.1), (2.7), and Lemma 1.2, we obtain
0 0 d ( T n + 1 x , T a ) φ ( t ) d t 0 d ( T n x , a ) φ ( t ) d t 0 ψ ( d ( T n x , a ) ) φ ( t ) d t 0 d ( T n x , a ) φ ( t ) d t 0 as  n ,
which implies that
lim n 0 d ( T n + 1 x , T a ) φ ( t ) d t = 0 ,
which together with Lemma 1.2 gives
lim n d ( T n + 1 x , T a ) = 0 .
Consequently, we have
d ( a , T a ) d ( a , T n + 1 x ) + d ( T n + 1 x , T a ) 0 as  n ,

that is, a = T a .

Lastly, we prove that a is a unique fixed point of T in X. Suppose that T has another fixed point b X { a } . It follows from (2.1), φ Φ 1 , and ψ ( d ( a , b ) ) > 0 that
0 < 0 d ( a , b ) φ ( t ) d t = 0 d ( T a , T b ) φ ( t ) d t 0 d ( a , b ) φ ( t ) d t 0 ψ ( d ( a , b ) ) φ ( t ) d t < 0 d ( a , b ) φ ( t ) d t ,

which is a contradiction. This completes the proof. □

Remark 2.1 In the case ϕ ( t ) = 1 for all t R + , Theorem 2.1 reduces to Theorem 1.1. On the other hand, the example below demonstrates that Theorem 2.1 is different from Theorem 1.2.

Example 2.1 Let X = R + be endowed with the Euclidean metric d = | | , T : X X and φ , ψ : R + R + be defined by
T x = x 1 + x 2 , x X
and
φ ( t ) = 4 t 3 , ψ ( t ) = t 2 1 + t 2 , t R + .
Obviously, ( φ , ψ ) Φ 1 × Φ 2 . Let x , y X . It is clear that
( 1 x y ) 2 = 1 2 x y + x 2 y 2 1 + x 2 + y 2 + x 2 y 2 = ( 1 + x 2 ) ( 1 + y 2 ) , 1 + ( x y ) 2 = 1 + x 2 2 x y + y 2 1 + x 2 + y 2 + x 2 y 2 = ( 1 + x 2 ) ( 1 + y 2 ) ,
which imply that
( 1 x y ) 4 [ 1 + ( x y ) 2 ] 2 ( 1 + x 2 ) 4 ( 1 + y 2 ) 4 [ 1 + 2 ( x y ) 2 ] ( 1 + x 2 ) 4 ( 1 + y 2 ) 4 ,
which gives
0 d ( T x , T y ) φ ( t ) d t = ( x 1 + x 2 y 1 + y 2 ) 4 = ( x y ) 4 ( 1 x y ) 4 ( 1 + x 2 ) 4 ( 1 + y 2 ) 4 ( x y ) 4 [ 1 + 2 ( x y ) 2 ] [ 1 + ( x y ) 2 ] 2 = ( x y ) 4 ( x y ) 8 [ 1 + ( x y ) 2 ] 2 = 0 d ( x , y ) φ ( t ) d t 0 ψ ( d ( x , y ) ) φ ( t ) d t ,

that is, (2.1) holds. Thus the conditions of Theorem 2.1 are satisfied. It follows from Theorem 2.1 that T has a unique fixed point 0 X and lim n T n x = 0 for each x X .

In order to verify that Theorem 1.2 is useless in proving the existence of fixed points of T, we need to show that (1.2) does not hold. Otherwise, (1.2) holds, that is, there exists some constant c ( 0 , 1 ) satisfying
0 d ( T x , T y ) φ ( t ) d t = ( x 1 + x 2 y 1 + y 2 ) 4 = ( x y ) 4 ( 1 x y ) 4 ( 1 + x 2 ) 4 ( 1 + y 2 ) 4 c ( x y ) 4 = c 0 d ( x , y ) φ ( t ) d t , x , y X ,
which yields
( 1 x y ) 4 ( 1 + x 2 ) 4 ( 1 + y 2 ) 4 c , x , y X  with  x y ,
which means that
1 = lim ( x , y ) ( 0 + , 0 + ) x y ( 1 x y ) 4 ( 1 + x 2 ) 4 ( 1 + y 2 ) 4 c < 1 ,

which is a contradiction.

Theorem 2.2 Let ( φ , ψ ) be in Φ 1 × Φ 2 and T be a mapping from a complete metric space ( X , d ) into itself satisfying
0 d ( T x , T y ) φ ( t ) d t 0 M ( x , y ) φ ( t ) d t 0 ψ ( M ( x , y ) ) φ ( t ) d t , x , y X .
(2.8)

Then T has a unique fixed point a X such that lim n T n x = a for each x X .

Proof Let x be an arbitrary point in X. If x n 0 = x n 0 + 1 for some n 0 N 0 , then there is nothing to prove. Now suppose that x n x n + 1 for all n N 0 . Note that
M ( x n , x n + 1 ) = max { d ( x n , x n + 1 ) , d ( x n , T x n ) , d ( x n + 1 , T x n + 1 ) , = 1 2 [ d ( x n , T x n + 1 ) + d ( x n + 1 , T x n ) ] } = max { d n , d n + 1 , 1 2 d ( x n , x n + 2 ) } = max { d n , d n + 1 } , n N 0 ,
(2.9)
because
1 2 d ( x n , x n + 2 ) 1 2 [ d ( x n , x n + 1 ) + d ( x n + 1 , x n + 2 ) ] max { d n , d n + 1 } , n N 0 .
Now we prove that
d n + 1 < d n , n N 0 .
(2.10)
Or else there exists some n 0 N 0 such that d n 0 + 1 d n 0 . Making use of (2.8) and (2.9), we know that
0 d n 0 + 1 φ ( t ) d t = 0 d ( x n 0 + 1 , x n 0 + 2 ) φ ( t ) d t = 0 d ( T n 0 + 1 x , T n 0 + 2 x ) φ ( t ) d t 0 M ( T n 0 x , T n 0 + 1 x ) φ ( t ) d t 0 ψ ( M ( T n 0 x , T n 0 + 1 x ) ) φ ( t ) d t = 0 max { d n 0 , d n 0 + 1 } φ ( t ) d t 0 ψ ( max { d n 0 , d n 0 + 1 } ) φ ( t ) d t 0 d n 0 + 1 φ ( t ) d t 0 ψ ( d n 0 + 1 ) φ ( t ) d t < 0 d n 0 + 1 φ ( t ) d t ,
which is a contradiction. Note that (2.10) means that there exists a constant c with
lim n d n = c 0 .
(2.11)
Suppose that c > 0 . Set lim inf n ψ ( d n ) = γ . Obviously, there exists a subsequence { d n ( k ) } n N of { d n } n N 0 such that lim k ψ ( d n ( k ) ) = γ . Since ψ is lower semicontinuous, it follows from ψ Φ 2 that γ ψ ( c ) > 0 . On account of (2.8)(2.11), Lemma 1.1, and φ Φ 1 , we arrive at
0 < 0 c φ ( t ) d t = lim sup k 0 d n ( k ) + 1 φ ( t ) d t = lim sup k 0 d ( x n ( k ) + 1 , x n ( k ) + 2 ) φ ( t ) d t = lim sup k 0 d ( T n ( k ) + 1 x , T n ( k ) + 2 x ) φ ( t ) d t lim sup k ( 0 M ( T n ( k ) x , T n ( k ) + 1 x ) φ ( t ) d t 0 ψ ( M ( T n ( k ) x , T n ( k ) + 1 x ) ) φ ( t ) d t ) lim sup k ( 0 M ( x n ( k ) , x n ( k ) + 1 ) φ ( t ) d t 0 ψ ( M ( x n ( k ) , x n ( k ) + 1 ) ) φ ( t ) d t ) = lim sup k ( 0 d n k φ ( t ) d t 0 ψ ( d n k ) φ ( t ) d t ) lim sup k 0 d n k φ ( t ) d t lim inf k 0 ψ ( d n k ) φ ( t ) d t = 0 c φ ( t ) d t 0 γ φ ( t ) d t 0 c φ ( t ) d t 0 ψ ( c ) φ ( t ) d t < 0 c φ ( t ) d t ,
which is absurd. Hence c = 0 and (2.2) holds. Suppose that { x n } n N 0 is not a Cauchy sequence. It follows that there exist a constant ε > 0 and two subsequences { x m ( k ) } k N and { x n ( k ) } k N of { x n } n N 0 such that n ( k ) is minimal in the sense that n ( k ) > m ( k ) > k and d ( x m ( k ) , x n ( k ) ) > ε . It follows that (2.5) holds. Observe that (2.2) and (2.5) ensure that
| d ( x m ( k ) 1 , x n ( k ) ) d ( x m ( k ) , x n ( k ) ) | d m ( k ) 1 0 as  k
(2.12)
and
M ( x m ( k ) 1 , x n ( k ) 1 ) = max { d ( x m ( k ) 1 , x n ( k ) 1 ) , d ( x m ( k ) 1 , T x m ( k ) 1 ) , d ( x n ( k ) 1 , T x n ( k ) 1 ) , = 1 2 [ d ( x m ( k ) 1 , T x n ( k ) 1 ) + d ( x n ( k ) 1 , T x m ( k ) 1 ) ] } = max { d ( x m ( k ) 1 , x n ( k ) 1 ) , d m ( k ) 1 , d n ( k ) 1 , = 1 2 [ d ( x m ( k ) 1 , x n ( k ) ) + d ( x n ( k ) 1 , x m ( k ) ) ] } max { ε , 0 , 0 , ε } = ε as  k .
(2.13)
Put
lim inf j ψ ( M ( x m ( k ) 1 , x n ( k ) 1 ) ) = λ .
Clearly, there exists a subsequence { M ( x m ( k j ) 1 , x n ( k j ) 1 ) } j N of { M ( x m ( k ) 1 , x n ( k ) 1 ) } k N such that
lim j ψ ( M ( x m ( k j ) 1 , x n ( k j ) 1 ) ) = λ ψ ( ε ) .
(2.14)
Combining (2.5), (2.8), (2.12)(2.14), Lemma 1.1, and φ Φ 1 , we get
0 < 0 ε φ ( t ) d t = lim sup j 0 d ( x m ( k j ) , x n ( k j ) ) φ ( t ) d t = lim sup j 0 d ( T m ( k j ) x , T n ( k j ) x ) φ ( t ) d t lim sup j ( 0 M ( T m ( k j ) 1 x , T n ( k j ) 1 x ) φ ( t ) d t 0 ψ ( M ( T m ( k j ) 1 x , T n ( k j ) 1 x ) ) φ ( t ) d t ) = lim sup j ( 0 M ( x m ( k j ) 1 , x n ( k j ) 1 ) φ ( t ) d t 0 ψ ( M ( x m ( k j ) 1 , x n ( k j ) 1 ) ) φ ( t ) d t ) lim sup j 0 M ( x m ( k j ) 1 , x n ( k j ) 1 ) φ ( t ) d t lim inf j 0 ψ ( M ( x m ( k j ) 1 , x n ( k j ) 1 ) ) φ ( t ) d t = 0 ε φ ( t ) d t 0 λ φ ( t ) d t 0 ε φ ( t ) d t 0 ψ ( ε ) φ ( t ) d t < 0 ε φ ( t ) d t ,
which is a contradiction. Hence { x n } n N 0 is a Cauchy sequence. Completeness of ( X , d ) ensures that there exists a X satisfying (2.7). Suppose that d ( a , T a ) > 0 . Let
M = max { d ( a , T a ) , d ( T a , T 2 a ) , 1 2 [ d ( a , T 2 a ) + d ( a , T a ) ] } .
(2.15)
Note that (2.2) and (2.7) yield
lim n M ( x n + 1 , T a ) = lim n max { d ( x n + 1 , T a ) , d ( x n + 1 , T x n + 1 ) , d ( T a , T 2 a ) , 1 2 [ d ( x n + 1 , T 2 a ) + d ( T a , T x n + 1 ) ] } = lim n max { d ( x n + 1 , T a ) , d n + 1 , d ( T a , T 2 a ) , 1 2 [ d ( x n + 1 , T 2 a ) + d ( T a , x n + 2 ) ] } = max { d ( a , T a ) , 0 , d ( T a , T 2 a ) , 1 2 [ d ( a , T 2 a ) + d ( T a , a ) ] } = M
(2.16)
and
lim n M ( x n , a ) = lim n max { d ( x n , a ) , d ( x n , T x n ) , d ( a , T a ) , 1 2 [ d ( x n , T a ) + d ( a , T x n ) ] } = lim n max { d ( x n , a ) , d n , d ( a , T a ) , 1 2 [ d ( x n , T a ) + d ( a , x n + 1 ) ] } = max { 0 , 0 , d ( a , T a ) , 1 2 d ( a , T a ) } = d ( a , T a ) .
(2.17)
Put lim inf n ψ ( M ( x n , a ) ) = η . Clearly, there exists a subsequence { M ( x n ( j ) , a ) } j N of { M ( x n , a ) } n N such that
lim j ψ ( M ( x n ( j ) , a ) ) = η ψ ( d ( a , T a ) ) .
(2.18)
In virtue of (2.8), (2.16)(2.18), and Lemma 1.1, we conclude that
0 < 0 M φ ( t ) d t = lim sup j 0 M ( x n ( j ) + 1 , T a ) φ ( t ) d t = lim sup j 0 M ( T n ( j ) + 1 x , T a ) φ ( t ) d t lim sup j ( 0 M ( T n ( j ) x , a ) φ ( t ) d t 0 ψ ( M ( T n ( j ) x , a ) ) φ ( t ) d t ) = lim sup j ( 0 M ( x n ( j ) , a ) φ ( t ) d t 0 ψ ( M ( x n ( j ) , a ) ) φ ( t ) d t ) lim sup j 0 M ( x n ( j ) , a ) φ ( t ) d t lim inf j 0 ψ ( M ( x n ( j ) , a ) ) φ ( t ) d t = 0 d ( a , T a ) φ ( t ) d t 0 η φ ( t ) d t 0 d ( a , T a ) φ ( t ) d t 0 ψ ( d ( a , T a ) ) φ ( t ) d t < 0 d ( a , T a ) φ ( t ) d t ,
which together with (2.15) means that
d ( a , T a ) M < d ( a , T a ) ,
which is impossible. Consequently, a = T a is a fixed point of T in X. Suppose that T has another fixed point b X { a } . Notice that
M ( a , b ) = max { d ( a , b ) , d ( a , T a ) , d ( b , T b ) , 1 2 [ d ( a , T b ) + d ( b , T a ) ] } = max { d ( a , b ) , 0 , 0 , d ( a , b ) } = d ( a , b ) ,
which together with φ Φ 1 , (2.8), and ψ ( d ( a , b ) ) > 0 means that
0 < 0 d ( a , b ) φ ( t ) d t = 0 d ( T a , T b ) φ ( t ) d t 0 M ( a , b ) φ ( t ) d t 0 ψ ( M ( a , b ) ) φ ( t ) d t = 0 d ( a , b ) φ ( t ) d t 0 ψ ( d ( a , b ) ) φ ( t ) d t < 0 d ( a , b ) φ ( t ) d t ,

which is a contradiction. Consequently, T possesses a unique fixed point a X . This completes the proof. □

Remark 2.2 The below example is an application of Theorem 2.2.

Example 2.2 Let X = [ 0 , 2 ] { 6 } be endowed with the Euclidean metric d = | | , T : X X and φ , ψ : R + R + be defined by
T x = { x 2 , x [ 0 , 2 ] , 2 , x = 6
and
φ ( t ) = 2 t , t R + , ψ ( t ) = { 3 4 t , t [ 0 , 2 ] , 1 + 1 1 + t , t ( 2 , + ) .

Clearly, ( φ , ψ ) Φ 1 × Φ 2 . For x , y X with y x , we consider the following four cases.

Case 1. Let x , y [ 0 , 2 ] with y x 2 . It is easy to verify that
M ( x , y ) = max { | x y | , x 2 , y 2 , 1 2 ( | x y 2 | + | y x 2 | ) } = x y 2 ,
which yields
0 d ( T x , T y ) φ ( t ) d t = 1 4 ( x y ) 2 ( x y ) 2 3 16 ( x y ) 2 = 0 M ( x , y ) φ ( t ) d t 0 ψ ( M ( x , y ) ) φ ( t ) d t .
Case 2. Let x , y [ 0 , 2 ] with x 2 < y x . It is clear that
M ( x , y ) = max { | x y | , x 2 , y 2 , 1 2 ( | x y 2 | + | y x 2 | ) } = x 2 1 ,
which gives
0 d ( T x , T y ) φ ( t ) d t = 1 4 ( x y ) 2 = 1 4 x 2 ( 1 2 x y 1 4 y 2 ) = 1 4 x 2 ( 1 4 ( y x ) 2 + 1 4 x 2 ) 1 4 x 2 3 16 x 2 = 0 M ( x , y ) φ ( t ) d t 0 ψ ( M ( x , y ) ) φ ( t ) d t .
Case 3. Let y [ 0 , 2 ] and x = 6 . Obviously, we have
M ( x , y ) = max { 6 y , 4 , y 2 , 1 2 ( 6 y 2 + 2 y ) } = 6 y 4 ,
which implies that
0 d ( T x , T y ) φ ( t ) d t = ( 2 1 2 y ) 2 4 < 4 2 ( 1 + 1 1 + 4 ) ( 6 y ) 2 ( 1 + 1 1 + 6 y ) = 0 M ( x , y ) φ ( t ) d t 0 ψ ( M ( x , y ) ) φ ( t ) d t .
Case 4. Let x = y = 6 . It follows that
M ( x , y ) = max { 0 , 6 2 , 6 2 , 1 2 ( 6 2 + 6 2 ) } = 4 ,
which means that
0 d ( T x , T y ) φ ( t ) d t = 0 < 4 2 ( 1 + 1 1 + 4 ) = 0 M ( x , y ) φ ( t ) d t 0 ψ ( M ( x , y ) ) φ ( t ) d t .

That is, (2.8) holds. Thus the conditions of Theorem 2.2 are satisfied. It follows from Theorem 2.2 that T has a unique fixed point 0 X and lim n T n x = 0 for every x X .

Similar to the proofs of Theorems 2.1 and 2.2, we have the following results and we omit their proofs.

Theorem 2.3 Let ( φ , ψ ) be in Φ 1 × Φ 2 and T be a mapping from a complete metric space ( X , d ) into itself satisfying
0 d ( T x , T y ) φ ( t ) d t 0 N ( x , y ) φ ( t ) d t 0 ψ ( N ( x , y ) ) φ ( t ) d t , x , y X .
(2.19)

Then T has a unique fixed point a X such that lim n T n x = a for each x X .

Theorem 2.4 Let ( φ , ψ ) be in Φ 1 × Φ 2 and T be a mapping from a complete metric space ( X , d ) into itself satisfying
0 d ( T x , T y ) φ ( t ) d t 0 P ( x , y ) φ ( t ) d t 0 ψ ( P ( x , y ) ) φ ( t ) d t , x , y X .
(2.20)

Then T has a unique fixed point a X such that lim n T n x = a for each x X .

Theorem 2.5 Let ( φ , ψ ) be in Φ 1 × Φ 2 and T be a mapping from a complete metric space ( X , d ) into itself satisfying
0 d ( T x , T y ) φ ( t ) d t 0 Q ( x , y ) φ ( t ) d t 0 ψ ( Q ( x , y ) ) φ ( t ) d t , x , y X .
(2.21)

Then T has a unique fixed point a X such that lim n T n x = a for each x X .

Declarations

Acknowledgements

The authors wish to express their gratitude to the referees for giving valuable comments. This research was supported by the Science Research Foundation of Educational Department of Liaoning Province (L2012380) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2013R1A1A2057665).

Authors’ Affiliations

(1)
Department of Mathematics, Liaoning Normal University
(2)
Department of Mathematics, Changwon National University
(3)
Department of Mathematics and RINS, Gyeongsang National University

References

  1. Rhoades BE: Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47: 2683–2693. 10.1016/S0362-546X(01)00388-1View ArticleMathSciNetGoogle Scholar
  2. Branciari A: A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2002, 29: 531–536. 10.1155/S0161171202007524View ArticleMathSciNetGoogle Scholar
  3. Aliouche A: A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type. J. Math. Anal. Appl. 2006, 322: 796–802. 10.1016/j.jmaa.2005.09.068View ArticleMathSciNetGoogle Scholar
  4. Altun I, Türkoǧlu D, Rhoades BE: Fixed points of weakly compatible maps satisfying a general contractive condition of integral type. Fixed Point Theory Appl. 2007., 2007: Article ID 17301Google Scholar
  5. Beygmohammadi M, Razani A: Two fixed-point theorems for mappings satisfying a general contractive condition of integral type in the modular space. Int. J. Math. Math. Sci. 2010., 2010: Article ID 317107Google Scholar
  6. Djoudi A, Aliouche A: Common fixed point theorems of Gregus type for weakly compatible mappings satisfying contractive conditions of integral type. J. Math. Anal. Appl. 2007, 329: 31–45. 10.1016/j.jmaa.2006.06.037View ArticleMathSciNetGoogle Scholar
  7. Djoudi A, Merghadi F: Common fixed point theorems for maps under a contractive condition of integral type. J. Math. Anal. Appl. 2008, 341: 953–960. 10.1016/j.jmaa.2007.10.064View ArticleMathSciNetGoogle Scholar
  8. Doric D:Common fixed point for generalized ( ψ , φ ) -weak contractions. Appl. Math. Lett. 2009, 22: 1896–1900. 10.1016/j.aml.2009.08.001View ArticleMathSciNetGoogle Scholar
  9. Jachymski J: Remarks on contractive conditions of integral type. Nonlinear Anal. 2009, 71: 1073–1081. 10.1016/j.na.2008.11.046View ArticleMathSciNetGoogle Scholar
  10. Liu Z, Li X, Kang SM, Cho SY: Fixed point theorems for mappings satisfying contractive conditions of integral type and applications. Fixed Point Theory Appl. 2011., 64: Article ID 18Google Scholar
  11. Liu Z, Lu Y, Kang SM: Fixed point theorems for mappings satisfying contractive conditions of integral type. Fixed Point Theory Appl. 2013., 267: Article ID 14Google Scholar
  12. Liu Z, Li JL, Kang SM: Fixed point theorems of contractive mappings of integral type. Fixed Point Theory Appl. 2013., 300: Article ID 17Google Scholar
  13. Moradi S, Farajzadeh A:On the fixed point of ( ψ - φ ) -weak and generalized ( ψ - φ ) -weak contraction mappings. Appl. Math. Lett. 2012, 25: 1257–1262. 10.1016/j.aml.2011.11.007View ArticleMathSciNetGoogle Scholar
  14. Rhoades BE: Two fixed-point theorems for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2003, 63: 4007–4013.View ArticleMathSciNetGoogle Scholar
  15. Suzuki T: Meir-Keeler contractions of integral type are still Meir-Keeler contractions. Int. J. Math. Math. Sci. 2007., 2007: Article ID 39281Google Scholar

Copyright

© Liu et al.; licensee Springer. 2014

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.