Skip to main content

Some coincidence point results for generalized (ψ,φ)-weakly contractive mappings in ordered G-metric spaces

Abstract

The aim of this paper is to present some coincidence point results for six mappings satisfying the generalized (ψ,φ)-weakly contractive condition in the framework of partially ordered G-metric spaces. To elucidate our results, we present two examples together with an application of a system of integral equations.

MSC:47H10, 54H25.

1 Introduction and mathematical preliminaries

Let (X,d) be a metric space and f be a self-mapping on X. If x=fx for some x in X, then x is called a fixed point of f. The set of all fixed points of f is denoted by F(f). If F(f)={z}, and for each x 0 in a complete metric space X, the sequence x n + 1 =f( x n )= f n ( x 0 ), n=0,1,2, , converges to z, then f is called a Picard operator.

The function φ:[0,)[0,) is called an altering distance function if φ is continuous and nondecreasing and φ(t)=0 if and only if t=0 [1].

A self-mapping f on X is a weak contraction if the following contractive condition holds:

d(fx,fy)d(x,y)φ ( d ( x , y ) ) ,

for all x,yX, where φ is an altering distance function.

The concept of a weakly contractive mapping was introduced by Alber and Guerre-Delabrere [2] in the setup of Hilbert spaces. Rhoades [3] considered this class of mappings in the setup of metric spaces and proved that a weakly contractive mapping is a Picard operator.

Let f and g be two self-mappings on a nonempty set X. If x=fx=gx for some x in X, then x is called a common fixed point of f and g. Sessa [4] defined the concept of weakly commutative maps to obtain common fixed point for a pair of maps. Jungck generalized this idea, first to compatible mappings [5] and then to weakly compatible mappings [6]. There are examples which show that each of these generalizations of commutativity is a proper extension of the previous definition.

Zhang and Song [7] introduced the concept of a generalized φ-weak contractive mapping as follows.

Self-mappings f and g on a metric space X are called generalized φ-weak contractions if there exists a lower semicontinuous function φ:[0,)[0,) with φ(0)=0 and φ(t)>0 for all t>0 such that for all x,yX,

d(fx,gy)N(x,y)φ ( N ( x , y ) ) ,

where

N(x,y)=max { d ( x , y ) , d ( x , f x ) , d ( y , g y ) , 1 2 [ d ( x , g y ) + d ( y , f x ) ] } .

Based on the above definition, they proved the following common fixed point result.

Theorem 1.1 [7]

Let (X,d) be a complete metric space. If f,g:XX are generalized φ-weak contractive mappings, then there exists a unique point uX such that u=fu=gu.

For further works in this direction, we refer the reader to [820].

Recently, many researchers have focused on different contractive conditions in complete metric spaces endowed with a partial order and studied fixed point theory in the so-called bistructural spaces. For more details on fixed point results, its applications, comparison of different contractive conditions and related results in ordered metric spaces, we refer the reader to [2140] and the references mentioned therein.

Mustafa and Sims [41] generalized the concept of a metric, in which to every triplet of points of an abstract set, a real number is assigned. Based on the notion of generalized metric spaces, Mustafa et al. [4249] obtained some fixed point theorems for mappings satisfying different contractive conditions. Chugh et al. [50] obtained some fixed point results for maps satisfying property P in G-metric spaces. Saadati et al. [51] studied fixed point of contractive mappings in partially ordered G-metric spaces. Shatanawi [52] obtained fixed points of Φ-maps in G-metric spaces. For more details, we refer to [21, 5365].

Very recently, Jleli and Samet [66] and Samet et al. [67] noticed that some fixed point theorems in the context of a G-metric space can be concluded by some existing results in the setting of a (quasi-)metric space. In fact, if the contraction condition of the fixed point theorem on a G-metric space can be reduced to two variables instead of three variables, then one can construct an equivalent fixed point theorem in the setting of a usual metric space. More precisely, in [66, 67], the authors noticed that d(x,y)=G(x,y,y) forms a quasi-metric. Therefore, if one can transform the contraction condition of existence results in a G-metric space in such terms, G(x,y,y), then the related fixed point results become the known fixed point results in the context of a quasi-metric space.

The following definitions and results will be needed in the sequel.

Definition 1.2 [41]

Let X be a nonempty set. Suppose that a mapping G:X×X×X R + satisfies:

  1. (G1)

    G(x,y,z)=0 if x=y=z;

  2. (G2)

    0<G(x,y,z) for all x,y,zX, with xy;

  3. (G3)

    G(x,x,y)G(x,y,z) for all x,y,zX, with yz;

  4. (G4)

    G(x,y,z)=G(x,z,y)=G(y,z,x)= (symmetry in all three variables); and

  5. (G5)

    G(x,y,z)G(x,a,a)+G(a,y,z) for all x,y,z,aX.

Then G is called a G-metric on X and (X,G) is called a G-metric space.

Definition 1.3 [41]

A sequence { x n } in a G-metric space X is:

  1. (i)

    a G-convergent sequence if there is xX such that for any ε>0, and n 0 N, for all n,m n 0 , G( x n , x m ,x)<ε.

  2. (ii)

    a G-Cauchy sequence if, for every ε>0, there is a natural number n 0 such that for all n,m,l n 0 , G( x n , x m , x l )<ε.

A G-metric space on X is said to be G-complete if every G-Cauchy sequence in X is G-convergent in X. It is known that { x n } G-converges to xX if and only if G( x m , x n ,x)0 as n,m.

Lemma 1.4 [41]

Let X be a G-metric space. Then the following are equivalent:

  1. (1)

    The sequence { x n } is G-convergent to x.

  2. (2)

    G( x n , x n ,x)0 as n.

  3. (3)

    G( x n ,x,x)0 as n.

Lemma 1.5 [68]

Let X be a G-metric space. Then the following are equivalent:

The sequence { x n } is G-Cauchy.

For every ε>0, there exists n 0 N such that for all n,m n 0 , G( x n , x m , x m )<ε; that is, if G( x n , x m , x m )0 as n,m.

Definition 1.6 [41]

Let (X,G) and ( X , G ) be two G-metric spaces. Then a function f:X X is G-continuous at a point xX if and only if it is G-sequentially continuous at x; that is, whenever { x n } is G-convergent to x, {f( x n )} is G -convergent to f(x).

Definition 1.7 A G-metric on X is said to be symmetric if G(x,y,y)=G(y,x,x) for all x,yX.

Proposition 1.8 Every G-metric on X defines a metric d G on X by

d G (x,y)=G(x,y,y)+G(y,x,x),x,yX.
(1.1)

For a symmetric G-metric space, one obtains

d G (x,y)=2G(x,y,y),x,yX.
(1.2)

However, if G is not symmetric, then the following inequality holds:

3 2 G(x,y,y) d G (x,y)3G(x,y,y),x,yX.
(1.3)

Definition 1.9 A partially ordered G-metric space (X,,G) is said to have the sequential limit comparison property if for every nondecreasing sequence (nonincreasing sequence) { x n } in X, x n x implies that x n x (x x n ).

Definition 1.10 Let f and g be two self-maps on a partially ordered set X. A pair (f,g) is said to be

  1. (i)

    weakly increasing if fxgfx and gxfgx for all xX [69],

  2. (ii)

    partially weakly increasing if fxgfx for all xX [22].

Let X be a nonempty set and f:XX be a given mapping. For every xX, let f 1 (x)={uX:fu=x}.

Definition 1.11 Let (X,) be a partially ordered set, and let f,g,h:XX be mappings such that fXhX and gXhX. The ordered pair (f,g) is said to be: (a) weakly increasing with respect to h if and only if for all xX, fxgy for all y h 1 (fx), and gxfy for all y h 1 (gx) [34], (b) partially weakly increasing with respect to h if fxgy for all y h 1 (fx) [32].

Remark 1.12 In the above definition: (i) if f=g, we say that f is weakly increasing (partially weakly increasing) with respect to h, (ii) if h=I (the identity mapping on X), then the above definition reduces to a weakly increasing (partially weakly increasing) mapping (see [34, 40]).

The following is an example of mappings f, g, h, R, S and T for which all ordered pairs (f,g), (g,h) and (h,f) are partially weakly increasing with respect to R, S and T but not weakly increasing with respect to them.

Example 1.13 Let X=[0,). We define functions f,g,h,R,S,T:XX by

f ( x ) = { x , 0 x 1 , 1 , 1 x , g ( x ) = { x , 0 x 1 , 1 , 1 x , h ( x ) = { x 2 , 0 x 1 , 1 , 1 x ,

and

R ( x ) = { x 3 , 0 x 1 , 1 , 1 x , S ( x ) = { x 4 , 0 x 1 , 1 , 1 x , T ( x ) = { x 3 , 0 x 1 , 1 , 1 x .

Definition 1.14 [60, 62]

Let X be a G-metric space and f,g:XX. The pair (f,g) is said to be compatible if and only if lim n G(fg x n ,fg x n ,gf x n )=0, whenever { x n } is a sequence in X such that lim n f x n = lim n g x n =t for some tX.

Definition 1.15 (see, e.g., [67])

A quasi-metric on a nonempty set X is a mapping p:X×X[0,) such that (p1) x=y if and only if p(x,y)=0, (p2) p(x,y)p(x,z)+p(z,y) for all x,y,zX. A pair (X,p) is said to be a quasi-metric space.

The study of unique common fixed points of mappings satisfying strict contractive conditions has been at the center of vigorous research activity. The study of common fixed point theorems in generalized metric spaces was initiated by Abbas and Rhoades [56] (see also [21, 53, 54]). Motivated by the work in [8, 13, 16, 17, 22, 32] and [40], we prove some coincidence point results for nonlinear generalized (ψ,φ)-weakly contractive mappings in partially ordered G-metric spaces.

2 Main results

Let (X,,G) be an ordered G-metric space, and let f,g,h,R,S,T:XX be six self-mappings. Throughout this paper, unless otherwise stated, for all x,y,zX, let

M ( x , y , z ) = max { G ( T x , R y , S z ) , G ( T x , f x , f x ) , G ( R y , g y , g y ) , G ( S z , h z , h z ) , G ( T x , T x , f x ) + G ( R y , R y , g y ) + G ( S z , S z , h z ) 3 } .

Let X be any nonempty set and f,g,h,R,S,T:XX be six mappings such that f(X)R(X), g(X)S(X) and h(X)T(X). Let x 0 be an arbitrary point of X. Choose x 1 X such that f x 0 =R x 1 , x 2 X such that g x 1 =S x 2 and x 3 X such that h x 2 =T x 3 . This can be done as f(X)R(X), g(X)S(X) and h(X)T(X).

Continuing in this way, we construct a sequence { z n } defined by: z 3 n + 1 =R x 3 n + 1 =f x 3 n , z 3 n + 2 =S x 3 n + 2 =g x 3 n + 1 , and z 3 n + 3 =T x 3 n + 3 =h x 3 n + 2 for all n0. The sequence { z n } in X is said to be a Jungck-type iterative sequence with initial guess x 0 .

Theorem 2.1 Let (X,,G) be a partially ordered G-complete G-metric space. Let f,g,h,R,S,T:XX be six mappings such that f(X)R(X), g(X)S(X) and h(X)T(X). Suppose that for every three comparable elements Tx,Ry,SzX, we have

ψ ( 2 G ( f x , g y , h z ) ) ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) ,
(2.1)

where ψ,φ:[0,)[0,) are altering distance functions. Let f, g, h, R, S and T be continuous, the pairs (f,T), (g,R) and (h,S) be compatible and the pairs (f,g), (g,h) and (h,f) be partially weakly increasing with respect to R, S and T, respectively. Then the pairs (f,T), (g,R) and (h,S) have a coincidence point z in X. Moreover, if R z , S z and T z are comparable, then z is a coincidence point of f, g, h, R, S and T.

Proof Let { z n } be a Jungck-type iterative sequence with initial guess x 0 in X; that is, z 3 n + 1 =R x 3 n + 1 =f x 3 n , z 3 n + 2 =S x 3 n + 2 =g x 3 n + 1 and z 3 n + 3 =T x 3 n + 3 =h x 3 n + 2 for all n0.

As x 1 R 1 (f x 0 ), x 2 S 1 (g x 1 ) and x 3 T 1 (h x 2 ), and the pairs (f,g), (g,h) and (h,f) are partially weakly increasing with respect to R, S and T, so we have

R x 1 =f x 0 g x 1 =S x 2 h x 2 =T x 3 f x 3 =R x 4 .

Continuing this process, we obtain R x 3 n + 1 S x 3 n + 2 T x 3 n + 3 for n0.

We will complete the proof in three steps.

Step I. We will prove that lim k G( z k , z k + 1 , z k + 2 )=0.

Define G k =G( z k , z k + 1 , z k + 2 ). Suppose G k 0 =0 for some k 0 . Then z k 0 = z k 0 + 1 = z k 0 + 2 . If k 0 =3n, then z 3 n = z 3 n + 1 = z 3 n + 2 gives z 3 n + 1 = z 3 n + 2 = z 3 n + 3 . Indeed,

ψ ( 2 G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) = ψ ( 2 G ( f x 3 n , g x 3 n + 1 , h x 3 n + 2 ) ) ψ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) φ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) ,

where

M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) = max { G ( T x 3 n , R x 3 n + 1 , S x 3 n + 2 ) , G ( T x 3 n , f x 3 n , f x 3 n ) , G ( R x 3 n + 1 , g x 3 n + 1 , g x 3 n + 1 ) , G ( S x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( T x 3 n , T x 3 n , f x 3 n ) + G ( R x 3 n + 1 , R x 3 n + 1 , g x 3 n + 1 ) + G ( S x 3 n + 2 , S x 3 n + 2 , h x 3 n + 2 ) 3 } = max { G ( z 3 n , z 3 n + 1 , z 3 n + 2 ) , G ( z 3 n , z 3 n + 1 , z 3 n + 1 ) , G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 2 ) , G ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) , G ( z 3 n , z 3 n , z 3 n + 1 ) + G ( z 3 n + 1 , z 3 n + 1 , z 3 n + 2 ) + G ( z 3 n + 2 , z 3 n + 2 , z 3 n + 3 ) 3 } = max { 0 , 0 , 0 , G ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) , 0 + 0 + G ( z 3 n + 2 , z 3 n + 2 , z 3 n + 3 ) 3 } = G ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) 2 G ( z 3 n + 2 , z 3 n + 2 , z 3 n + 3 ) = 2 G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) .

Thus,

ψ ( 2 G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) ψ ( 2 G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) φ ( G ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) ) ,

which implies that φ(G( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ))=0; that is, z 3 n + 1 = z 3 n + 2 = z 3 n + 3 . Similarly, if k 0 =3n+1, then z 3 n + 1 = z 3 n + 2 = z 3 n + 3 gives z 3 n + 2 = z 3 n + 3 = z 3 n + 4 . Also, if k 0 =3n+2, then z 3 n + 2 = z 3 n + 3 = z 3 n + 4 implies that z 3 n + 3 = z 3 n + 4 = z 3 n + 5 . Consequently, the sequence { z k } becomes constant for k k 0 .

Suppose that

G k =G( z k , z k + 1 , z k + 2 )>0
(2.2)

for each k. We now claim that the following inequality holds:

G( z k + 1 , z k + 2 , z k + 3 )G( z k , z k + 1 , z k + 2 )=M( x k , x k + 1 , x k + 2 )
(2.3)

for each k=1,2,3, .

Let k=3n and for n0, G( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 )G( z 3 n , z 3 n + 1 , z 3 n + 2 )>0. Then, as T x 3 n R x 3 n + 1 S x 3 n + 2 , using (2.1), we obtain that

ψ ( G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) ψ ( 2 G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) = ψ ( 2 G ( f x 3 n , g x 3 n + 1 , h x 3 n + 2 ) ) ψ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) φ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) ,
(2.4)

where

M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) = max { G ( T x 3 n , R x 3 n + 1 , S x 3 n + 2 ) , G ( T x 3 n , f x 3 n , f x 3 n ) , G ( R x 3 n + 1 , g x 3 n + 1 , g x 3 n + 1 ) , G ( S x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( T x 3 n , T x 3 n , f x 3 n ) + G ( R x 3 n + 1 , R x 3 n + 1 , g x 3 n + 1 ) + G ( S x 3 n + 2 , S x 3 n + 2 , h x 3 n + 2 ) 3 } = max { G ( z 3 n , z 3 n + 1 , z 3 n + 2 ) , G ( z 3 n , z 3 n + 1 , z 3 n + 1 ) , G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 2 ) , G ( z 3 n + 2 , z 3 n + 3 , z 3 n + 3 ) , G ( z 3 n , z 3 n , z 3 n + 1 ) + G ( z 3 n + 1 , z 3 n + 1 , z 3 n + 2 ) + G ( z 3 n + 2 , z 3 n + 2 , z 3 n + 3 ) 3 } max { G ( z 3 n , z 3 n + 1 , z 3 n + 2 ) , G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) , 2 G ( z 3 n , z 3 n + 1 , z 3 n + 2 ) + G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) 3 } = G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) .

Hence, (2.4) implies that

ψ ( G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) ψ ( G ( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 ) ) φ ( M ( x 3 n , x 3 n + 1 , x 3 n + 2 ) ) ,

which is possible only if M( x 3 n , x 3 n + 1 , x 3 n + 2 )=0; that is, G( z 3 n , z 3 n + 1 , z 3 n + 2 )=0, a contradiction to (2.2). Hence, G( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 )G( z 3 n , z 3 n + 1 , z 3 n + 2 ) and

M( x 3 n , x 3 n + 1 , x 3 n + 2 )=G( z 3 n , z 3 n + 1 , z 3 n + 2 ).

Therefore, (2.3) is proved for k=3n.

Similarly, it can be shown that

G( z 3 n + 2 , z 3 n + 3 , z 3 n + 4 )G( z 3 n + 1 , z 3 n + 2 , z 3 n + 3 )=M( x 3 n + 1 , x 3 n + 2 , x 3 n + 3 ),
(2.5)

and

G( z 3 n + 3 , z 3 n + 4 , z 3 n + 5 )G( z 3 n + 2 , z 3 n + 3 , z 3 n + 4 )=M( x 3 n + 2 , x 3 n + 3 , x 3 n + 4 ).
(2.6)

Hence, {G( z k , z k + 1 , z k + 2 )} is a nondecreasing sequence of nonnegative real numbers. Therefore, there is r0 such that

lim k G( z k , z k + 1 , z k + 2 )=r.
(2.7)

Since

G( z k + 1 , z k + 2 , z k + 3 )M( x k , x k + 1 , x k + 2 )G( z k , z k + 1 , z k + 2 ),
(2.8)

taking limit as k in (2.8), we obtain

lim k M( x k , x k + 1 , x k + 2 )=r.
(2.9)

Taking limit as n in (2.4), using (2.7), (2.9) and the continuity of ψ and φ, we have ψ(r)ψ(r)φ(r)ψ(r). Therefore φ(r)=0. Hence,

lim k G( z k , z k + 1 , z k + 2 )=0,
(2.10)

from our assumptions about φ. Also, from Definition 1.2, part (G3), we have

lim k G( z k , z k + 1 , z k + 1 )=0,
(2.11)

and, since G(x,y,y)2G(x,x,y) for all x,yX, we have

lim k G( z k , z k , z k + 1 )=0.
(2.12)

Step II. We now show that { z n } is a G-Cauchy sequence in X. Because of (2.10), it is sufficient to show that { z 3 n } is G-Cauchy.

We assume on contrary that there exists ε>0 for which we can find subsequences { z 3 m ( k ) } and { z 3 n ( k ) } of { z 3 n } such that n(k)>m(k)k and

G( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) )ε,
(2.13)

and n(k) is the smallest number such that the above statement holds; i.e.,

G( z 3 m ( k ) , z 3 n ( k ) 3 , z 3 n ( k ) 3 )<ε.
(2.14)

From the rectangle inequality and (2.14), we have

G ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) ) G ( z 3 m ( k ) , z 3 n ( k ) 3 , z 3 n ( k ) 3 ) + G ( z 3 n ( k ) 3 , z 3 n ( k ) , z 3 n ( k ) ) < ε + G ( z 3 n ( k ) 3 , z 3 n ( k ) , z 3 n ( k ) ) < ε + G ( z 3 n ( k ) 3 , z 3 n ( k ) 2 , z 3 n ( k ) 2 ) + G ( z 3 n ( k ) 2 , z 3 n ( k ) 1 , z 3 n ( k ) 1 ) + G ( z 3 n ( k ) 1 , z 3 n ( k ) , z 3 n ( k ) ) .
(2.15)

Taking limit as k in (2.15), from (2.11) and (2.13) we obtain that

lim k G( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) )=ε.
(2.16)

Using the rectangle inequality, we have

G ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) ) + G ( z 3 n ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 1 ) + G ( z 3 n ( k ) + 1 , z 3 n ( k ) , z 3 n ( k ) ) + G ( z 3 n ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) + G ( z 3 n ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 2 ) + G ( z 3 n ( k ) + 1 , z 3 n ( k ) , z 3 n ( k ) ) + G ( z 3 n ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) .
(2.17)

Taking limit as k in (2.17), from (2.16), (2.10), (2.11) and (2.12) we have

lim k G( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 )=ε.
(2.18)

Finally,

G ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) G ( z 3 m ( k ) + 1 , z 3 m ( k ) , z 3 m ( k ) ) + G ( z 3 m ( k ) , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) G ( z 3 m ( k ) + 1 , z 3 m ( k ) , z 3 m ( k ) ) + G ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) ) + G ( z 3 n ( k ) , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) G ( z 3 m ( k ) + 1 , z 3 m ( k ) , z 3 m ( k ) ) + G ( z 3 m ( k ) , z 3 n ( k ) , z 3 n ( k ) ) + G ( z 3 n ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 1 ) + G ( z 3 n ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) .
(2.19)

Taking limit as k in (2.19) and using (2.16), (2.10), (2.11) and (2.12), we have

lim k G( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 )ε.

Consider

G ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G ( z 3 m ( k ) , z 3 m ( k ) + 1 , z 3 m ( k ) + 1 ) + G ( z 3 m ( k ) + 1 , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G ( z 3 m ( k ) , z 3 m ( k ) + 1 , z 3 m ( k ) + 1 ) + G ( z 3 m ( k ) + 1 , z 3 n ( k ) + 3 , z 3 n ( k ) + 3 ) + G ( z 3 n ( k ) + 3 , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) G ( z 3 m ( k ) , z 3 m ( k ) + 1 , z 3 m ( k ) + 1 ) + G ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) + G ( z 3 n ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) .
(2.20)

Taking limit as k and using (2.10), (2.11) and (2.12), we have

ε lim k G( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ).

Therefore,

lim k G( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 )=ε.
(2.21)

As T x 3 m ( k ) R x 3 n ( k ) + 1 S x 3 n ( k ) + 2 , so from (2.1) we have

ψ ( G ( z 3 m ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) ) = ψ ( G ( f x 3 m ( k ) , g x 3 n ( k ) + 1 , h x 3 n ( k ) + 2 ) ) ψ ( M ( x 3 m ( k ) , x 3 n ( k ) + 1 , x 3 n ( k ) + 2 ) ) φ ( M ( x 3 m ( k ) , x 3 n ( k ) + 1 , x 3 n ( k ) + 2 ) ) ,
(2.22)

where

M ( x 3 m ( k ) , x 3 n ( k ) + 1 , x 3 n ( k ) + 2 ) = max { G ( T x 3 m ( k ) , R x 3 n ( k ) + 1 , S x 3 n ( k ) + 2 ) , G ( T x 3 m ( k ) , f x 3 m ( k ) , f x 3 m ( k ) ) , G ( R x 3 n ( k ) + 1 , g x 3 n ( k ) + 1 , g x 3 n ( k ) + 1 ) , G ( S x 3 n ( k ) + 2 , h x 3 n ( k ) + 2 , h x 3 n ( k ) + 2 ) , G ( T x 3 m ( k ) , T x 3 m ( k ) , f x 3 m ( k ) ) + G ( R x 3 n ( k ) + 1 , R x 3 n ( k ) + 1 , g x 3 n ( k ) + 1 ) + G ( S x 3 n ( k ) + 2 , S x 3 n ( k ) + 2 , h x 3 n ( k ) + 2 ) 3 } = max { G ( z 3 m ( k ) , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) , G ( z 3 m ( k ) , z 3 m ( k ) + 1 , z 3 m ( k ) + 1 ) , G ( z 3 n ( k ) + 1 , z 3 n ( k ) + 2 , z 3 n ( k ) + 2 ) , G ( z 3 n ( k ) + 2 , z 3 n ( k ) + 3 , z 3 n ( k ) + 3 ) , G ( z 3 m ( k ) , z 3 m ( k ) , z 3 m ( k ) + 1 ) + G ( z 3 n ( k ) + 1 , z 3 n ( k ) + 1 , z 3 n ( k ) + 2 ) + G ( z 3 n ( k ) + 2 , z 3 n ( k ) + 2 , z 3 n ( k ) + 3 ) 3 } .

Taking limit as k and using (2.11), (2.12), (2.18) and (2.21) in (2.22), we have

ψ(ε)ψ(ε)φ(ε)<ψ(ε),

a contradiction. Hence, { z n } is a G-Cauchy sequence.

Step III. We will show that f, g, h, R, S and T have a coincidence point.

Since { z n } is a G-Cauchy sequence in the G-complete G-metric space X, there exists z X such that

lim n G ( z 3 n + 1 , z 3 n + 1 , z ) = lim n G ( R x 3 n + 1 , R x 3 n + 1 , z ) = lim n G ( f x 3 n , f x 3 n , z ) = 0 ,
(2.23)
lim n G ( z 3 n + 2 , z 3 n + 2 , z ) = lim n G ( S x 3 n + 2 , S x 3 n + 2 , z ) = lim n G ( g x 3 n + 1 , g x 3 n + 1 , z ) = 0 ,
(2.24)

and

lim n G ( z 3 n + 3 , z 3 n + 3 , z ) = lim n G ( T x 3 n + 3 , T x 3 n + 3 , z ) = lim n G ( h x 3 n + 2 , h x 3 n + 2 , z ) = 0 .
(2.25)

Hence,

T x 3 n z andf x 3 n z as n.
(2.26)

As (f,T) is compatible, so

lim n G(Tf x 3 n ,fT x 3 n ,fT x 3 n )=0.
(2.27)

Moreover, from lim n G(f x 3 n ,f x 3 n , z )=0, lim n G(T x 3 n , z , z )=0, and the continuity of T and f, we obtain

lim n G ( T f x 3 n , T f x 3 n , T z ) =0= lim n G ( f T x 3 n , f z , f z ) .
(2.28)

By the rectangle inequality, we have

G ( T z , f z , f z ) G ( T z , T f x 3 n , T f x 3 n ) + G ( T f x 3 n , f z , f z ) G ( T z , T f x 3 n , T f x 3 n ) + G ( T f x 3 n , f T x 3 n , f T x 3 n ) + G ( f T x 3 n , f z , f z ) .
(2.29)

Taking limit as n in (2.29), we obtain

G ( T z , f z , f z ) 0,

which implies that f z =T z , that is, z is a coincidence point of f and T.

Similarly, g z =R z and h z =S z . Now, let R z , S z and T z be comparable. By (2.1) we have

ψ ( G ( f z , g z , h z ) ) ψ ( M ( z , z , z ) ) φ ( M ( z , z , z ) ) ,
(2.30)

where

M ( z , z , z ) = max { G ( T z , R z , S z ) , G ( T z , f z , f z ) , G ( R z , g z , g z ) , G ( S z , h z , h z ) , G ( T z , T z , f z ) + G ( R z , R z , g z ) + G ( S z , S z , h z ) 3 } = G ( T z , R z , S z ) = G ( f z , g z , h z ) .

Hence (2.30) gives

ψ ( G ( f z , g z , h z ) ) ψ ( G ( f z , g z , h z ) ) φ ( G ( f z , g z , h z ) ) .

Therefore, f z =g z =h z =T z =R z =S z . □

In the following theorem, the continuity assumption on the mappings f, g, h, R, S and T is in fact replaced by the sequential limit comparison property of the space, and the compatibility of the pairs (f,T), (g,R) and (h,S) is in fact replaced by weak compatibility of the pairs.

Theorem 2.2 Let (X,,G) be a partially ordered G-complete G-metric space with the sequential limit comparison property, let f,g,h,R,S,T:XX be six mappings such that f(X)R(X), g(X)S(X), and let h(X)T(X), RX, SX and TX be G-complete subsets of X. Suppose that for comparable elements Tx,Ry,SzX, we have

ψ ( 2 G ( f x , g y , h z ) ) ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) ,
(2.31)

where ψ,φ:[0,)[0,) are altering distance functions. Then the pairs (f,T), (g,R) and (h,S) have a coincidence point z in X provided that the pairs (f,T), (g,R) and (h,S) are weakly compatible and the pairs (f,g), (g,h) and (h,f) are partially weakly increasing with respect to R, S and T, respectively. Moreover, if R z , S z and T z are comparable, then z X is a coincidence point of f, g, h, R, S and T.

Proof Following the proof of Theorem 2.1, there exists z X such that

lim k G ( z k , z k , z ) =0.
(2.32)

Since R(X) is G-complete and { z 3 n + 1 }R(X), therefore z R(X). Hence, there exists uX such that z =Ru and

lim n G( z 3 n + 1 , z 3 n + 1 ,Ru)= lim n G(R x 3 n + 1 ,R x 3 n + 1 ,Ru)=0.
(2.33)

Similarly, there exists v,wX such that z =Sv=Tw and

lim n G(S x 3 n + 2 ,S x 3 n + 2 ,Sv)= lim n G(T x 3 n ,T x 3 n ,Tw)=0.
(2.34)

Now, we prove that w is a coincidence point of f and T. For this purpose, we show that fw=gu. Suppose opposite fwgu. Since S x 3 n + 2 z =Tw=Ru as n, so S x 3 n + 2 Tw=Ru.

Therefore, from (2.31), we have

ψ ( 2 G ( f w , g u , h x 3 n + 2 ) ) ψ ( M ( w , u , x 3 n + 2 ) ) φ ( M ( w , u , x 3 n + 2 ) ) ,
(2.35)

where

M ( w , u , x 3 n + 2 ) = max { G ( T w , R u , S x 3 n + 2 ) , G ( T w , f w , f w ) , G ( R u , g u , g u ) , G ( S x 3 n + 2 , h x 3 n + 2 , h x 3 n + 2 ) , G ( T w , T w , f w ) + G ( R u , R u , g u ) + G ( S x 3 n + 2 , S x 3 n + 2 , h x 3 n + 2 ) 3 } .

Taking limit as n in (2.35), as G( z , z , z )=0 and from (G2) and the fact that G(x,x,y)2G(x,y,y) , we obtain that

ψ ( 2 G ( f w , g u , z ) ) ψ ( max { G ( z , f w , f w ) , G ( z , g u , g u ) , G ( z , z , f w ) + G ( z , z , g u ) 3 } ) φ ( max { G ( z , f w , f w ) , G ( z , g u , g u ) , G ( z , z , f w ) + G ( z , z , g u ) 3 } ) ψ ( 2 G ( f w , g u , z ) ) φ ( max { G ( z , f w , f w ) , G ( z , g u , g u ) , G ( z , z , f w ) + G ( z , z , g u ) 3 } ) ,

which implies that fw= z =gu, a contradiction, so fw=gu. Again from the above inequality it is easy to see that fw= z . So, we have fw= z =Tw.

As f and T are weakly compatible, we have f z =fTw=Tfw=T z . Thus z is a coincidence point of f and T.

Similarly it can be shown that z is a coincidence point of the pairs (g,R) and (h,S).

The rest of the proof can be obtained from the same arguments as those in the proof of Theorem 2.1. □

Remark 2.3 Let (X,G) be a G-metric space. Let f,R,S,T:XX be mappings. If we define functions p,q:X×X[0,) in the following way:

p(x,y)=G(Tx,Ry,Sy)

and

q(x,y)=G(Tx,fy,fy)

for all x,yX, it is easy to see that both mappings p and q do not satisfy the conditions of Definition 1.15. Hence, Theorem 2.1 and Theorem 2.2 cannot be characterized in the context of quasi-metric as it is suggested in [66, 67].

Taking T=R=S in Theorem 2.1, we obtain the following result.

Corollary 2.4 Let (X,,G) be a partially ordered G-complete G-metric space, and let f,g,h,R:XX be four mappings such that f(X)g(X)h(X)R(X). Suppose that for every three comparable elements Rx,Ry,RzX, we have

ψ ( 2 G ( f x , g y , h z ) ) ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) ,
(2.36)

where

M ( x , y , z ) = max { G ( R x , R y , R z ) , G ( R x , f x , f x ) , G ( R y , g y , g y ) , G ( R z , h z , h z ) , G ( R x , R x , f x ) + G ( R y , R y , g y ) + G ( R z , R z , h z ) 3 }

and ψ,φ:[0,)[0,) are altering distance functions. Then f, g, h and R have a coincidence point in X provided that the pairs (f,g), (g,h) and (h,f) are partially weakly increasing with respect to R and either

  1. a.

    f is continuous and the pair (f,R) is compatible, or

  2. b.

    g is continuous and the pair (g,R) is compatible, or

  3. c.

    h is continuous and the pair (h,R) is compatible.

Taking R=S=T and f=g=h in Theorem 2.1, we obtain the following coincidence point result.

Corollary 2.5 Let (X,,G) be a partially ordered G-complete G-metric space, and let f,R:XX be two mappings such that f(X)R(X). Suppose that for every three comparable elements Rx,Ry,RzX, we have

ψ ( 2 G ( f x , f y , f z ) ) ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) ,
(2.37)

where

M ( x , y , z ) = max { G ( R x , R y , R z ) , G ( R x , f x , f x ) , G ( R y , f y , f y ) , G ( R z , f z , f z ) , G ( R x , R x , f x ) + G ( R y , R y , f y ) + G ( R z , R z , f z ) 3 }

and ψ,φ:[0,)[0,) are altering distance functions. Then the pair (f,R) has a coincidence point in X provided that f and R are continuous, the pair (f,R) is compatible and f is weakly increasing with respect to R.

Example 2.6 Let X=[0,) and G on X be given by G(x,y,z)=|xy|+|yz|+|xz| for all x,y,zX. We define an ordering ‘’ on X as follows:

xyyx,x,yX.

Define self-maps f, g, h, S, T and R on X by

f x = ln ( x 2 + 1 + x ) = sinh 1 x , R x = sinh ( 3 x ) , g x = sinh 1 ( x 2 ) , S x = sinh ( 2 x ) , h x = sinh 1 ( x 3 ) , T x = sinh ( 6 x ) .

To prove that (f,g) are partially weakly increasing with respect to R, let x,yX be such that y R 1 fx; that is, Ry=fx. By the definition of f and R, we have sinh 1 x=sinh3y and y= sinh 1 ( sinh 1 x ) 3 . As sinhx( sinh 1 x) for all x0, therefore 6x sinh 1 ( sinh 1 x), or

fx= sinh 1 x sinh 1 ( 1 6 sinh 1 ( sinh 1 x ) ) = sinh 1 ( 1 2 y ) =gy.

Therefore, fxgy. Hence (f,g) is partially weakly increasing with respect to R. Similarly, one can show that (g,h) and (h,f) are partially weakly increasing with respect to S and T, respectively.

Furthermore, fX=TX=gX=SX=hX=RX=[0,) and the pairs (f,T), (g,R) and (h,S) are compatible. Indeed, if { x n } is a sequence in X such that for some tX, lim n G(t,f x n ,f x n )= lim n G(t,T x n ,T x n )=0. Therefore, we have

lim n | sinh 1 x n t|= lim n |sinh6 x n t|=0.

Continuity of sinh−1 and sinh implies that

lim n | x n sinht|= lim n | x n sinh 1 t 6 |=0,

and the uniqueness of the limit gives that sinht= sinh 1 t 6 . But

sinht= sinh 1 t 6 t=0.

So, we have t=0. Since f and T are continuous, we have

lim n G(fT x n ,fT x n ,Tf x n )=2 lim n |fT x n Tf x n |=0.

Define ψ,φ:[0,)[0,) as ψ(t)=bt and φ(t)=(b1)t for all t[0,), where 1<b3.

Using the mean value theorem simultaneously for the functions sinh−1 and sinh, we have

ψ ( 2 G ( f x , g y , h z ) ) = 2 b ( | f x g y | + | f x h z | + | g y h z | ) = 2 b ( | sinh 1 x sinh 1 ( y 2 ) | + | sinh 1 ( x ) sinh 1 ( z 3 ) | + | sinh 1 ( y 2 ) sinh 1 ( z 3 ) | ) 2 b ( 1 2 | 2 x y | + 1 3 | 3 x z | + 1 6 | 3 y 2 z | ) = b ( | 6 x 3 y | + | 6 x 2 z | + | 3 y 2 z | ) 3 b 3 ( | sinh 6 x sinh 3 y | + | sinh 3 y sinh 2 z | + | sinh 2 z sinh 6 x | ) | T x R y | + | R y S z | + | S z T x | = G ( T x , R y , S z ) M ( x , y , z ) = ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) .

Thus, (2.1) is satisfied for all x,y,zX. Therefore, all the conditions of Theorem 2.1 are satisfied. Moreover, 0 is a coincidence point of f, g, h, R, S and T.

The following example supports the usability of our results for non-symmetric G-metric spaces.

Example 2.7 Let X={0,1,2,3} be endowed with the usual order. Let

A= { ( 2 , 0 , 0 ) , ( 0 , 2 , 0 ) , ( 0 , 0 , 2 ) }

and

B= { ( 2 , 2 , 0 ) , ( 2 , 0 , 2 ) , ( 0 , 2 , 2 ) } .

Define G: X 3 R + by

G(x,y,z)= { 1 if  ( x , y , z ) A , 2 if  ( x , y , z ) B , 6 if  ( x , y , z ) X 3 A B , 0 if  x = y = z .

It is easy to see that (X,G) is a non-symmetric G-metric space.

Also, (X,G) has the sequential limit comparison property. Indeed, for each { x n } in X such that G( x n ,x,x)0 for an xX, there is kN such that for each nk, x n =x.

Define the self-maps f, g, h, R, S and T by

f = ( 0 1 2 3 0 2 0 2 ) , R = ( 0 1 2 3 0 1 3 2 ) , g = ( 0 1 2 3 0 2 2 2 ) , S = ( 0 1 2 3 0 2 1 3 ) , h = ( 0 1 2 3 0 2 0 0 ) , T = ( 0 1 2 3 0 2 3 1 ) .

We see that

f X R X = X , g X S X = X ,

and

hXTX=X.

Also, RX, SX and TX are G-complete. The pairs (f,T), (g,R) and (h,S) are weakly compatible.

On the other hand, one can easily check that the pairs (f,g), (g,h) and (h,f) are partially weakly increasing with respect to R, S and T, respectively.

Define ψ,φ:[0,)[0,) by ψ(t)= 3 2 t and φ(t)= t 2 .

According to the definition of f, g, h and G for each three elements x,y,zX, we see that

G(fx,gy,hz){0,1,2}.

But

G(Tx,Ry,Sz),G(Tx,fx,fx),G(Ry,gy,gy),G(Sz,hz,hz){0,1,2,6}

and

G(Tx,Tx,fx),G(Ry,Ry,gy),G(Sz,Sz,hz){0,1,2,6}.

Hence, we have

ψ ( 2 G ( f x , g y , h z ) ) 6=M(x,y,z)=ψ ( M ( x , y , z ) ) φ ( M ( x , y , z ) ) .

Therefore, all the conditions of Theorem 2.2 are satisfied. Moreover, 0 is a coincidence point of f, g, h, R, S and T.

Let Λ be the set of all functions μ:[0,+)[0,+) satisfying the following conditions:

  1. (I)

    μ is a positive Lebesgue integrable mapping on each compact subset of [0,+).

  2. (II)

    For all ε>0, 0 ε μ(t)dt>0.

Remark 2.8 Suppose that there exists μΛ such that mappings f, g, h, R, S and T satisfy the following condition:

0 ψ ( 2 G ( f x , g y , h z ) ) μ(t)dt 0 ψ ( M ( x , y , z ) ) μ(t)dt 0 φ ( M ( x , y , z ) ) μ(t)dt.
(2.38)

Then f, g, h, R, S and T have a coincidence point if the other conditions of Theorem 2.1 are satisfied.

For this, define the function Γ(x)= 0 x μ(t)dt. Then (2.38) becomes

Γ ( ψ ( 2 G ( f x , g y , h z ) ) ) Γ ( ψ ( M ( x , y , z ) ) ) Γ ( φ ( M ( x , y , z ) ) ) .

Take ψ 1 =Γoψ and φ 1 =Γoφ. It is easy to verify that ψ 1 and φ 1 are altering distance functions.

Taking g=h, T=R=S= I X and y=z in Theorems 2.1 and 2.2, we obtain the following common fixed point result.

Theorem 2.9 Let (X,,G) be a partially ordered G-complete G-metric space, and let f and g be two self-mappings on X. Suppose that for every comparable elements x,yX,

ψ ( 2 G ( f x , g y , g y ) ) ψ ( M ( x , y , y ) ) φ ( M ( x , y , y ) ) ,
(2.39)

where

M ( x , y , y ) = max { G ( x , y , y ) , G ( x , f x , f x ) , G ( y , g y , g y ) , G ( x , x , f x ) + 2 G ( y , y , g y ) 3 } ,

and ψ,φ:[0,)[0,) are altering distance functions. Then the pair (f,g) has a common fixed point z in X provided that the pair (f,g) is weakly increasing and either

  1. a.

    f or g is continuous, or

  2. b.

    X has the sequential limit comparison property.

Taking f=g in the above, we obtain the following common fixed point result.

Theorem 2.10 Let (X,,G) be a partially ordered complete G-metric space, and let f be a self-mapping on X. Suppose that for every comparable elements x,yX,

ψ ( 2 G ( f x , f y , f y ) ) ψ ( M ( x , y , y ) ) φ ( M ( x , y , y ) ) ,
(2.40)

where

M ( x , y , y ) = max { G ( x , y , y ) , G ( x , f x , f x ) , G ( y , f y , f y ) , G ( x , x , f x ) + 2 G ( y , y , f y ) 3 }

and ψ,φ:[0,)[0,) are altering distance functions. Then f has a fixed point z in X provided that f is weakly increasing and either

  1. a.

    f is continuous, or

  2. b.

    X has the sequential limit comparison property.

3 Existence of a common solution for a system of integral equations

Motivated by the work in [21] and [32], we consider the following system of integral equations:

x ( t ) = a b K 1 ( t , s , x ( s ) ) d s + k ( t ) , x ( t ) = a b K 2 ( t , s , x ( s ) ) d s + k ( t ) , x ( t ) = a b K 3 ( t , s , x ( s ) ) d s + k ( t ) ,
(3.1)

where b>a0. The aim of this section is to prove the existence of a solution for (3.1) which belongs to X=C[a,b] (the set of all continuous real-valued functions defined on [a,b]) as an application of Corollary 2.4.

The considered problem can be reformulated as follows.

Let f,g,h:XX be defined by

f x ( t ) = a b K 1 ( t , s , x ( s ) ) d s , g x ( t ) = a b K 2 ( t , s , x ( s ) ) d s ,

and

hx(t)= a b K 3 ( t , s , x ( s ) ) ds

for all xX and for all t[a,b]. Obviously, the existence of a solution for (3.1) is equivalent to the existence of a common fixed point of f, g and h.

Let

d(u,v)= max t [ a , b ] |u(t)v(t)|.

Equip X with the G-metric given by

G(u,v,w)=max { d ( u , v ) , d ( v , w ) , d ( w , u ) }

for all u,v,wX. Evidently, (X,G) is a complete G-metric space. We endow X with the partial ordered given by

xyx(t)y(t)

for all t[a,b]. It is known that (X,) has the sequential limit comparison property [37].

Now, we will prove the following result.

Theorem 3.1 Suppose that the following hypotheses hold:

  1. (i)

    K 1 , K 2 , K 3 :[a,b]×[a,b]×RR and k:[a,b]R are continuous;

  2. (ii)

    For all t,s[a,b] and for all xX, we have

    K 1 ( t , s , x ( s ) ) K 2 ( t , s , a b K 1 ( t , s , x ( s ) ) d s + k ( t ) ) , K 2 ( t , s , x ( s ) ) K 3 ( t , s , a b K 2 ( t , s , x ( s ) ) d s + k ( t ) ) ,

and

K 3 ( t , s , x ( s ) ) K 1 ( t , s , a b K 3 ( t , s , x ( s ) ) d s + k ( t ) ) .
  1. (iii)

    For all s,t[a,b] and for all x,yX with xy, we have

    | K i ( t , s , x ( s ) ) K j ( t , s , y ( s ) ) | p ( t , s ) ln ( 1 + | x ( s ) y ( s ) | 2 ) ,

where p:[a,b]×[a,b][0,) is a continuous function satisfying

sup a b p(s,t)ds< 1 4 ( b a ) .

Then system (3.1) has a solution xX.

Proof From condition (ii), the ordered pairs (f,g), (g,h) and (h,f) are partially weakly increasing.

Now, let x,yX be such that xy. From condition (iii), for all t[a,b], we have

4 | f x ( t ) g y ( t ) | 2 4 ( a b | K 1 ( t , s , x ( s ) ) K 2 ( t , s , x ( s ) ) | d s ) 2 4 ( a b 1 2 d s ) ( a b | K 1 ( t , s , x ( s ) ) K 2 ( t , s , x ( s ) ) | 2 d s ) 4 ( b a ) ( a b p ( t , s ) ln ( 1 + | x ( s ) y ( s ) | 2 ) d s ) 4 ( b a ) ( a b p ( t , s ) ln ( 1 + d ( x , y ) 2 ) d s ) 4 ( b a ) ( a b p ( t , s ) ln ( 1 + G ( x , y , z ) 2 ) d s ) = 4 ( b a ) ( a b p ( t , s ) d s ) ln ( 1 + G ( x , y , z ) 2 ) = 4 ( b a ) ( a b p ( t , s ) d s ) ln ( 1 + M ( x , y , z ) 2 ) < ln ( 1 + M ( x , y , z ) 2 ) = M ( x , y , z ) 2 ( M ( x , y , z ) 2 ln ( 1 + M ( x , y , z ) 2 ) ) .

Hence,

( 2 d ( f x , g y ) ) 2 = ( 2 sup t [ a , b ] | f x ( t ) g y ( t ) | ) 2 M ( x , y , z ) 2 ( M ( x , y , z ) 2 ln ( 1 + M ( x , y , z ) 2 ) ) .
(3.2)

Similarly, we can show that

( 2 d ( g y , h z ) ) 2 = ( 2 sup t [ a , b ] | g y ( t ) h z ( t ) | ) 2 M ( x , y , z ) 2 ( M ( x , y , z ) 2 ln ( 1 + M ( x , y , z ) 2 ) ) ,
(3.3)

and

( 2 d ( h z , f x ) ) 2 = ( 2 sup t [ a , b ] | h z ( t ) f x ( t ) | ) 2 M ( x , y , z ) 2 ( M ( x , y , z ) 2 ln ( 1 + M ( x , y , z ) 2 ) ) .
(3.4)

Therefore, from (3.2), (3.3) and (3.4), we have

( 2 G ( f x , g y , h z ) ) 2 = ( 2 max { d ( f x , g y ) , d ( g y , h z ) , d ( h z , f x ) } ) 2 = max { ( 2 d ( f x , g y ) ) 2 , ( 2 d ( g y , h z ) ) 2 , ( 2 d ( h z , f x ) ) 2 } M ( x , y , z ) 2 ( M ( x , y , z ) 2 ln ( 1 + M ( x , y , z ) 2 ) ) .

Putting, ψ(t)= t 2 , φ(t)= t 2 ln(1+ t 2 ) and R= I X in Corollary 2.4, there exists xX, a common fixed point of f and g and h, which is a solution of (3.1). □

References

  1. Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30: 1–9. 10.1017/S0004972700001659

    MathSciNet  Article  Google Scholar 

  2. Alber YI, Guerre-Delabriere S: Principle of weakly contractive maps in Hilbert spaces. Advances and Appl. 98. In New Results in Operator Theory. Edited by: Gohberg I, Lyubich Y. Birkhäuser, Basel; 1997:7–22.

    Chapter  Google Scholar 

  3. Rhoades BE: Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47: 2683–2693. 10.1016/S0362-546X(01)00388-1

    MathSciNet  Article  Google Scholar 

  4. Sessa S: On a weak commutativity condition of mappings in fixed point consideration. Publ. Inst. Math. 1982, 32: 149–153.

    MathSciNet  Google Scholar 

  5. Jungck G: Compatible mappings and common fixed points. Int. J. Math. Math. Sci. 1986, 9: 771–779. 10.1155/S0161171286000935

    MathSciNet  Article  Google Scholar 

  6. Jungck G: Common fixed points for noncontinuous nonself maps on nonmetric spaces. Far East J. Math. Sci. 1996, 4: 199–215.

    MathSciNet  Google Scholar 

  7. Zhang Q, Song Y: Fixed point theory for generalized φ -weak contractions. Appl. Math. Lett. 2009, 22: 75–78. 10.1016/j.aml.2008.02.007

    MathSciNet  Article  Google Scholar 

  8. Abbas M, Dorić D: Common fixed point theorem for four mappings satisfying generalized weak contractive condition. Filomat 2010, 24(2):1–10. 10.2298/FIL1002001A

    MathSciNet  Article  Google Scholar 

  9. Aydi H, Karapınar E, Postolache M: Tripled coincidence point theorems for weak φ -contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 44

    Google Scholar 

  10. Aydi H, Shatanawi W, Postolache M, Mustafa Z, Nazir T: Theorems for Boyd-Wong type contractions in ordered metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 359054

    Google Scholar 

  11. Aydi H, Postolache M, Shatanawi W: Coupled fixed point results for (ψ,ϕ) -weakly contractive mappings in ordered G -metric spaces. Comput. Math. Appl. 2012, 63(1):298–309. 10.1016/j.camwa.2011.11.022

    MathSciNet  Article  Google Scholar 

  12. Choudhury BS, Metiya N, Postolache M: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013., 2013: Article ID 152

    Google Scholar 

  13. Dorić D:Common fixed point for generalized (ψ,φ)-weak contractions. Appl. Math. Lett. 2009, 22: 1896–1900. 10.1016/j.aml.2009.08.001

    MathSciNet  Article  Google Scholar 

  14. Haghi RH, Postolache M, Rezapour S: On T -stability of the Picard iteration for generalized φ -contraction mappings. Abstr. Appl. Anal. 2012., 2012: Article ID 658971

    Google Scholar 

  15. Olatinwo MO, Postolache M: Stability results for Jungck-type iterative processes in convex metric spaces. Appl. Math. Comput. 2012, 218(12):6727–6732. 10.1016/j.amc.2011.12.038

    MathSciNet  Article  Google Scholar 

  16. Moradi S, Fathi Z, Analouee E:Common fixed point of single valued generalized φ f -weak contractive mappings. Appl. Math. Lett. 2011, 24(5):771–776. 10.1016/j.aml.2010.12.036

    MathSciNet  Article  Google Scholar 

  17. Razani A, Parvaneh V, Abbas M:A common fixed point for generalized ( ψ , φ ) f , g -weak contractions. Ukr. Math. J. 2012., 63: Article ID 11

    Google Scholar 

  18. Shatanawi W, Postolache M: Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 60

    Google Scholar 

  19. Shatanawi W, Postolache M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 54

    Google Scholar 

  20. Shatanawi W, Pitea A: Some coupled fixed point theorems in quasi-partial metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 153

    Google Scholar 

  21. Abbas M, Khan SH, Nazir T: Common fixed points of R -weakly commuting maps in generalized metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 41

    Google Scholar 

  22. Abbas M, Nazir T, Radenović S: Common fixed points of four maps in partially ordered metric spaces. Appl. Math. Lett. 2011, 24: 1520–1526. 10.1016/j.aml.2011.03.038

    MathSciNet  Article  Google Scholar 

  23. Abbas M, Parvaneh V, Razani A: Periodic points of T -Ćirić generalized contraction mappings in ordered metric spaces. Georgian Math. J. 2012, 19(4):597–610.

    MathSciNet  Article  Google Scholar 

  24. Agarwal RP, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87(1):109–116. 10.1080/00036810701556151

    MathSciNet  Article  Google Scholar 

  25. Aghajani A, Radenović S, Roshan JR:Common fixed point results for four mappings satisfying almost generalized (S,T)-contractive condition in partially ordered metric spaces. Appl. Math. Comput. 2012, 218: 5665–5670. 10.1016/j.amc.2011.11.061

    MathSciNet  Article  Google Scholar 

  26. Ćirić L, Abbas M, Saadati R, Hussain N: Common fixed points of almost generalized contractive mappings in ordered metric spaces. Appl. Math. Comput. 2011, 217: 5784–5789. 10.1016/j.amc.2010.12.060

    MathSciNet  Article  Google Scholar 

  27. Ćirić L, Cakić N, Rajović M, Ume JS: Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 131294

    Google Scholar 

  28. Ćirić L, Hussain N, Cakić N: Common fixed points for Ćirić type f -weak contraction with applications. Publ. Math. (Debr.) 2010, 76(1–2):31–49.

    Google Scholar 

  29. Ćirić Lj, Razani A, Radenović S, Ume JS: Common fixed point theorems for families of weakly compatible maps. Comput. Math. Appl. 2008, 55(11):2533–2543. 10.1016/j.camwa.2007.10.009

    MathSciNet  Article  Google Scholar 

  30. Ćirić L, Samet B, Aydi H, Vetro C: Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218(6):2398–2406. 10.1016/j.amc.2011.07.005

    MathSciNet  Article  Google Scholar 

  31. Ćirić L, Samet B, Cakić N, Damjanović B: Coincidence and fixed point theorems for generalized (ψ,φ)-weak nonlinear contraction in ordered K -metric spaces. Comput. Math. Appl. 2011, 62: 3305–3316. 10.1016/j.camwa.2011.07.061

    MathSciNet  Article  Google Scholar 

  32. Esmaily J, Vaezpour SM, Rhoades BE: Coincidence point theorem for generalized weakly contractions in ordered metric spaces. Appl. Math. Comput. 2012, 219: 1536–1548. 10.1016/j.amc.2012.07.054

    MathSciNet  Article  Google Scholar 

  33. Harjani J, Sadarangani K: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. 2010, 72(3–4):1188–1197. 10.1016/j.na.2009.08.003

    MathSciNet  Article  Google Scholar 

  34. Nashine HK, Samet B:Fixed point results for mappings satisfying (ψ,φ)-weakly contractive condition in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 2201–2209. 10.1016/j.na.2010.11.024

    MathSciNet  Article  Google Scholar 

  35. Nieto JJ, López RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    MathSciNet  Article  Google Scholar 

  36. Nieto JJ, Pouso RL, Rodríguez-López R: Fixed point theorems in ordered abstract sets. Proc. Am. Math. Soc. 2007, 135: 2505–2517. 10.1090/S0002-9939-07-08729-1

    Article  Google Scholar 

  37. Nieto JJ, Rodríguez-López R: Existence and uniqueness of fixed points in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. 2007, 23: 2205–2212. (Engl. Ser.) 10.1007/s10114-005-0769-0

    Article  Google Scholar 

  38. Radenović S, Kadelburg Z: Generalized weak contractions in partially ordered metric spaces. Comput. Math. Appl. 2010, 60: 1776–1783. 10.1016/j.camwa.2010.07.008

    MathSciNet  Article  Google Scholar 

  39. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some application to matrix equations. Proc. Am. Math. Soc. 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

    MathSciNet  Article  Google Scholar 

  40. Shatanawi W, Samet B:On (ψ,ϕ)-weakly contractive condition in partially ordered metric spaces. Comput. Math. Appl. 2011, 62: 3204–3214. 10.1016/j.camwa.2011.08.033

    MathSciNet  Article  Google Scholar 

  41. Mustafa Z, Sims B: A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7(2):289–297.

    MathSciNet  Google Scholar 

  42. Mustafa Z: Common fixed points of weakly compatible mappings in G -metric spaces. Appl. Math. Sci. 2012, 6(92):4589–4600.

    MathSciNet  Google Scholar 

  43. Mustafa Z, Awawdeh F, Shatanawi W: Fixed point theorem for expansive mappings in G -metric spaces. Int. J. Contemp. Math. Sci. 2010, 5: 2463–2472.

    MathSciNet  Google Scholar 

  44. Mustafa Z, Aydi H, Karapınar E: On common fixed points in G -metric spaces using (E.A) property. Comput. Math. Appl. 2012, 64: 1944–1956. 10.1016/j.camwa.2012.03.051

    MathSciNet  Article  Google Scholar 

  45. Mustafa Z, Khandagjy M, Shatanawi W: Fixed point results on complete G -metric spaces. Studia Sci. Math. Hung. 2011, 48(3):304–319. 10.1556/SScMath.48.2011.3.1170

    Google Scholar 

  46. Mustafa Z, Obiedat H, Awawdeh F: Some fixed point theorems for mappings on complete G -metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 189870

    Google Scholar 

  47. Mustafa Z, Sims B: Fixed point theorems for contractive mapping in complete G -metric spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 917175

    Google Scholar 

  48. Mustafa Z, Sims B: Some remarks concerning D -metric spaces. Proc. Int. Conf. on Fixed Point Theory Appl. 2003, 189–198.

    Google Scholar 

  49. Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point results in G -metric spaces. Int. J. Math. Math. Sci. 2009., 2009: Article ID 283028

    Google Scholar 

  50. Chugh R, Kadian T, Rani A, Rhoades BE: Property P in G -metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 401684

    Google Scholar 

  51. Saadati R, Vaezpour SM, Vetro P, Rhoades BE: Fixed point theorems in generalized partially ordered G -metric spaces. Math. Comput. Model. 2010, 52(5–6):797–801. 10.1016/j.mcm.2010.05.009

    MathSciNet  Article  Google Scholar 

  52. Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in G -metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 181650

    Google Scholar 

  53. Abbas M, Khan AR, Nazir T: Coupled common fixed point results in two generalized metric spaces. Appl. Math. Comput. 2011, 217: 6328–6336. 10.1016/j.amc.2011.01.006

    MathSciNet  Article  Google Scholar 

  54. Abbas M, Nazir T, Radenović S: Some periodic point results in generalized metric spaces. Appl. Math. Comput. 2010, 217: 4094–4099. 10.1016/j.amc.2010.10.026

    MathSciNet  Article  Google Scholar 

  55. Abbas M, Nazir T, Radenović S: Common fixed point of generalized weakly contractive maps in partially ordered G -metric spaces. Appl. Math. Comput. 2012, 218: 9383–9395. 10.1016/j.amc.2012.03.022

    MathSciNet  Article  Google Scholar 

  56. Abbas M, Rhoades BE: Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 2009, 215: 262–269. 10.1016/j.amc.2009.04.085

    MathSciNet  Article  Google Scholar 

  57. Aydi H, Damjanović B, Samet B, Shatanawi W: Coupled fixed point theorems for nonlinear contractions in partially ordered G -metric spaces. Math. Comput. Model. 2011. 10.1016/j.mcm.2011.05.059

    Google Scholar 

  58. Aydi H, Shatanawi W, Vetro C: On generalized weakly G -contraction mapping in G -metric spaces. Comput. Math. Appl. 2011, 62: 4222–4229. 10.1016/j.camwa.2011.10.007

    MathSciNet  Article  Google Scholar 

  59. Cho YJ, Rhoades BE, Saadati R, Samet B, Shatanawi W: Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type. Fixed Point Theory Appl. 2012., 2012: Article ID 8 10.1186/1687-1812-2012-8

    Google Scholar 

  60. Kumar M: Compatible maps in G -metric spaces. Int. J. Math. Anal. 2012, 6(29):1415–1421.

    MathSciNet  Google Scholar 

  61. Obiedat H, Mustafa Z: Fixed point results on a nonsymmetric G -metric spaces. Jordan J. Math. Stat. 2010, 3(2):65–79.

    Google Scholar 

  62. Razani A, Parvaneh V: On generalized weakly G -contractive mappings in partially ordered G -metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 701910 10.1155/2012/701910

    Google Scholar 

  63. Shatanawi W: Some fixed point theorems in ordered G -metric spaces and applications. Abstr. Appl. Anal. 2011., 2011: Article ID 126205 10.1155/2011/126205

    Google Scholar 

  64. Shatanawi W, Postolache M: Some fixed point results for a G -weak contraction in G -metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 815870

    Google Scholar 

  65. Shatanawi W, Pitea A: Ω-Distance and coupled fixed point in G -metric spaces. Fixed Point Theory Appl. 2013., 2013: Article ID 208

    Google Scholar 

  66. Jleli M, Samet B: Remarks on G -metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012., 2012: Article ID 210 10.1186/1687-1812-2012-210

    Google Scholar 

  67. Samet B, Vetro C, Vetro F: Remarks on G -metric spaces. Int. J. Anal. 2013., 2013: Article ID 917158

    Google Scholar 

  68. Choudhury BS, Maity P: Coupled fixed point results in generalized metric spaces. Math. Comput. Model. 2011. 10.1016/j.mcm.2011.01.036

    Google Scholar 

  69. Altun I, Simsek H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl. 2010., 2010: Article ID 621492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Parvaneh.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Mustafa, Z., Parvaneh, V., Abbas, M. et al. Some coincidence point results for generalized (ψ,φ)-weakly contractive mappings in ordered G-metric spaces. Fixed Point Theory Appl 2013, 326 (2013). https://doi.org/10.1186/1687-1812-2013-326

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-326

Keywords

  • coincidence point
  • common fixed point
  • generalized weak contraction
  • generalized metric space
  • partially weakly increasing mapping
  • altering distance function