Skip to main content

Coupled coincidence point theorems for α-ψ-contractive type mappings in partially ordered metric spaces

Abstract

In this paper, we introduce the notion of α-ψ-contractions and (α)-admissibility for a pair of mappings. In fact, our theorem is a generalization of the result of Mursaleen et al. (Fixed Point Theory Appl. 2012, doi:10.1186/1687-1812-2012-228). At the end, we shall provide an example in support of our main result.

MSC:47H10, 54H25, 34B15.

1 Introduction

Fixed point problems of contractive mappings in metric spaces endowed with a partial order have been studied in a number of works. Bhaskar and Lakshmikantham [1] established coupled fixed point results for mixed monotone operators in partially ordered metric spaces. Afterwards, Lakshmikantham and Ćirić [2] proved coupled coincidence and coupled common fixed point theorems for nonlinear contractive mappings in partially ordered complete metric spaces. Choudhury and Kundu [3], Ćirić et al. [2], Luong and Thuan [4], Nieto and López [5, 6], Ran and Reurings [7] and Samet [8] presented some new results for contractions in partially ordered metric spaces. Ilić and Rakočević [9] determined some common fixed point theorems by considering the maps on cone metric spaces. For more details on fixed point theory and related concepts, we refer to [4, 818] and the references therein.

Most recently, Samet et al. [12, 15] defined an α-ψ-contractive and α-admissible mapping and proved fixed point theorems for such mappings in complete metric spaces.

The aim of this paper is to determine some coupled coincidence point theorems for generalized contractive mappings in the framework of partially ordered metric spaces.

2 Preliminaries

Before proceeding to our main result, we give some preliminaries.

Definition 2.1 [1]

Let (X,) be a partially ordered set, and let F:X×XX be a mapping. Then F is said to have the mixed monotone property if F(x,y) is monotone non-decreasing in x and is monotone non-increasing in y; that is, for any x,yX,

x 1 , x 2 X , x 1 x 2 implies F ( x 1 , y ) F ( x 2 , y ) and y 1 , y 2 X , y 1 y 2 implies F ( x , y 1 ) F ( x , y 2 ) .

Definition 2.2 [1]

An element (x,y)X×X is said to be a coupled fixed point of the mapping F:X×XX if

F(x,y)=xandF(y,x)=y.

Definition 2.3 [2]

Let (X,d) be a partially ordered set, and let F:X×XX and g:XX be two mappings. We say F has the mixed g-monotone property if F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its second argument, that is, for any x,yX

x 1 , x 2 X , g ( x 1 ) g ( x 2 ) implies F ( x 1 , y ) F ( x 2 , y ) and y 1 , y 2 X , g ( y 1 ) g ( y 2 ) implies F ( x , y 1 ) F ( x , y 2 ) .

Definition 2.4 [2]

An element (x,y)X×X is called a coupled coincidence point of mappings F:X×XX and g:XX if

F(x,y)=g(x)andF(y,x)=g(y).

Definition 2.5 [2]

Let X be a non-empty set and F:X×XX and g:XX. We say F and g are commutative if g(F(x,y))=F(g(x),g(y)).

Definition 2.6 [19]

Denote by Ψ the family of non-decreasing functions ψ:[0,+)[0,+) such that n = 0 ψn(t)<t for all t>0, where ψ n is the n th iterate of ψ satisfying

  1. (i)

    ψ 1 ({0})={0},

  2. (ii)

    ψ(t)<t for all t>0, and

  3. (iii)

    lim r t + ψ(r)<t for all t>0.

Lemma 2.7 [19]

If ψ:[0,][0,] is non-decreasing and right continuous, then ψ n (t)0 as n for all t0 if and only if ψ(t)<t for all t>0.

Definition 2.8 [19]

Let (X,d) be a partially ordered metric space and F:X×XX, then F is said to be (α,ψ)-contractive if there exist two functions α: X 2 × X 2 [0,+) and ψΨ such that

α ( ( x , y ) , ( u , v ) ) d ( F ( x , y ) , F ( u , v ) ) ψ ( d ( x , u ) + d ( y , v ) 2 ) , x , y , u , v X  with  x u  and  y v .

Definition 2.9 [19]

Let F:X×XX and α: X 2 × X 2 [0,+) be two mappings. Then F is said to be (α)-admissible if

α ( ( x , y ) , ( u , v ) ) 1 implies α ( ( F ( x , y ) , F ( y , x ) ) , ( F ( u , v ) , F ( v , u ) ) ) 1 for all  x , y , u , v X .

Now, we will introduce our notions.

Definition 2.10 Let (X,d) be a partially ordered metric space, and let F:X×XX and g:XX be two mappings. Then the maps F and g are said to be (α,ψ)-contractive if there exist two functions α: X 2 × X 2 [0,+) and ψΨ such that

α ( ( g ( x ) , g ( y ) ) , ( g ( u ) , g ( v ) ) ) d ( F ( x , y ) , F ( u , v ) ) ψ ( d ( g ( x ) , g ( u ) ) + d ( g ( y ) , g ( v ) ) 2 )

for x,y,u,vX with g(x)g(u) and g(y)g(v).

Definition 2.11 Let F:X×XX, g:XX and α: X 2 × X 2 [0,+) be mappings.

Then F and g are said to be (α)-admissible if

α ( ( g ( x ) , g ( y ) ) , ( g ( u ) , g ( v ) ) ) 1 implies α ( ( F ( x , y ) , F ( y , x ) ) , ( F ( u , v ) , F ( v , u ) ) ) 1 for all  x , y , u , v X .

3 Main results

Recently, Mursaleen et al. [19] proved the coupled fixed point theorem with α-ψ-contractive conditions in a partially ordered metric space as follows.

Theorem 3.1 [19]

Let (X,) be a partially ordered set, and let there exist a metric d on X such that (X,d) is a complete metric space. Let F:X×XX be a mapping, and suppose that F has the mixed monotone property. Suppose that there exist ψΨ and α: X 2 × X 2 [0,+) such that for x,y,u,vX, the following holds:

α ( ( x , y ) , ( u , v ) ) d ( F ( x , y ) , F ( u , v ) ) ψ ( d ( x , u ) + d ( y , v ) 2 ) for  x , y , u , v X  with  x u  and  y v .

Suppose also that

  1. (i)

    F is (α)-admissible.

  2. (ii)

    There exist x 0 , y 0 X such that

    α ( ( x 0 , y 0 ) , ( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) ) ) 1andα ( ( y 0 , x 0 ) , ( F ( y 0 , x 0 ) , F ( x 0 , y 0 ) ) ) 1.
  3. (iii)

    F is continuous.

If there exist x 0 , y 0 X such that x 0 F( x 0 , y 0 ) and y 0 F( y 0 , x 0 ), then F has a coupled fixed point, that is, there exist x,yX such that

F(x,y)=xandF(y,x)=y.

Theorem 3.2 Let (X,) be a partially ordered set, and let there exist a metric d on X such that (X,d) is a complete metric space. Let F:X×XX and g:XX be maps, and let F have the g-mixed monotone property. Suppose that there exist ψΨ and α: X 2 × X 2 [0,+) such that for x,y,u,vX, the following holds:

α ( ( g ( x ) , g ( y ) ) , ( g ( u ) , g ( v ) ) ) d ( F ( x , y ) , F ( u , v ) ) ψ ( d ( g ( x ) , g ( u ) ) + d ( g ( y ) , g ( v ) ) 2 )
(3.1)

for all x,y,u,vX with g(x)g(u) and g(y)g(v).

Suppose also that

  1. (i)

    F and g are (α)-admissible.

  2. (ii)

    There exist x 0 , y 0 X such that

    α ( ( g ( x 0 ) , g ( y 0 ) ) , ( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) ) ) 1 and α ( ( g ( y 0 ) , g ( x 0 ) ) , ( F ( y 0 , x 0 ) , F ( x 0 , y 0 ) ) ) 1 .
  3. (iii)

    F(X×X)g(X), g is continuous and commutes with F.

  4. (iv)

    F is continuous.

If there exist x 0 , y 0 X such that g( x 0 )F( x 0 , y 0 ) and g( y 0 )F( y 0 , x 0 ), then F and g have a coupled coincidence point, that is, there exist x,yX such that

F(x,y)=g(x)andF(y,x)=g(y).

Proof Let x 0 , y 0 X be such that

α ( g ( x 0 ) , g ( y 0 ) ) , ( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) ) 1 and α ( g ( y 0 ) , g ( x 0 ) ) , ( F ( y 0 , x 0 ) , F ( x 0 , y 0 ) ) 1

and

g( x 0 )F( x 0 , y 0 )=g( x 1 )andg( y 0 )F( y 0 , x 0 )=g( y 1 ).

Let x 2 , y 2 X be such that F( x 1 , y 1 )=g( x 2 ) and F( y 1 , x 1 )=g( y 2 ).

Continuing this process, we can construct two sequences { x n } and { y n } in X as follows:

g( x n + 1 )=F( x n , y n )andg( y n + 1 )=F( y n , x n )for all n0.

Now we will show that

g( x n )g( x n + 1 )andg( y n )g( y n + 1 )for all n0.
(3.2)

For n=0, since g( x 0 )F( x 0 , y 0 ) and g( y 0 )F( y 0 , x 0 ) and as g( x 1 )=F( x 0 , y 0 ) and g( y 1 )=F( y 0 , x 0 ), we have

g( x 0 )g( x 1 )andg( y 0 )g( y 1 ).

Thus (3.2) holds for n=0. Now suppose that (3.2) holds for some fixed n0.

Then since g( x n )g( x n + 1 ) and g( y n )g( y n + 1 ), therefore, by the g-mixed monotone property of F, we have

g ( x n + 2 ) = F ( x n + 1 , y n + 1 ) F ( x n , y n + 1 ) F ( x n , y n ) = g ( x n + 1 ) and g ( y n + 2 ) = F ( y n + 1 , x n + 1 ) F ( y n , x n + 1 ) F ( y n , x n ) = g ( y n + 1 ) .

From above, we conclude that

g( x n + 1 )g( x n + 2 )andg( y n + 1 )g( y n + 2 ).

Thus, by mathematical induction, we conclude that (3.2) holds for all n0.

If the following holds for some n

( g ( x n + 1 ) , g ( y n + 1 ) ) = ( g ( x n ) , g ( y n ) ) ,

then, obviously, F( x n , y n )=g( x n ) and F( y n , x n )=g( y n ), i.e., F has a coupled coincidence point.

Now, we assume that ( x n + 1 , y n + 1 )( x n , y n ) for all nn(ε).

Since F and g are α-admissible, we have that

α ( ( g ( x 0 ) , g ( y 0 ) ) , ( g ( x 1 ) , g ( y 1 ) ) ) = α ( ( g ( x 0 ) , g ( y 0 ) ) , ( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) ) ) 1 implies α ( ( F ( x 0 , y 0 ) , F ( y 0 , x 0 ) ) , ( F ( x 1 , y 1 ) , F ( y 1 , x 1 ) ) ) = α ( ( g ( x 1 ) , g ( y 1 ) ) , ( g ( x 2 ) , g ( y 2 ) ) ) 1 .

Thus, by mathematical induction, we have

α ( ( g ( x n ) , g ( y n ) ) , ( g ( x n + 1 ) , g ( y n + 1 ) ) ) 1.
(3.3)

Similarly,

α ( ( g ( y n ) , g ( x n ) ) , ( g ( y n + 1 ) , g ( x n + 1 ) ) ) 1for nN.
(3.4)

From (3.1) and conditions (i) and (ii) of the hypothesis, we get

d ( g ( x n ) , g ( x n + 1 ) ) = d ( F ( x n 1 , y n 1 ) , F ( x n , y n ) ) α ( ( g ( x n 1 ) , g ( y n 1 ) ) , ( g ( x n ) , g ( y n ) ) ) d ( F ( x n 1 , y n 1 ) , F ( x n , y n ) ) ψ ( d ( g ( x n 1 ) , g ( x n ) ) + d ( g ( y n 1 ) , g ( y n ) ) 2 ) .
(3.5)

Similarly, we have

d ( g ( y n ) , g ( y n + 1 ) ) = d ( F ( y n 1 , x n 1 ) , F ( y n , x n ) ) α ( ( g ( y n 1 ) , g ( x n 1 ) ) , ( g ( y n ) , g ( x n ) ) ) d ( F ( y n 1 , x n 1 ) , F ( y n , x n ) ) ψ ( d ( g ( y n 1 ) , g ( y n ) ) + d ( g ( x n 1 ) , g ( x n ) ) 2 ) .
(3.6)

Adding (3.5) and (3.6), we get

d ( g ( x n ) , g ( x n + 1 ) ) + d ( g ( y n ) , g ( y n + 1 ) ) 2 ψ ( d ( g ( x n 1 ) g ( x n ) ) + d ( g ( y n 1 ) , g ( y n ) ) 2 ) .

Repeating the above process, we get

d ( g ( x n ) , g ( x n + 1 ) ) + d ( g ( y n ) , g ( y n + 1 ) ) 2 ψ n ( d ( g ( x 0 ) g ( x 1 ) ) + d ( g ( y 0 ) , g ( y 1 ) ) 2 ) ,nN.

For ε>0, there exists n(ε)N such that

n n ( ) ψ n ( d ( g ( x 0 ) , g ( x 1 ) ) + d ( g ( y 0 ) , g ( y 1 ) ) 2 ) < ε 2 .

Let n,mN be such that m>n>n(ε), then by using the triangle inequality, we have

d ( g ( x n ) , g ( x m ) ) + d ( g ( y n ) , g ( y m ) ) 2 k = n m 1 d ( g ( x k ) , g ( x k + 1 ) ) + d ( g ( y n ) , g ( y n + 1 ) ) 2 n n ( ) ψ n ( d ( g ( x 0 ) , g ( x 1 ) ) + d ( g ( y 0 ) , g ( y 1 ) ) 2 ) < ε 2 , d ( g ( x n ) , g ( x m ) ) + d ( g ( y n ) , g ( y m ) ) < ε .

Since

d ( g ( x n ) , g ( x m ) ) d ( g ( x n ) , g ( x m ) ) + d ( g ( y n ) , g ( y m ) ) < ε and d ( g ( y n ) , g ( y m ) ) d ( g ( x n ) , g ( x m ) ) + d ( g ( y n ) , g ( y m ) ) < ε ,

hence g( x n ) and g( y n ) are Cauchy sequences in (X,d).

Since (X,d) is complete, therefore, g( x n ) and g( y n ) are convergent in (X,d).

There exist x,yX such that lim n g( x n )=x and lim n g( y n )=y.

By the continuity of g, we have

lim n g ( g ( x n ) ) =g(x)and lim n g ( g ( y n ) ) =g(y).

By commutativity of F and g, we get

g ( g ( x n + 1 ) ) =g ( F ( x n , y n ) ) =F ( g ( x n ) , g ( y n ) ) ,
(3.7)
g ( g ( y n + 1 ) ) =g ( F ( y n , x n ) ) =F ( g ( y n ) , g ( x n ) ) .
(3.8)

We now show that

g ( x ) = F ( lim n g ( x n ) , lim n g ( y n ) ) = F ( x , y ) , g ( y ) = lim n g ( g ( y n + 1 ) = lim n F ( g ( y n ) , g ( x n ) ) = F ( x , y ) and g ( y ) = F ( y , x ) .

Proceeding with limit n and using the continuity of F in (3.7) and (3.8), we get

g ( x ) = lim n g ( g ( x n + 1 ) ) = lim n F ( g ( x n ) , g ( y n ) ) = F ( lim n g ( y n ) , lim n g ( x n ) ) = F ( y , x ) .

Thus,

g(x)=F(x,y)andg(y)=F(y,x).

Hence, we have proved that F and g have a coupled coincidence point. □

Now, we will replace the continuity of F in Theorem 3.2 by a condition on sequences.

Theorem 3.3 Let (X,) be a partially ordered set, and let there exist a metric d on X such that (X,d) is a complete metric space. Let F:X×XX and g:XX be maps, and let F have the g-mixed monotone property. Suppose that there exist ψΨ and α: X 2 × X 2 [0,+) such that for x,y,u,vX and the following:

  1. (i)

    conditions (i), (ii) and (iii) of Theorem  3.2 and (3.1),

  2. (ii)

    if { x n } and { y n } are sequences in X such that

    α ( ( g ( x n ) , g ( y n ) ) , ( g ( x n + 1 ) , g ( y n + 1 ) ) ) 1 and α ( ( g ( y n ) , g ( x n ) ) , ( g ( y n + 1 ) , g ( x n + 1 ) ) ) 1 for all  n

and

lim n g( x n )=xand lim n g( y n )=yfor all x,yX,

then

α ( ( g ( x n ) , g ( y n ) ) , ( g ( x ) , g ( y ) ) ) 1andα ( ( g ( y n ) , g ( x n ) ) , ( g ( y ) , g ( x ) ) ) 1.

If there exist x 0 , y 0 X such that g( x 0 )F( x 0 , y 0 ) and g( y 0 )F( y 0 , x 0 ), then F and g have a coupled coincidence point, that is, there exist x,yX such that

F(x,y)=g(x)andF(y,x)=g(y).

Proof Proceeding along the same lines as in the proof of Theorem 3.2, we know that {g( x n )} and {g( y n )} are Cauchy sequences in the complete metric space (X,d). Then there exist x,yX such that lim n g( x n )=x and lim n g( y n )=y.

On the other hand, from the hypothesis, we obtain

α ( ( g ( x n ) , g ( y n ) ) , ( g ( x ) , g ( y ) ) ) 1,
(3.9)

and similarly,

α ( ( g ( y n ) , g ( x n ) ) , ( g ( y ) , g ( x ) ) ) 1.
(3.10)

Using the triangle inequality, (3.9) and the property of ψ(t)<t for all t>0, we get

d ( F ( x , y ) , g ( x ) ) d ( F ( x , y ) , F ( x n , y n ) ) + d ( g ( x n + 1 ) , g ( x ) ) α ( ( g ( x n ) , g ( y n ) ) , ( g ( x ) , g ( y ) ) ) d ( F ( x n , y n ) , F ( x , y ) ) + d ( g ( x n + 1 ) , g ( x ) ) ψ ( d ( g ( x n ) , g ( x ) ) + d ( g ( y n ) , g ( y ) ) 2 ) + d ( g ( x n + 1 ) , g ( x ) ) < d ( g ( x n ) , g ( x ) ) + d ( g ( y n ) , g ( y ) ) 2 + d ( g ( x n + 1 ) , g ( x ) ) .

Similarly, using (3.10), we have

d ( F ( y , x ) , g ( y ) ) d ( F ( y , x ) , F ( y n , x n ) ) + d ( g ( y n + 1 ) , g ( y ) ) α ( ( g ( y n ) , g ( x n ) ) , ( g ( y ) , g ( x ) ) ) d ( F ( y n , x n ) , F ( y , x ) ) + d ( g ( y n + 1 ) , g ( y ) ) ψ ( d ( g ( y n ) , g ( y ) ) + d ( g ( x n ) , g ( x ) ) 2 ) + d ( g ( y n + 1 ) , g ( y ) ) < d ( g ( y n ) , g ( y ) ) + d ( g ( x n ) , g ( x ) ) 2 + d ( g ( y n + 1 ) , g ( y ) ) .

Proceeding with limit n in above two inequalities, we get

d ( F ( x , y ) , g ( x ) ) =0andd ( F ( y , x ) , g ( y ) ) =0.

Thus, F(x,y)=g(x) and F(y,x)=g(y). □

Example 3.4 Let X=[0,1] and d:X×XR be a standard metric.

Define a mapping F:X×XX by F(x,y)= 1 4 (xy) and g:XX by g(x)= x 2 for all x,yX.

Consider a mapping α: X 2 × X 2 [0,+) to be such that

α ( ( g ( x ) , g ( y ) ) , ( g ( u ) , g ( v ) ) ) = { 1 if  g ( x ) g ( y )  and  g ( u ) g ( v ) , 0 otherwise , d ( F ( x , y ) , F ( u , v ) ) = | ( x y ) 4 ( u v ) 4 | 1 4 ( | x u | + | v y | ) = 1 4 ( d ( x , u ) + d ( y , v ) ) .

It follows that

α ( ( g ( x ) , g ( y ) ) , g ( ( u ) , g ( v ) ) ) d ( F ( x , y ) , F ( u , v ) ) 1 4 ( d ( x , u ) + d ( y , v ) ) 1 2 ( d ( x , u ) + d ( y , v ) ) = ( d ( g ( x ) , g ( u ) ) + d ( g ( y ) , g ( v ) ) ) .

Thus (3.1) holds for ψ(t)=t for all t>0, and we also see that F satisfies the g-mixed monotone property as well as F and g commute. Therefore, all the hypotheses of Theorem 3.2 are fulfilled. Then there exists a coupled coincidence point of F and g. In this case, (0,0) is a coupled coincidence point of F and g.

References

  1. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

    Article  MathSciNet  Google Scholar 

  2. Lakshmikantham V, Ćirić LB: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

    Article  MathSciNet  Google Scholar 

  3. Choudhury BS, Kundu A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 2010, 73: 2524–2531. 10.1016/j.na.2010.06.025

    Article  MathSciNet  Google Scholar 

  4. Luong NV, Thuan NX: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 2011, 74: 983–992. 10.1016/j.na.2010.09.055

    Article  MathSciNet  Google Scholar 

  5. Nieto JJ, Rodríguez-López R: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

    Article  MathSciNet  Google Scholar 

  6. Nieto JJ, Rodriguez-López R: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math. Sin. Engl. Ser. 2007, 23(12):2205–2212. 10.1007/s10114-005-0769-0

    Article  MathSciNet  Google Scholar 

  7. Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

    Article  MathSciNet  Google Scholar 

  8. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal. 2010, 72: 4508–4517. 10.1016/j.na.2010.02.026

    Article  MathSciNet  Google Scholar 

  9. Nashine HK, Kadelburg Z, Radenović S: Coupled common fixed point theorems for w -compatible mappings in ordered cone metric spaces. Appl. Math. Comput. 2012, 218: 5422–5432. 10.1016/j.amc.2011.11.029

    Article  MathSciNet  Google Scholar 

  10. Agarwal RP, El-Gebeily MA, O’Regan D: Generalized contractions in partially ordered metric spaces. Appl. Anal. 2008, 87: 109–116. 10.1080/00036810701556151

    Article  MathSciNet  Google Scholar 

  11. Ćirić L, Cakić N, Rajović M, Ume JS: Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2008., 2008: Article ID 131294

    Google Scholar 

  12. Karapinar E, Samet B: Generalized α - ψ -contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012., 2012: Article ID 793486

    Google Scholar 

  13. Aydi H, Samet B, Vetro C: Coupled fixed point results in cone metric spaces for W -compatible mappings. Fixed Point Theory Appl. 2011., 2011: Article ID 27

    Google Scholar 

  14. Jleli M, Cojbasic Rajic V, Samet B, Vetro C: Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations. J. Fixed Point Theory Appl. 2012. 10.1007/s11784-012-0081-4

    Google Scholar 

  15. Samet B, Vetro C, Vetro P: Fixed point theorems for α - ψ -contractive type mappings. Nonlinear Anal. 2012, 75: 2154–2165. 10.1016/j.na.2011.10.014

    Article  MathSciNet  Google Scholar 

  16. Nashine HK, Samet B, Vetro C: Coupled coincidence points for compatible mappings satisfying mixed monotone property. J. Nonlinear Sci. Appl. 2012, 5(2):104–114.

    MathSciNet  Google Scholar 

  17. Samet B, Vetro C: Coupled fixed point, F -invariant set and fixed point of n order. Ann. Funct. Anal. 2010, 1(2):46–56.

    Article  MathSciNet  Google Scholar 

  18. Samet B, Vetro C: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74: 4260–4268. 10.1016/j.na.2011.04.007

    Article  MathSciNet  Google Scholar 

  19. Mursaleen M, Mohiuddine SA, Agarwal RP: Coupled fixed point theorems for α - ψ -contractive type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2012. 10.1186/1687-1812-2012-228

    Google Scholar 

Download references

Acknowledgements

One of the authors (Sanjay Kumar) is thankful to UGC for providing Major Research Project F.No. 39-41/2010(SR). Also, the authors thank the editors and referees for their insightful comments. Moreover, the third author would like to thank the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission for financial support under grant No. NRU56000508.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poom Kumam.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kaushik, P., Kumar, S. & Kumam, P. Coupled coincidence point theorems for α-ψ-contractive type mappings in partially ordered metric spaces. Fixed Point Theory Appl 2013, 325 (2013). https://doi.org/10.1186/1687-1812-2013-325

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-325

Keywords