Skip to main content

Iterative algorithms with regularization for hierarchical variational inequality problems and convex minimization problems

Abstract

In this paper, we consider a variational inequality problem which is defined over the set of intersections of the set of fixed points of a ΞΆ-strictly pseudocontractive mapping, the set of fixed points of a nonexpansive mapping and the set of solutions of a minimization problem. We propose an iterative algorithm with regularization to solve such a variational inequality problem and study the strong convergence of the sequence generated by the proposed algorithm. The results of this paper improve and extend several known results in the literature.

1 Introduction

Let H be a real Hilbert space with the inner product γ€ˆβ‹…,⋅〉 and the norm βˆ₯β‹…βˆ₯, let C be a nonempty closed convex subset of H, and let f:Cβ†’R be a convex and continuously FrΓ©chet differentiable functional. We consider the following minimization problem (MP):

min x ∈ C f(x).
(1.1)

We denote by Ξ the set of minimizers of problem (1.1), and we assume that Ξžβ‰ βˆ…. The gradient-projection algorithm (GPA) is one of the most elegant methods to solve the minimization problem (1.1). The convergence of the sequence generated by the GPA depends on the behavior of the gradient βˆ‡f. If βˆ‡f is strongly monotone and Lipschitz continuous, then we get the strong convergence of the sequence generated by the GPA to a unique solution of MP (1.1). However, if the gradient βˆ‡f is assumed to be only Lipschitz continuous, then the sequence generated by the GPA converges weakly if H is infinite-dimensional (a counterexample is given in [1]). Since the Lipschitz continuity of the gradient βˆ‡f implies that it is actually inverse strongly monotone (ism) [2], its complement can be an averaged mapping (that is, it can be expressed as a proper convex combination of the identity mapping and a nonexpansive mapping) [1]. Consequently, the GPA can be rewritten as the composite of a projection and an averaged mapping, which is again an averaged mapping. This shows that averaged mappings play an important role in the GPA. Very recently, Xu [1] used averaged mappings to study the convergence analysis of the GPA, which is an operator-oriented approach. He showed that the sequence generated by the GPA converges in norm to a minimizer of MP (1.1), which is also a unique solution of a particular type of variational inequality problem (VIP). It is worth to emphasize that the regularization, in particular the traditional Tikhonov regularization, is usually used to solve ill-posed optimization problems. The advantage of a regularization method is its possible strong convergence to the minimum-norm solution of the optimization problem. In [1], Xu introduced a hybrid gradient-projection algorithm with regularization and proved the strong convergence of the sequence to the minimum-norm solution of MP (1.1). Some iterative algorithms with or without regularization for MP (1.1) are proposed and analyzed in [3–5] for finding a common solution of MP (1.1) and the set of solutions of a nonexpansive mapping.

On the other hand, the theory of variational inequalities [6, 7] has emerged as an important tool to study a wide class of problems from science, engineering, social sciences. If the underlying set in the formulation of a variational inequality problem is a set of fixed points of a mapping or, more precisely, of a nonexpansive mapping, then the variational inequality problem is called hierarchical variational problem. For further details on hierarchical variational inequalities, we refer to [8–11] and the references therein.

In this paper, we consider a variational inequality problem which is defined over the set of intersections of the set of fixed points of a ΞΆ-strictly pseudocontractive mapping, the set of fixed points of a nonexpansive mapping and the set of solutions of MP (1.1). We propose an iterative algorithm with regularization to solve such a variational inequality problem and study the strong convergence of the sequence generated by the proposed algorithm. The results of this paper improve and extend several known results in the literature.

2 Preliminaries and formulations

Throughout the paper, unless otherwise specified, we use the following assumptions and notations. Let H be a real Hilbert space whose inner product and norm are denoted by γ€ˆβ‹…,⋅〉 and βˆ₯β‹…βˆ₯, respectively. Let C be a nonempty closed convex subset of H. We write x n β†’x (respectively, x n ⇀x) to indicate that the sequence { x n } converges strongly (respectively, weakly) to x. Moreover, we use Ο‰ w ( x n ) to denote the weak Ο‰-limit set of the sequence { x n }, that is,

Ο‰ w ( x n ):= { x ∈ H : x n i ⇀ x  for some subsequence  { x n i }  of  { x n } } .

The metric (or nearest point) projection from H onto C is the mapping P C :Hβ†’C which assigns to each point x∈H the unique point P C x∈C satisfying

βˆ₯xβˆ’ P C xβˆ₯= inf y ∈ C βˆ₯xβˆ’yβˆ₯=:d(x,C).

Some important properties of projections are gathered in the following proposition.

Proposition 2.1 For given x∈H and z∈C, we have

  1. (a)

    z= P C xβ‡”γ€ˆxβˆ’z,yβˆ’z〉≀0, βˆ€y∈C;

  2. (b)

    z= P C x⇔ βˆ₯ x βˆ’ z βˆ₯ 2 ≀ βˆ₯ x βˆ’ y βˆ₯ 2 βˆ’ βˆ₯ y βˆ’ z βˆ₯ 2 , βˆ€y∈C;

  3. (c)

    γ€ˆ P C xβˆ’ P C y,xβˆ’y〉β‰₯ βˆ₯ P C x βˆ’ P C y βˆ₯ 2 , βˆ€y∈H, which concludes that P C is nonexpansive and monotone.

Definition 2.1 A mapping T:H→H is said to be

  1. (a)

    ΢-strictly pseudocontractive if there exists a constant ΢∈[0,1) such that

    βˆ₯ T x βˆ’ T y βˆ₯ 2 ≀ βˆ₯ x βˆ’ y βˆ₯ 2 +ΞΆ βˆ₯ ( I βˆ’ T ) x βˆ’ ( I βˆ’ T ) y βˆ₯ 2 ,βˆ€x,y∈H.

    If ΞΆ=0, then it is called nonexpansive;

  2. (b)

    firmly nonexpansive if 2Tβˆ’I is nonexpansive, or equivalently,

    γ€ˆxβˆ’y,Txβˆ’Ty〉β‰₯ βˆ₯ T x βˆ’ T y βˆ₯ 2 ,βˆ€x,y∈H;

    alternatively, T is firmly nonexpansive if and only if T can be expressed as

    T= 1 2 (I+S),

    where S:H→H is a nonexpansive mapping.

It can be easily seen that the projection mappings are firmly nonexpansive. It is clear that T:CβŠ†Hβ†’C is ΞΆ-strictly pseudocontractive if and only if

γ€ˆTxβˆ’Ty,xβˆ’y〉≀ βˆ₯ x βˆ’ y βˆ₯ 2 βˆ’ 1 βˆ’ ΞΆ 2 βˆ₯ ( I βˆ’ T ) x βˆ’ ( I βˆ’ T ) y βˆ₯ 2 ,βˆ€x,y∈C.

Definition 2.2 Let T be a nonlinear operator with domain D(T)βŠ†H and range R(T)βŠ†H.

  1. (a)

    T is said to be monotone if

    γ€ˆxβˆ’y,Txβˆ’Ty〉β‰₯0,βˆ€x,y∈D(T).
  2. (b)

    Given a number Ξ²>0, T is said to be Ξ²-strongly monotone if

    γ€ˆxβˆ’y,Txβˆ’Ty〉β‰₯Ξ² βˆ₯ x βˆ’ y βˆ₯ 2 ,βˆ€x,y∈D(T).
  3. (c)

    Given a number Ξ½>0, T is said to be Ξ½-inverse strongly monotone (Ξ½-ism) if

    γ€ˆxβˆ’y,Txβˆ’Ty〉β‰₯Ξ½ βˆ₯ T x βˆ’ T y βˆ₯ 2 ,βˆ€x,y∈D(T).

Clearly,

  • if T is nonexpansive, then Iβˆ’T is monotone;

  • a projection P K is 1-ism;

  • if T is a ΞΆ-strictly pseudocontractive mapping, then Iβˆ’T is 1 βˆ’ ΞΆ 2 -inverse strongly monotone.

Definition 2.3 [1]

A mapping T:H→H is said to be an averaged mapping if it can be written as the average of the identity I and a nonexpansive mapping, that is,

T≑(1βˆ’Ξ±)I+Ξ±S,

where α∈(0,1) and S:Hβ†’H is a nonexpansive mapping. More precisely, when the last equality holds, we say that T is Ξ±-averaged. Thus, firmly nonexpansive mappings (in particular, projections) are 1 2 -averaged maps.

Proposition 2.2 [12]

Let T:H→H be a given mapping.

  1. (a)

    T is nonexpansive if and only if the complement Iβˆ’T is 1 2 -ism.

  2. (b)

    If T is Ξ½-ism, then for Ξ³>0, Ξ³T is Ξ½ Ξ³ -ism.

  3. (c)

    T is averaged if and only if the complement Iβˆ’T is Ξ½-ism for some Ξ½>1/2. Indeed, for α∈(0,1), T is Ξ±-averaged if and only if Iβˆ’T is 1 2 Ξ± -ism.

Proposition 2.3 [12, 13]

Let S,T,V:H→H be given operators.

  1. (a)

    If T=(1βˆ’Ξ±)S+Ξ±V for some α∈(0,1) and if S is averaged and V is nonexpansive, then T is averaged.

  2. (b)

    T is firmly nonexpansive if and only if the complement Iβˆ’T is firmly nonexpansive.

  3. (c)

    If T=(1βˆ’Ξ±)S+Ξ±V for some α∈(0,1) and if S is firmly nonexpansive and V is nonexpansive, then T is averaged.

  4. (d)

    The composite of finitely many averaged mappings is averaged, that is, if each of the mappings { T i } i = 1 N is averaged, then so is the composite T 1 β‹― T N . In particular, if T 1 is Ξ± 1 -averaged and T 2 is Ξ± 2 -averaged, where Ξ± 1 , Ξ± 2 ∈(0,1), then the composite T 1 T 2 is Ξ±-averaged, where Ξ±= Ξ± 1 + Ξ± 2 βˆ’ Ξ± 1 Ξ± 2 .

Lemma 2.1 [[14], Proposition 2.1]

Let C be a nonempty closed convex subset of a real Hilbert space H, and let T:C→C be a mapping.

  1. (a)

    If T is a ΞΆ-strictly pseudocontractive mapping, then T satisfies the Lipschitz condition

    βˆ₯Txβˆ’Tyβˆ₯≀ 1 + ΞΆ 1 βˆ’ ΞΆ βˆ₯xβˆ’yβˆ₯,βˆ€x,y∈C.
  2. (b)

    If T is a ΞΆ-strictly pseudocontractive mapping, then the mapping Iβˆ’T is semiclosed at 0, that is, if { x n } is a sequence in C such that x n β†’ x ˜ weakly and (Iβˆ’T) x n β†’0 strongly, then (Iβˆ’T) x ˜ =0.

  3. (c)

    If T is a ΞΆ-(quasi-)strict pseudocontraction, then the fixed point set Fix(T) of T is closed and convex so that the projection P Fix ( T ) is well defined.

The following lemma is an immediate consequence of an inner product.

Lemma 2.2 In a real Hilbert space H, we have

βˆ₯ x + y βˆ₯ 2 ≀ βˆ₯ x βˆ₯ 2 +2γ€ˆy,x+y〉,βˆ€x,y∈H.

The following elementary result on real sequences is quite well known.

Lemma 2.3 [15]

Let { a n } be a sequence of nonnegative real numbers such that

a n + 1 ≀(1βˆ’ s n ) a n + s n t n + Ο΅ n ,βˆ€nβ‰₯0,

where { s n }βŠ‚(0,1] and { t n } satisfy the following conditions:

  1. (i)

    βˆ‘ n = 0 ∞ s n =∞;

  2. (ii)

    either lim sup n β†’ ∞ t n ≀0 or βˆ‘ n = 0 ∞ s n | t n |<∞;

  3. (iii)

    βˆ‘ n = 0 ∞ Ο΅ n <∞, where Ο΅ n β‰₯0, βˆ€nβ‰₯0.

Then lim n β†’ ∞ a n =0.

Lemma 2.4 [10]

Let C be a nonempty closed convex subset of a real Hilbert space H, and let T:Cβ†’C be a ΞΆ-strictly pseudocontractive mapping. Let Ξ³ and Ξ΄ be two nonnegative real numbers such that (Ξ³+Ξ΄)΢≀γ. Then

βˆ₯ Ξ³ ( x βˆ’ y ) + Ξ΄ ( T x βˆ’ T y ) βˆ₯ ≀(Ξ³+Ξ΄)βˆ₯xβˆ’yβˆ₯,βˆ€x,y∈C.

The following lemma appeared implicitly in the paper of Reineermann [16].

Lemma 2.5 [16]

Let H be a real Hilbert space. Then, for all x,y∈H and λ∈[0,1],

βˆ₯ Ξ» x + ( 1 βˆ’ Ξ» ) y βˆ₯ 2 =Ξ» βˆ₯ x βˆ₯ 2 +(1βˆ’Ξ») βˆ₯ y βˆ₯ 2 βˆ’Ξ»(1βˆ’Ξ») βˆ₯ x βˆ’ y βˆ₯ 2 .

Let C be a nonempty closed convex subset of a real Hilbert space H, and let A:Cβ†’H be a monotone mapping. The variational inequality problem (VIP) is to find x∈C such that

γ€ˆAx,yβˆ’x〉β‰₯0,βˆ€y∈C.

The solution set of the VIP is denoted by VI(C,A). It is well known that

x∈VI(C,A)⇔x= P C (xβˆ’Ξ»Ax),βˆ€Ξ»>0.

A set-valued mapping V:Hβ†’ 2 H is called monotone if for all x,y∈H, f∈Vx and g∈Vy imply that γ€ˆxβˆ’y,fβˆ’g〉β‰₯0. A monotone set-valued mapping V:Hβ†’ 2 H is called maximal if its graph Gph(V) is not properly contained in the graph of any other monotone set-valued mapping. It is known that a monotone set-valued mapping V:Hβ†’ 2 H is maximal if and only if for (x,f)∈HΓ—H, γ€ˆxβˆ’y,fβˆ’g〉β‰₯0 for every (y,g)∈Gph(V) implies that f∈Vx. Let A:Cβ†’H be a monotone and Lipschitz continuous mapping and N C v be the normal cone to C at v∈C, that is,

N C v= { w ∈ H : γ€ˆ v βˆ’ u , w 〉 β‰₯ 0 , βˆ€ u ∈ C } .

Define

Vv={ A v + N C v if  v ∈ C , βˆ… if  v βˆ‰ C .

Lemma 2.6 [17]

Let A:C→H be a monotone mapping. Then

  1. (i)

    V is maximal monotone;

  2. (ii)

    v∈ V βˆ’ 1 0⇔v∈VI(C,A).

Throughout the paper, we denote by Fix(T) and Fix(Ξ“) the set of fixed points of T and Ξ“, respectively. We also assume that the set Fix(T)∩Fix(Ξ“)∩Ξ is nonempty closed and convex.

Let S,T:Cβ†’C be nonexpansive mappings and Ξ“:Cβ†’C be a ΞΆ-strictly pseudocontractive mapping with ΢∈[0,1). In this paper, we consider and study the following hierarchical variational inequality problem which is defined on Fix(T)∩Fix(Ξ“)∩Ξ.

Find  x ˜ ∈ Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ such that γ€ˆ x ˜ βˆ’ S x ˜ , x ˜ βˆ’ x 〉 ≀ 0 , βˆ€ x ∈ Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ .
(2.1)

We denote by Ω the solution set of problem (2.1). It is not difficult to verify that solving (2.1) is equivalent to the fixed point problem of finding x ˜ ∈C such that

x ˜ = P Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ S x ˜ ,

where P Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ stands for the metric projection onto the closed convex set Fix(T)∩Fix(Ξ“)∩Ξ.

Problem (2.1) contains the hierarchical variational inequality problems considered and studied in [8, 18, 19] and the references therein.

By using the definition of the normal cone to Fix(T)∩Fix(Ξ“)∩Ξ, we have the mapping N Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ :Hβ†’ 2 H :

x↦{ { u ∈ H : ( βˆ€ y ∈ Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ ) γ€ˆ y βˆ’ x , u 〉 ≀ 0 } , if  x ∈ Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ ; βˆ… , otherwise ,

and we readily prove that (2.1) is equivalent to the variational inequality

0∈(Iβˆ’S) x ˜ + N Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ x ˜ .

By combining the hybrid gradient-projection method of Xu [1] and a two-step method of Yao et al. [11], we introduce the following three-step iterative algorithm:

{ y n = ΞΈ n S x n + ( 1 βˆ’ ΞΈ n ) x n , z n = Ξ² n Q y n + ( 1 βˆ’ Ξ² n ) T P C ( y n βˆ’ Ξ» βˆ‡ f Ξ± n ( y n ) ) , x n + 1 = Οƒ n z n + Ξ³ n P C ( z n βˆ’ Ξ» βˆ‡ f Ξ± n ( z n ) ) + Ξ΄ n Ξ“ P C ( z n βˆ’ Ξ» βˆ‡ f Ξ± n ( z n ) ) , βˆ€ n β‰₯ 0 ,
(2.2)

where Q:Cβ†’C is a ρ-contraction mapping, { Ξ± n }βŠ‚(0,∞), { Ξ² n },{ ΞΈ n },{ Οƒ n }βŠ‚(0,1) and { Ξ³ n },{ Ξ΄ n }βŠ‚[0,1] with Οƒ n + Ξ³ n + Ξ΄ n =1, βˆ€nβ‰₯0. It is proven that under appropriate assumptions, the above iterative sequence { x n } converges strongly to an element x ˜ ∈Fix(T)∩Fix(Ξ“)∩Ξ.

3 Main results

Let us consider the following assumptions:

  • the mapping Q:Cβ†’C is a ρ-contraction;

  • the mapping Ξ“:Cβ†’C is a ΞΆ-strict pseudocontraction;

  • S,T:Cβ†’C are two nonexpansive mappings;

  • βˆ‡f:Cβ†’H is Lipschitz continuous with 0<Ξ»< 2 L ;

  • { Ξ± n } is a sequence in (0,∞) with βˆ‘ n = 0 ∞ Ξ± n <∞;

  • { Ξ² n }, { ΞΈ n }, { Οƒ n } are sequences in (0,1) with 0< lim inf n β†’ ∞ Οƒ n ≀ lim sup n β†’ ∞ Οƒ n <1;

  • { Ξ³ n }, { Ξ΄ n } are sequences in [0,1] with Οƒ n + Ξ³ n + Ξ΄ n =1, βˆ€nβ‰₯0;

  • lim inf n β†’ ∞ Ξ΄ n >0 and ( Ξ³ n + Ξ΄ n )΢≀ Ξ³ n , βˆ€nβ‰₯0.

Theorem 3.1 Let { x n } be a bounded sequence generated from any given x 0 ∈C by (2.2). Assume that the following conditions hold:

  1. (H1)

    βˆ‘ n = 0 ∞ Ξ² n =∞, lim n β†’ ∞ 1 Ξ² n |1βˆ’ ΞΈ n βˆ’ 1 ΞΈ n |=0;

  2. (H2)

    lim n β†’ ∞ 1 Ξ² n | 1 ΞΈ n βˆ’ 1 ΞΈ n βˆ’ 1 |=0, lim n β†’ ∞ 1 ΞΈ n |1βˆ’ Ξ² n βˆ’ 1 Ξ² n |=0;

  3. (H3)

    lim n β†’ ∞ ΞΈ n =0 and lim n β†’ ∞ Ξ± n + Ξ² n ΞΈ n =0;

  4. (H4)

    lim n β†’ ∞ | Ξ± n βˆ’ Ξ± n βˆ’ 1 | Ξ² n ΞΈ n =0, lim n β†’ ∞ | Οƒ n βˆ’ Οƒ n βˆ’ 1 | Ξ² n ΞΈ n =0;

  5. (H5)

    lim n β†’ ∞ 1 Ξ² n ΞΈ n | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 |=0.

Then the following assertions hold:

  1. (i)

    lim n β†’ ∞ βˆ₯ x n + 1 βˆ’ x n βˆ₯ ΞΈ n =0;

  2. (ii)

    Ο‰ w ( x n )βŠ‚Ξ©.

Proof First of all, we show that P C (Iβˆ’Ξ»βˆ‡ f Ξ± ) is ΞΎ-averaged for each λ∈(0, 2 Ξ± + L ), where

ξ= 2 + λ ( α + L ) 4 ∈(0,1).

Indeed, the Lipschitz continuity of βˆ‡f implies that βˆ‡f is 1 L -ism [2], that is,

γ€ˆ βˆ‡ f ( x ) βˆ’ βˆ‡ f ( y ) , x βˆ’ y 〉 β‰₯ 1 L βˆ₯ βˆ‡ f ( x ) βˆ’ βˆ‡ f ( y ) βˆ₯ 2 .

Observe that

( Ξ± + L ) γ€ˆ βˆ‡ f Ξ± ( x ) βˆ’ βˆ‡ f Ξ± ( y ) , x βˆ’ y 〉 = ( Ξ± + L ) [ Ξ± βˆ₯ x βˆ’ y βˆ₯ 2 + γ€ˆ βˆ‡ f ( x ) βˆ’ βˆ‡ f ( y ) , x βˆ’ y 〉 ] = Ξ± 2 βˆ₯ x βˆ’ y βˆ₯ 2 + Ξ± γ€ˆ βˆ‡ f ( x ) βˆ’ βˆ‡ f ( y ) , x βˆ’ y 〉 + Ξ± L βˆ₯ x βˆ’ y βˆ₯ 2 + L γ€ˆ βˆ‡ f ( x ) βˆ’ βˆ‡ f ( y ) , x βˆ’ y 〉 β‰₯ Ξ± 2 βˆ₯ x βˆ’ y βˆ₯ 2 + 2 Ξ± γ€ˆ βˆ‡ f ( x ) βˆ’ βˆ‡ f ( y ) , x βˆ’ y 〉 + βˆ₯ βˆ‡ f ( x ) βˆ’ βˆ‡ f ( y ) βˆ₯ 2 = βˆ₯ Ξ± ( x βˆ’ y ) + βˆ‡ f ( x ) βˆ’ βˆ‡ f ( y ) βˆ₯ 2 = βˆ₯ βˆ‡ f Ξ± ( x ) βˆ’ βˆ‡ f Ξ± ( y ) βˆ₯ 2 .

Therefore, it follows that βˆ‡ f Ξ± =Ξ±I+βˆ‡f is 1 Ξ± + L -ism. Thus, by Proposition 2.2(b), Ξ»βˆ‡ f Ξ± is 1 Ξ» ( Ξ± + L ) -ism. From Proposition 2.2(c), the complement Iβˆ’Ξ»βˆ‡ f Ξ± is Ξ» ( Ξ± + L ) 2 -averaged. Therefore, noting that P C is 1 2 -averaged and utilizing Proposition 2.3(d), we obtain that for each λ∈(0, 2 Ξ± + L ), P C (Iβˆ’Ξ»βˆ‡ f Ξ± ) is ΞΎ-averaged with

ΞΎ= 1 2 + Ξ» ( Ξ± + L ) 2 βˆ’ 1 2 β‹… Ξ» ( Ξ± + L ) 2 = 2 + Ξ» ( Ξ± + L ) 4 ∈(0,1).

This shows that P C (Iβˆ’Ξ»βˆ‡ f Ξ± ) is nonexpansive. For λ∈(0, 2 L ), utilizing the fact that lim n β†’ ∞ 2 Ξ± n + L = 2 L , we may assume that

0<Ξ»< 2 Ξ± n + L ,βˆ€nβ‰₯0.

Consequently, it follows that for each integer nβ‰₯0, P C (Iβˆ’Ξ»βˆ‡ f Ξ± n ) is ΞΎ n -averaged with

ΞΎ n = 1 2 + Ξ» ( Ξ± n + L ) 2 βˆ’ 1 2 β‹… Ξ» ( Ξ± n + L ) 2 = 2 + Ξ» ( Ξ± n + L ) 4 ∈(0,1).

This implies that P C (Iβˆ’Ξ»βˆ‡ f Ξ± n ) is nonexpansive for all nβ‰₯0.

The rest of the proof is divided into several steps.

Step 1. lim n β†’ ∞ βˆ₯ x n + 1 βˆ’ x n βˆ₯ ΞΈ n =0.

For simplicity, we put y ˜ n = P C ( y n βˆ’Ξ»βˆ‡ f Ξ± n ( y n )) and z ˜ n = P C ( z n βˆ’Ξ»βˆ‡ f Ξ± n ( z n )) for every nβ‰₯0. Then z n = Ξ² n Q y n +(1βˆ’ Ξ² n )T y ˜ n and x n + 1 = Οƒ n z n + Ξ³ n z ˜ n + Ξ΄ n Ξ“ z ˜ n for every nβ‰₯0.

Taking into account 0< lim inf n β†’ ∞ Οƒ n ≀ lim sup n β†’ ∞ Οƒ n <1, without loss of generality, we may assume that { Οƒ n }βŠ‚[c,d] for some c,d∈(0,1). We write x n = Οƒ n βˆ’ 1 z n βˆ’ 1 +(1βˆ’ Οƒ n βˆ’ 1 ) v n βˆ’ 1 , βˆ€nβ‰₯1, where v n βˆ’ 1 = x n βˆ’ Οƒ n βˆ’ 1 z n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 . It follows that for all nβ‰₯1,

v n βˆ’ v n βˆ’ 1 = x n + 1 βˆ’ Οƒ n z n 1 βˆ’ Οƒ n βˆ’ x n βˆ’ Οƒ n βˆ’ 1 z n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 = Ξ³ n z ˜ n + Ξ΄ n Ξ“ z ˜ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 z ˜ n βˆ’ 1 + Ξ΄ n βˆ’ 1 Ξ“ z ˜ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 = Ξ³ n ( z ˜ n βˆ’ z ˜ n βˆ’ 1 ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ Ξ“ z ˜ n βˆ’ 1 ) 1 βˆ’ Οƒ n + ( Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 ) z ˜ n βˆ’ 1 + ( Ξ΄ n 1 βˆ’ Οƒ n βˆ’ Ξ΄ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 ) Ξ“ z ˜ n βˆ’ 1 .
(3.1)

Since ( Ξ³ n + Ξ΄ n )΢≀ Ξ³ n for all nβ‰₯0, by Lemma 2.4, we have

βˆ₯ Ξ³ n ( z ˜ n βˆ’ z ˜ n βˆ’ 1 ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ Ξ“ z ˜ n βˆ’ 1 ) βˆ₯ ≀( Ξ³ n + Ξ΄ n )βˆ₯ z ˜ n βˆ’ z ˜ n βˆ’ 1 βˆ₯.
(3.2)

Now, we estimate βˆ₯ z n βˆ’ z n βˆ’ 1 βˆ₯. Observe that for every nβ‰₯1,

βˆ₯ y ˜ n βˆ’ y ˜ n βˆ’ 1 βˆ₯ ≀ βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ 1 βˆ₯ + βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ 1 βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n βˆ’ 1 ) y n βˆ’ 1 βˆ₯ ≀ βˆ₯ y n βˆ’ y n βˆ’ 1 βˆ₯ + βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ 1 βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n βˆ’ 1 ) y n βˆ’ 1 βˆ₯ ≀ βˆ₯ y n βˆ’ y n βˆ’ 1 βˆ₯ + βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ 1 βˆ’ ( I βˆ’ Ξ» βˆ‡ f Ξ± n βˆ’ 1 ) y n βˆ’ 1 βˆ₯ = βˆ₯ y n βˆ’ y n βˆ’ 1 βˆ₯ + βˆ₯ Ξ» βˆ‡ f Ξ± n ( y n βˆ’ 1 ) βˆ’ Ξ» βˆ‡ f Ξ± n βˆ’ 1 ( y n βˆ’ 1 ) βˆ₯ = βˆ₯ y n βˆ’ y n βˆ’ 1 βˆ₯ + Ξ» | Ξ± n βˆ’ Ξ± n βˆ’ 1 | βˆ₯ y n βˆ’ 1 βˆ₯ .
(3.3)

Similarly, for all nβ‰₯1, we have

βˆ₯ z ˜ n βˆ’ z ˜ n βˆ’ 1 βˆ₯≀βˆ₯ z n βˆ’ z n βˆ’ 1 βˆ₯+Ξ»| Ξ± n βˆ’ Ξ± n βˆ’ 1 |βˆ₯ z n βˆ’ 1 βˆ₯.

From (2.2), we have

{ y n = ΞΈ n S x n + ( 1 βˆ’ ΞΈ n ) x n , y n βˆ’ 1 = ΞΈ n βˆ’ 1 S x n βˆ’ 1 + ( 1 βˆ’ ΞΈ n βˆ’ 1 ) x n βˆ’ 1 , βˆ€ n β‰₯ 1 ,

and therefore

y n βˆ’ y n βˆ’ 1 = ΞΈ n (S x n βˆ’S x n βˆ’ 1 )+( ΞΈ n βˆ’ ΞΈ n βˆ’ 1 )(S x n βˆ’ 1 βˆ’ x n βˆ’ 1 )+(1βˆ’ ΞΈ n )( x n βˆ’ x n βˆ’ 1 ),

which implies that

βˆ₯ y n βˆ’ y n βˆ’ 1 βˆ₯ ≀ ΞΈ n βˆ₯ S x n βˆ’ S x n βˆ’ 1 βˆ₯ + | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | βˆ₯ S x n βˆ’ 1 βˆ’ x n βˆ’ 1 βˆ₯ + ( 1 βˆ’ ΞΈ n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ ≀ βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | βˆ₯ S x n βˆ’ 1 βˆ’ x n βˆ’ 1 βˆ₯ .
(3.4)

Also, from (2.2) we have

{ z n = Ξ² n Q y n + ( 1 βˆ’ Ξ² n ) T y ˜ n , z n βˆ’ 1 = Ξ² n βˆ’ 1 Q y n βˆ’ 1 + ( 1 βˆ’ Ξ² n βˆ’ 1 ) T y ˜ n βˆ’ 1 , βˆ€ n β‰₯ 1 ,

then simple calculations show that

z n βˆ’ z n βˆ’ 1 =(1βˆ’ Ξ² n )(T y ˜ n βˆ’T y ˜ n βˆ’ 1 )+( Ξ² n βˆ’ Ξ² n βˆ’ 1 )(Q y n βˆ’ 1 βˆ’T y ˜ n βˆ’ 1 )+ Ξ² n (Q y n βˆ’Q y n βˆ’ 1 ),

and thus, from (3.3)-(3.4), we have

βˆ₯ z n βˆ’ z n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ Ξ² n ) βˆ₯ T y ˜ n βˆ’ T y ˜ n βˆ’ 1 βˆ₯ + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | βˆ₯ Q y n βˆ’ 1 βˆ’ T y ˜ n βˆ’ 1 βˆ₯ + Ξ² n βˆ₯ Q y n βˆ’ Q y n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ Ξ² n ) βˆ₯ y ˜ n βˆ’ y ˜ n βˆ’ 1 βˆ₯ + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | βˆ₯ Q y n βˆ’ 1 βˆ’ T y ˜ n βˆ’ 1 βˆ₯ + Ξ² n βˆ₯ Q y n βˆ’ Q y n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ Ξ² n ) ( βˆ₯ y n βˆ’ y n βˆ’ 1 βˆ₯ + Ξ» | Ξ± n βˆ’ Ξ± n βˆ’ 1 | βˆ₯ y n βˆ’ 1 βˆ₯ ) + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | βˆ₯ Q y n βˆ’ 1 βˆ’ T y ˜ n βˆ’ 1 βˆ₯ + Ξ² n ρ βˆ₯ y n βˆ’ y n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ y n βˆ’ y n βˆ’ 1 βˆ₯ + Ξ» | Ξ± n βˆ’ Ξ± n βˆ’ 1 | βˆ₯ y n βˆ’ 1 βˆ₯ + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | βˆ₯ Q y n βˆ’ 1 βˆ’ T y ˜ n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) [ βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | βˆ₯ S x n βˆ’ 1 βˆ’ x n βˆ’ 1 βˆ₯ ] + Ξ» | Ξ± n βˆ’ Ξ± n βˆ’ 1 | βˆ₯ y n βˆ’ 1 βˆ₯ + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | βˆ₯ Q y n βˆ’ 1 βˆ’ T y ˜ n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | βˆ₯ S x n βˆ’ 1 βˆ’ x n βˆ’ 1 βˆ₯ + Ξ» | Ξ± n βˆ’ Ξ± n βˆ’ 1 | βˆ₯ y n βˆ’ 1 βˆ₯ + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | βˆ₯ Q y n βˆ’ 1 βˆ’ T y ˜ n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + M 1 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | + | Ξ± n βˆ’ Ξ± n βˆ’ 1 | + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | ] ,
(3.5)

where βˆ₯S x n βˆ’ x n βˆ₯+Ξ»βˆ₯ y n βˆ₯+βˆ₯Q y n βˆ’T y ˜ n βˆ₯≀ M 1 , βˆ€nβ‰₯0 for some M 1 >0. This together with (3.1)-(3.3) implies that

βˆ₯ v n βˆ’ v n βˆ’ 1 βˆ₯ ≀ βˆ₯ Ξ³ n ( z ˜ n βˆ’ z ˜ n βˆ’ 1 ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ Ξ“ z ˜ n βˆ’ 1 ) βˆ₯ 1 βˆ’ Οƒ n + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | βˆ₯ z ˜ n βˆ’ 1 βˆ₯ + | Ξ΄ n 1 βˆ’ Οƒ n βˆ’ Ξ΄ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | βˆ₯ Ξ“ z ˜ n βˆ’ 1 βˆ₯ ≀ ( Ξ³ n + Ξ΄ n ) βˆ₯ z ˜ n βˆ’ z ˜ n βˆ’ 1 βˆ₯ 1 βˆ’ Οƒ n + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | βˆ₯ z ˜ n βˆ’ 1 βˆ₯ + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | βˆ₯ Ξ“ z ˜ n βˆ’ 1 βˆ₯ = βˆ₯ z ˜ n βˆ’ z ˜ n βˆ’ 1 βˆ₯ + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | ( βˆ₯ z ˜ n βˆ’ 1 βˆ₯ + βˆ₯ Ξ“ y ˜ n βˆ’ 1 βˆ₯ ) ≀ βˆ₯ z n βˆ’ z n βˆ’ 1 βˆ₯ + Ξ» | Ξ± n βˆ’ Ξ± n βˆ’ 1 | βˆ₯ z n βˆ’ 1 βˆ₯ + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | ( βˆ₯ z ˜ n βˆ’ 1 βˆ₯ + βˆ₯ Ξ“ z ˜ n βˆ’ 1 βˆ₯ ) ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + M 1 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | + | Ξ± n βˆ’ Ξ± n βˆ’ 1 | + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | ] + Ξ» | Ξ± n βˆ’ Ξ± n βˆ’ 1 | βˆ₯ z n βˆ’ 1 βˆ₯ + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | ( βˆ₯ z ˜ n βˆ’ 1 βˆ₯ + βˆ₯ Ξ“ z ˜ n βˆ’ 1 βˆ₯ ) ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + M 2 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | ] ,
(3.6)

where M 1 +Ξ»βˆ₯ z n βˆ₯+βˆ₯ z ˜ n βˆ₯+βˆ₯Ξ“ z ˜ n βˆ₯≀ M 2 , βˆ€nβ‰₯0 for some M 2 >0.

Further, we observe that

{ x n + 1 = Οƒ n z n + ( 1 βˆ’ Οƒ n ) v n , x n = Οƒ n βˆ’ 1 z n βˆ’ 1 + ( 1 βˆ’ Ξ² n βˆ’ 1 ) v n βˆ’ 1 , βˆ€ n β‰₯ 1 ,

and then by simple calculations, we have

x n + 1 βˆ’ x n =(1βˆ’ Οƒ n )( v n βˆ’ v n βˆ’ 1 )+( Οƒ n βˆ’ Οƒ n βˆ’ 1 )( z n βˆ’ 1 βˆ’ v n βˆ’ 1 )+ Οƒ n ( z n βˆ’ z n βˆ’ 1 ).

By taking norm and using (3.5)-(3.6), we get

βˆ₯ x n + 1 βˆ’ x n βˆ₯ ≀ ( 1 βˆ’ Οƒ n ) βˆ₯ v n βˆ’ v n βˆ’ 1 βˆ₯ + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | βˆ₯ z n βˆ’ 1 βˆ’ v n βˆ’ 1 βˆ₯ + Οƒ n βˆ₯ z n βˆ’ z n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ Οƒ n ) { ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + M 2 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | ] } + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | βˆ₯ z n βˆ’ 1 βˆ’ v n βˆ’ 1 βˆ₯ + Οƒ n { ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + M 1 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | + | Ξ± n βˆ’ Ξ± n βˆ’ 1 | + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | ] } ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + M 2 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | ] + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | βˆ₯ z n βˆ’ 1 βˆ’ v n βˆ’ 1 βˆ₯ ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ + M 3 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | + | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | ] ,

where M 2 +βˆ₯ z n βˆ’ v n βˆ₯≀ M 3 , βˆ€nβ‰₯0 for some M 3 β‰₯0. Therefore,

βˆ₯ x n + 1 βˆ’ x n βˆ₯ ΞΈ n ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ ΞΈ n + M 3 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | ΞΈ n + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | ΞΈ n + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | ΞΈ n + 1 ΞΈ n | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | ΞΈ n ] = ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ ΞΈ n βˆ’ 1 + ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) ( βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ ΞΈ n βˆ’ βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ ΞΈ n βˆ’ 1 ) + M 3 [ | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | ΞΈ n + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | ΞΈ n + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | ΞΈ n + 1 ΞΈ n | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | ΞΈ n ] ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ ΞΈ n βˆ’ 1 + M [ | 1 ΞΈ n βˆ’ 1 ΞΈ n βˆ’ 1 | + | ΞΈ n βˆ’ ΞΈ n βˆ’ 1 | ΞΈ n + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | ΞΈ n + | Ξ² n βˆ’ Ξ² n βˆ’ 1 | ΞΈ n + 1 ΞΈ n | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | ΞΈ n ] = ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯ ΞΈ n βˆ’ 1 + ( 1 βˆ’ ρ ) Ξ² n β‹… M 1 βˆ’ ρ { 1 Ξ² n | 1 ΞΈ n βˆ’ 1 ΞΈ n βˆ’ 1 | + 1 Ξ² n | 1 βˆ’ ΞΈ n βˆ’ 1 ΞΈ n | + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | Ξ² n ΞΈ n + 1 ΞΈ n | 1 βˆ’ Ξ² n βˆ’ 1 Ξ² n | + 1 Ξ² n ΞΈ n | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | Ξ² n ΞΈ n } ,
(3.7)

where M 3 +βˆ₯ x n βˆ’ x n βˆ’ 1 βˆ₯≀M, βˆ€nβ‰₯1 for some Mβ‰₯0. From (H1)-(H5), it follows that βˆ‘ n = 0 ∞ (1βˆ’Ο) Ξ² n =∞ and

lim n β†’ ∞ M 1 βˆ’ ρ { 1 Ξ² n | 1 ΞΈ n βˆ’ 1 ΞΈ n βˆ’ 1 | + 1 Ξ² n | 1 βˆ’ ΞΈ n βˆ’ 1 ΞΈ n | + 2 | Ξ± n βˆ’ Ξ± n βˆ’ 1 | Ξ² n ΞΈ n + 1 ΞΈ n | 1 βˆ’ Ξ² n βˆ’ 1 Ξ² n | + 1 Ξ² n ΞΈ n | Ξ³ n 1 βˆ’ Οƒ n βˆ’ Ξ³ n βˆ’ 1 1 βˆ’ Οƒ n βˆ’ 1 | + | Οƒ n βˆ’ Οƒ n βˆ’ 1 | Ξ² n ΞΈ n } = 0 .

Thus, by applying Lemma 2.3 to (3.7), we conclude that

lim n β†’ ∞ βˆ₯ x n + 1 βˆ’ x n βˆ₯ ΞΈ n =0,

which implies that

lim n β†’ ∞ βˆ₯ x n + 1 βˆ’ x n βˆ₯=0.
(3.8)

Step 2. lim n β†’ ∞ βˆ₯ x n βˆ’ z n βˆ₯=0.

Indeed, let p∈Fix(T)∩Fix(Ξ“)∩Ξ. Then we have

βˆ₯ y ˜ n βˆ’ p βˆ₯ = βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ ≀ βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) p βˆ₯ + βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) p βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ ≀ βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) p βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ ≀ βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ .
(3.9)

Similarly, we get

βˆ₯ z ˜ n βˆ’pβˆ₯≀βˆ₯ z n βˆ’pβˆ₯+Ξ» Ξ± n βˆ₯pβˆ₯.

By Lemma 2.5 and (3.9), we have

βˆ₯ z n βˆ’ p βˆ₯ 2 = βˆ₯ Ξ² n ( Q y n βˆ’ p ) + ( 1 βˆ’ Ξ² n ) ( T y ˜ n βˆ’ p ) βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) 2 = Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ ΞΈ n ) βˆ₯ x n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + βˆ₯ x n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) .

Since ( Ξ³ n + Ξ΄ n )΢≀ Ξ³ n for all nβ‰₯0, utilizing Lemma 2.4, we obtain

βˆ₯ x n + 1 βˆ’ p βˆ₯ 2 = βˆ₯ Οƒ n ( z n βˆ’ p ) + Ξ³ n ( z ˜ n βˆ’ p ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ p ) βˆ₯ 2 = βˆ₯ Οƒ n ( z n βˆ’ p ) + ( Ξ³ n + Ξ΄ n ) 1 Ξ³ n + Ξ΄ n [ Ξ³ n ( z ˜ n βˆ’ p ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ p ) ] βˆ₯ 2 = Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( Ξ³ n + Ξ΄ n ) βˆ₯ 1 Ξ³ n + Ξ΄ n [ Ξ³ n ( z ˜ n βˆ’ p ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ p ) ] βˆ₯ 2 βˆ’ Οƒ n ( Ξ³ n + Ξ΄ n ) βˆ₯ ( z n βˆ’ p ) βˆ’ 1 Ξ³ n + Ξ΄ n [ Ξ³ n ( z ˜ n βˆ’ p ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ p ) ] βˆ₯ 2 = Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( Ξ³ n + Ξ΄ n ) βˆ₯ 1 Ξ³ n + Ξ΄ n [ Ξ³ n ( z ˜ n βˆ’ p ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ p ) ] βˆ₯ 2 βˆ’ Οƒ n ( Ξ³ n + Ξ΄ n ) βˆ₯ 1 Ξ³ n + Ξ΄ n [ Ξ³ n ( z ˜ n βˆ’ z n ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ z n ) ] βˆ₯ 2 = Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( Ξ³ n + Ξ΄ n ) βˆ₯ 1 Ξ³ n + Ξ΄ n [ Ξ³ n ( z ˜ n βˆ’ p ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ p ) ] βˆ₯ 2 βˆ’ Οƒ n Ξ³ n + Ξ΄ n βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( Ξ³ n + Ξ΄ n ) βˆ₯ z ˜ n βˆ’ p βˆ₯ 2 βˆ’ Οƒ n Ξ³ n + Ξ΄ n βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 = Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Οƒ n ) βˆ₯ z ˜ n βˆ’ p βˆ₯ 2 βˆ’ Οƒ n 1 βˆ’ Οƒ n βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Οƒ n ) [ βˆ₯ z n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ] βˆ’ Οƒ n 1 βˆ’ Οƒ n βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 ≀ βˆ₯ z n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) βˆ’ Οƒ n 1 βˆ’ Οƒ n βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + βˆ₯ x n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) βˆ’ Οƒ n 1 βˆ’ Οƒ n βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 = βˆ₯ x n βˆ’ p βˆ₯ 2 + Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + 2 Ξ» Ξ± n βˆ₯ p βˆ₯ ( βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) βˆ’ Οƒ n 1 βˆ’ Οƒ n βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 .

Since 0< lim inf n β†’ ∞ Οƒ n ≀ lim sup n β†’ ∞ Οƒ n <1, we may assume that { Οƒ n }βŠ‚[c,d] for some c,d∈(0,1). Therefore, we deduce

c 1 βˆ’ c βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 ≀ Οƒ n 1 βˆ’ Οƒ n βˆ₯ x n + 1 βˆ’ z n βˆ₯ 2 ≀ βˆ₯ x n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ x n + 1 βˆ’ p βˆ₯ 2 + Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + 2 Ξ» Ξ± n βˆ₯ p βˆ₯ ( βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ≀ ( βˆ₯ x n βˆ’ p βˆ₯ + βˆ₯ x n + 1 βˆ’ p βˆ₯ ) βˆ₯ x n βˆ’ x n + 1 βˆ₯ + Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + 2 Ξ» Ξ± n βˆ₯ p βˆ₯ ( βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) .

Since Ξ± n β†’0, Ξ² n β†’0, ΞΈ n β†’0 and βˆ₯ x n βˆ’ x n + 1 βˆ₯β†’0 as nβ†’βˆž, we conclude from the boundedness of { x n }, { y n } and { z n } that βˆ₯ x n + 1 βˆ’ z n βˆ₯β†’0 as nβ†’βˆž. This together with βˆ₯ x n βˆ’ x n + 1 βˆ₯β†’0 implies that

lim n β†’ ∞ βˆ₯ x n βˆ’ z n βˆ₯=0.
(3.10)

Step 3. lim n β†’ ∞ βˆ₯ y n βˆ’ y ˜ n βˆ₯=0 and lim n β†’ ∞ βˆ₯ z n βˆ’ z ˜ n βˆ₯=0.

Let p∈Fix(T)∩Fix(Ξ“)∩Ξ. Then, by Lemmas 2.2 and 2.5, we have

βˆ₯ z n βˆ’ p βˆ₯ 2 = βˆ₯ Ξ² n ( Q y n βˆ’ p ) + ( 1 βˆ’ Ξ² n ) ( T y ˜ n βˆ’ p ) βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 = Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) βˆ₯ ( I βˆ’ Ξ» βˆ‡ f ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ’ Ξ» Ξ± n y n βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) [ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ 2 βˆ’ 2 Ξ» Ξ± n γ€ˆ y n , ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p 〉 ] ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) [ βˆ₯ y n βˆ’ p βˆ₯ 2 + Ξ» ( Ξ» βˆ’ 2 L ) βˆ₯ βˆ‡ f ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 + 2 Ξ» Ξ± n βˆ₯ y n βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ ] ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) [ ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ ΞΈ n ) βˆ₯ x n βˆ’ p βˆ₯ 2 + Ξ» ( Ξ» βˆ’ 2 L ) βˆ₯ βˆ‡ f ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 + 2 Ξ» Ξ± n βˆ₯ y n βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ ] ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + βˆ₯ x n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) Ξ» ( Ξ» βˆ’ 2 L ) βˆ₯ βˆ‡ f ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 + 2 Ξ» Ξ± n βˆ₯ y n βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ .

Therefore, we obtain

( 1 βˆ’ Ξ² n ) Ξ» ( 2 L βˆ’ Ξ» ) βˆ₯ βˆ‡ f ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + βˆ₯ x n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ z n βˆ’ p βˆ₯ 2 + 2 Ξ» Ξ± n βˆ₯ y n βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + ( βˆ₯ x n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ ) ( βˆ₯ x n βˆ’ p βˆ₯ βˆ’ βˆ₯ z n βˆ’ p βˆ₯ ) + 2 Ξ» Ξ± n βˆ₯ y n βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ p βˆ₯ 2 + ( βˆ₯ x n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ ) βˆ₯ x n βˆ’ z n βˆ₯ + 2 Ξ» Ξ± n βˆ₯ y n βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ .

Since Ξ± n β†’0, Ξ² n β†’0, ΞΈ n β†’0, βˆ₯ x n βˆ’ z n βˆ₯β†’0 and 0<Ξ»< 2 L , from the boundedness of { x n }, { y n } and { z n }, we obtain lim n β†’ ∞ βˆ₯βˆ‡f( y n )βˆ’βˆ‡f(p)βˆ₯=0, and hence

lim n β†’ ∞ βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ =0.

Also, since

βˆ₯ y n βˆ’ z n βˆ₯≀βˆ₯ y n βˆ’ x n βˆ₯+βˆ₯ x n βˆ’ z n βˆ₯= ΞΈ n βˆ₯S x n βˆ’ x n βˆ₯+βˆ₯ x n βˆ’ z n βˆ₯,

from ΞΈ n β†’0 and βˆ₯ x n βˆ’ z n βˆ₯β†’0, it follows that

lim n β†’ ∞ βˆ₯ y n βˆ’ z n βˆ₯=0and lim n β†’ ∞ βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ =0.
(3.11)

Furthermore, from the firm nonexpansiveness of P C , we obtain

βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 = βˆ₯ P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ P C ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ 2 ≀ γ€ˆ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p , y ˜ n βˆ’ p 〉 = 1 2 { βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ 2 + βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ’ ( y ˜ n βˆ’ p ) βˆ₯ 2 } ≀ 1 2 { βˆ₯ y n βˆ’ p βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ y n βˆ’ y ˜ n βˆ₯ 2 + 2 Ξ» γ€ˆ y n βˆ’ y ˜ n , βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) 〉 βˆ’ Ξ» 2 βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 } ,

and so,

βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 ≀ βˆ₯ y n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ y n βˆ’ y ˜ n βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + 2 Ξ» γ€ˆ y n βˆ’ y ˜ n , βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) 〉 βˆ’ Ξ» 2 βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 .

Similarly, we have

βˆ₯ z ˜ n βˆ’ p βˆ₯ 2 ≀ βˆ₯ z n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ z n βˆ’ z ˜ n βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) z n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + 2 Ξ» γ€ˆ z n βˆ’ z ˜ n , βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) 〉 βˆ’ Ξ» 2 βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 .
(3.12)

Thus, we have

βˆ₯ z n βˆ’ p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ y n βˆ’ y ˜ n βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + 2 Ξ» γ€ˆ y n βˆ’ y ˜ n , βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) 〉 βˆ’ Ξ» 2 βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ y n βˆ’ y ˜ n βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + 2 Ξ» γ€ˆ y n βˆ’ y ˜ n , βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) 〉 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ y n βˆ’ y ˜ n βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ ( βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + βˆ₯ y n βˆ’ y ˜ n βˆ₯ ) ,

which implies that

βˆ₯ y n βˆ’ y ˜ n βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ z n βˆ’ p βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ ( βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + βˆ₯ y n βˆ’ y ˜ n βˆ₯ ) ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ ) βˆ₯ y n βˆ’ z n βˆ₯ + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( y n ) βˆ’ βˆ‡ f ( p ) βˆ₯ ( βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + βˆ₯ y n βˆ’ y ˜ n βˆ₯ ) .

Since Ξ² n β†’0, βˆ₯ y n βˆ’ z n βˆ₯β†’0 and βˆ₯βˆ‡ f Ξ± n ( y n )βˆ’βˆ‡f(p)βˆ₯β†’0, from the boundedness of { x n }, { y n }, { z n } and { y ˜ n }, it follows that

lim n β†’ ∞ βˆ₯ y n βˆ’ y ˜ n βˆ₯=0.

In addition, since ( Ξ³ n + Ξ΄ n )΢≀ Ξ³ n for all nβ‰₯0, utilizing Lemma 2.4, we get from (3.12)

βˆ₯ x n + 1 βˆ’ p βˆ₯ 2 ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( Ξ³ n + Ξ΄ n ) βˆ₯ z ˜ n βˆ’ p βˆ₯ 2 = Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Οƒ n ) βˆ₯ z ˜ n βˆ’ p βˆ₯ 2 ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Οƒ n ) { βˆ₯ z n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ z n βˆ’ z ˜ n βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) z n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + 2 Ξ» γ€ˆ z n βˆ’ z ˜ n , βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) 〉 βˆ’ Ξ» 2 βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ 2 } ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Οƒ n ) { βˆ₯ z n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ z n βˆ’ z ˜ n βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) z n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + 2 Ξ» βˆ₯ z n βˆ’ z ˜ n βˆ₯ βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ } ≀ βˆ₯ z n βˆ’ p βˆ₯ 2 βˆ’ ( 1 βˆ’ Οƒ n ) βˆ₯ z n βˆ’ z ˜ n βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ ( βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) z n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + βˆ₯ z n βˆ’ z ˜ n βˆ₯ ) ,

which implies that

( 1 βˆ’ Οƒ n ) βˆ₯ z n βˆ’ z ˜ n βˆ₯ 2 ≀ βˆ₯ z n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ x n + 1 βˆ’ p βˆ₯ 2 + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ ( βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) z n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + βˆ₯ z n βˆ’ z ˜ n βˆ₯ ) ≀ ( βˆ₯ z n βˆ’ p βˆ₯ + βˆ₯ x n + 1 βˆ’ p βˆ₯ ) βˆ₯ z n βˆ’ x n + 1 βˆ₯ + 2 Ξ» βˆ₯ βˆ‡ f Ξ± n ( z n ) βˆ’ βˆ‡ f ( p ) βˆ₯ ( βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) z n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) p βˆ₯ + βˆ₯ z n βˆ’ z ˜ n βˆ₯ ) .

Since { Οƒ n }βŠ‚[c,d], βˆ₯ z n βˆ’ x n + 1 βˆ₯β†’0 and βˆ₯βˆ‡ f Ξ± n ( z n )βˆ’βˆ‡f(p)βˆ₯β†’0, from the boundedness of { x n }, { z n } and { z ˜ n }, it follows that

lim n β†’ ∞ βˆ₯ z n βˆ’ z ˜ n βˆ₯=0.

Step 4. Ο‰ w ( x n )βŠ‚Ξ©.

Let p βˆ— ∈ Ο‰ w ( x n ). Then there exists a subsequence { x n i } of { x n } such that x n i ⇀ p βˆ— . Since

z n βˆ’ y n = Ξ² n ( Q y n βˆ’ y n ) + ( 1 βˆ’ Ξ² n ) ( T y ˜ n βˆ’ y n ) = Ξ² n ( Q y n βˆ’ y n ) + ( 1 βˆ’ Ξ² n ) ( T y ˜ n βˆ’ y ˜ n ) + ( 1 βˆ’ Ξ² n ) ( y ˜ n βˆ’ y n ) ,

we have

( 1 βˆ’ Ξ² n ) βˆ₯ T y ˜ n βˆ’ y ˜ n βˆ₯ = βˆ₯ z n βˆ’ y n βˆ’ Ξ² n ( Q y n βˆ’ y n ) βˆ’ ( 1 βˆ’ Ξ² n ) ( y ˜ n βˆ’ y n ) βˆ₯ ≀ βˆ₯ z n βˆ’ y n βˆ₯ + Ξ² n βˆ₯ Q y n βˆ’ y n βˆ₯ + ( 1 βˆ’ Ξ² n ) βˆ₯ y ˜ n βˆ’ y n βˆ₯ ≀ βˆ₯ z n βˆ’ y n βˆ₯ + Ξ² n βˆ₯ Q y n βˆ’ y n βˆ₯ + βˆ₯ y ˜ n βˆ’ y n βˆ₯ .

Hence from βˆ₯ z n βˆ’ y n βˆ₯β†’0, Ξ² n β†’0 and βˆ₯ y ˜ n βˆ’ y n βˆ₯β†’0, we get lim n β†’ ∞ βˆ₯T y ˜ n βˆ’ y ˜ n βˆ₯=0. Since βˆ₯ x n βˆ’ y n βˆ₯β†’0 and βˆ₯ y n βˆ’ y ˜ n βˆ₯β†’0, we have y ˜ n i ⇀ p βˆ— . By Lemma 2.1(b) (demiclosedness principle), we obtain p βˆ— ∈Fix(T).

Meanwhile, observe that

x n + 1 βˆ’ z n = Ξ³ n ( z ˜ n βˆ’ z n ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ z ˜ n ) + Ξ΄ n ( z ˜ n βˆ’ z n ) = ( Ξ³ n + Ξ΄ n ) ( z ˜ n βˆ’ z n ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ z ˜ n ) = ( 1 βˆ’ Οƒ n ) ( z ˜ n βˆ’ z n ) + Ξ΄ n ( Ξ“ z ˜ n βˆ’ z ˜ n ) .

Thus,

Ξ΄ n βˆ₯ Ξ“ z ˜ n βˆ’ z ˜ n βˆ₯ = βˆ₯ x n + 1 βˆ’ z n βˆ’ ( 1 βˆ’ Οƒ n ) ( z ˜ n βˆ’ z n ) βˆ₯ ≀ βˆ₯ x n + 1 βˆ’ z n βˆ₯ + ( 1 βˆ’ Οƒ n ) βˆ₯ z ˜ n βˆ’ z n βˆ₯ ≀ βˆ₯ x n + 1 βˆ’ z n βˆ₯ + βˆ₯ z ˜ n βˆ’ z n βˆ₯ β†’ 0 as  n β†’ ∞ .

This together with lim inf n β†’ ∞ Ξ΄ n >0 yields lim n β†’ ∞ βˆ₯Ξ“ z ˜ n βˆ’ z ˜ n βˆ₯=0. Since βˆ₯ x n βˆ’ z n βˆ₯β†’0 and βˆ₯ z n βˆ’ z ˜ n βˆ₯β†’0, we have z ˜ n i ⇀ p βˆ— . By Lemma 2.1(b) (demiclosedness principle), we have p βˆ— ∈Fix(Ξ“).

Further, let us show p βˆ— ∈Ξ. Indeed, from βˆ₯ x n βˆ’ y n βˆ₯β†’0 and βˆ₯ y ˜ n βˆ’ y n βˆ₯β†’0, we have y n i ⇀ p βˆ— and y ˜ n i ⇀ p βˆ— . Define

Vv={ βˆ‡ f ( v ) + N C v if  v ∈ C , βˆ… if  v βˆ‰ C ,

where N C v={w∈H:γ€ˆvβˆ’u,w〉β‰₯0,βˆ€u∈C}. Then V is maximal monotone and 0∈Vv if and only if v∈VI(C,βˆ‡f) (see [17]). Let (v,w)∈graph(V). Then we have

w∈Vv=βˆ‡f(v)+ N C v,

and hence

wβˆ’βˆ‡f(v)∈ N C v.

Therefore, we have

γ€ˆ v βˆ’ u , w βˆ’ βˆ‡ f ( v ) 〉 β‰₯0,βˆ€u∈C.

On the other hand, from

y ˜ n = P C ( y n βˆ’ Ξ» βˆ‡ f Ξ± n ( y n ) ) andv∈C,

we have

γ€ˆ y n βˆ’ Ξ» βˆ‡ f Ξ± n ( y n ) βˆ’ y ˜ n , y ˜ n βˆ’ v 〉 β‰₯0,

and hence

γ€ˆ v βˆ’ y ˜ n , y ˜ n βˆ’ y n Ξ» + βˆ‡ f Ξ± n ( y n ) 〉 β‰₯0.

Therefore, from

wβˆ’βˆ‡f(v)∈ N C (v)and y ˜ n i ∈C,

we have

γ€ˆ v βˆ’ y ˜ n i , w 〉 β‰₯ γ€ˆ v βˆ’ y ˜ n i , βˆ‡ f ( v ) 〉 β‰₯ γ€ˆ v βˆ’ y ˜ n i , βˆ‡ f ( v ) 〉 βˆ’ γ€ˆ v βˆ’ y ˜ n i , y ˜ n i βˆ’ y n i Ξ» + βˆ‡ f Ξ± n i ( y n i ) 〉 = γ€ˆ v βˆ’ y ˜ n i , βˆ‡ f ( v ) 〉 βˆ’ γ€ˆ v βˆ’ y ˜ n i , y ˜ n i βˆ’ y n i Ξ» + βˆ‡ f ( y n i ) 〉 βˆ’ Ξ± n i γ€ˆ v βˆ’ y ˜ n i , y n i 〉 = γ€ˆ v βˆ’ y ˜ n i , βˆ‡ f ( v ) βˆ’ βˆ‡ f ( y ˜ n i ) 〉 + γ€ˆ v βˆ’ y ˜ n i , βˆ‡ f ( y ˜ n i ) βˆ’ βˆ‡ f ( y n i ) 〉 βˆ’ γ€ˆ v βˆ’ y ˜ n i , y ˜ n i βˆ’ y n i Ξ» 〉 βˆ’ Ξ± n i γ€ˆ v βˆ’ y ˜ n i , y n i 〉 β‰₯ γ€ˆ v βˆ’ y ˜ n i , βˆ‡ f ( y ˜ n i ) βˆ’ βˆ‡ f ( y n i ) 〉 βˆ’ γ€ˆ v βˆ’ y ˜ n i , y ˜ n i βˆ’ y n i Ξ» 〉 βˆ’ Ξ± n i γ€ˆ v βˆ’ y ˜ n i , y n i 〉 .

Hence, we obtain

γ€ˆ v βˆ’ p βˆ— , w 〉 β‰₯0as iβ†’βˆž.

Since V is maximal monotone, we have p βˆ— ∈ V βˆ’ 1 0, and hence p βˆ— ∈VI(C,βˆ‡f), which leads to p∈Ξ. Consequently, p βˆ— ∈Fix(T)∩Fix(Ξ“)∩Ξ. This shows that Ο‰ w ( x n )βŠ‚Fix(T)∩Fix(Ξ“)∩Ξ.

Finally, let us show p βˆ— ∈Ω. Indeed, it follows from (2.2) that for every p∈Fix(T)∩Fix(Ξ“)∩Ξ,

βˆ₯ y n βˆ’ p βˆ₯ 2 = βˆ₯ ( 1 βˆ’ ΞΈ n ) ( x n βˆ’ p ) + ΞΈ n ( S x n βˆ’ S p ) + ΞΈ n ( S p βˆ’ p ) βˆ₯ 2 ≀ βˆ₯ ( 1 βˆ’ ΞΈ n ) ( x n βˆ’ p ) + ΞΈ n ( S x n βˆ’ S p ) βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 ≀ ( 1 βˆ’ ΞΈ n ) βˆ₯ x n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ S p βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 ≀ βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 ,

and hence

βˆ₯ z n βˆ’ p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Ξ² n ) βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + ( βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) 2 ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ y n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) .

Since ( Ξ³ n + Ξ΄ n )΢≀ Ξ³ n for all nβ‰₯0, by Lemma 2.4, we have

βˆ₯ x n + 1 βˆ’ p βˆ₯ 2 ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( Ξ³ n + Ξ΄ n ) βˆ₯ z ˜ n βˆ’ p βˆ₯ 2 ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Οƒ n ) ( βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) 2 ≀ βˆ₯ z n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ≀ Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) = βˆ₯ x n βˆ’ p βˆ₯ 2 + Ξ² n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 + 2 Ξ» Ξ± n βˆ₯ p βˆ₯ ( βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ,

which implies that

2 γ€ˆ p βˆ’ S p , y n βˆ’ p 〉 ≀ 1 ΞΈ n ( βˆ₯ x n βˆ’ p βˆ₯ 2 βˆ’ βˆ₯ x n + 1 βˆ’ p βˆ₯ 2 ) + Ξ² n ΞΈ n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + Ξ± n ΞΈ n 2 Ξ» βˆ₯ p βˆ₯ ( βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ≀ βˆ₯ x n βˆ’ x n + 1 βˆ₯ ΞΈ n ( βˆ₯ x n βˆ’ p βˆ₯ + βˆ₯ x n + 1 βˆ’ p βˆ₯ ) + Ξ² n ΞΈ n βˆ₯ Q y n βˆ’ p βˆ₯ 2 + Ξ± n ΞΈ n 2 Ξ» βˆ₯ p βˆ₯ ( βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) .

Since Ξ± n + Ξ² n ΞΈ n β†’0 and βˆ₯ x n βˆ’ x n + 1 βˆ₯ ΞΈ n β†’0 as nβ†’βˆž, from the boundedness of { x n }, { y n } and { z n }, we deduce that

lim sup n β†’ ∞ γ€ˆpβˆ’Sp, y n βˆ’p〉≀0,βˆ€p∈Fix(T)∩Fix(Ξ“)∩Ξ.

So, from y n i ⇀ p βˆ— , we get

γ€ˆ p βˆ’ S p , p βˆ— βˆ’ p 〉 ≀0,βˆ€p∈Fix(T)∩Fix(Ξ“)∩Ξ.

Taking into consideration that Iβˆ’S is monotone and continuous, utilizing Minty’s lemma [7], we have

γ€ˆ p βˆ— βˆ’ S p βˆ— , p βˆ— βˆ’ p 〉 ≀0,βˆ€p∈Fix(T)∩Fix(Ξ“)∩Ξ.

Therefore, p βˆ— = P Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ S p βˆ— ; that is, p βˆ— ∈Ω. ░

Remark 3.1 Iterative algorithm (2.2) is different from the algorithms in [1, 11]. The two-step iterative scheme in [11] for two nonexpansive mappings and the gradient-projection iterative schemes in [1] for MP (1.1) are extended to develop three-step iterative scheme (2.2) with regularization for MP (1.1), two nonexpansive mappings and a strictly pseudocontractive mapping.

Remark 3.2 The following sequences satisfy the hypotheses on the parameter in Theorem 3.1.

  1. (a)

    Ξ± n = 1 n 1 + s + t , Ξ² n = 1 n s and ΞΈ n = 1 n t , where t∈(0, 1 2 ) and s∈(t,1βˆ’t);

  2. (b)

    Οƒ n = 1 2 + 2 n and Ξ³ n = Ξ΄ n = 1 4 βˆ’ 1 n for all n>4.

Theorem 3.2 Let { x n } be the bounded sequence generated from any given x 0 ∈C by (2.2). Assume that hypotheses (H1)-(H5) of Theorem  3.1 hold and

  1. (H6)

    lim n β†’ ∞ ΞΈ n 2 Ξ² n =0;

  2. (H7)

    There is a constant k>0 such that βˆ₯xβˆ’T P C (Iβˆ’Ξ»βˆ‡f)xβˆ₯β‰₯kdist(x,Fix(T)∩Fix(Ξ“)∩Ξ) for each x∈C, where dist(x,Fix(T)∩Fix(Ξ“)∩Ξ)= inf y ∈ Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ βˆ₯xβˆ’yβˆ₯.

Then the sequences { x n }, { y n } and { z n } converge strongly to x βˆ— = P Ξ© Q x βˆ— provided βˆ₯ x n βˆ’ z n βˆ₯=o( ΞΈ n ), where x βˆ— solves the following variational inequality:

γ€ˆ x βˆ— βˆ’ S x βˆ— , x βˆ— βˆ’ x 〉 ≀0,βˆ€x∈Fix(T)∩Fix(Ξ“)∩Ξ.

Proof Let p∈Fix(T)∩Fix(Ξ“)∩Ξ. From (2.2), we have

z n βˆ’p= Ξ² n (Q y n βˆ’Qp)+ Ξ² n (Qpβˆ’p)+(1βˆ’ Ξ² n )(T y ˜ n βˆ’p),

and therefore,

βˆ₯ z n βˆ’ p βˆ₯ 2 ≀ βˆ₯ Ξ² n ( Q y n βˆ’ Q p ) + ( 1 βˆ’ Ξ² n ) ( T y ˜ n βˆ’ p ) βˆ₯ 2 + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 ≀ ( 1 βˆ’ Ξ² n ) βˆ₯ T y ˜ n βˆ’ p βˆ₯ 2 + Ξ² n βˆ₯ Q y n βˆ’ Q p βˆ₯ 2 + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 ≀ ( 1 βˆ’ Ξ² n ) βˆ₯ y ˜ n βˆ’ p βˆ₯ 2 + Ξ² n ρ 2 βˆ₯ y n βˆ’ p βˆ₯ 2 + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 ≀ ( 1 βˆ’ Ξ² n ) ( βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) 2 + Ξ² n ρ βˆ₯ y n βˆ’ p βˆ₯ 2 + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ y n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 .
(3.13)

Again from (2.2), we obtain

βˆ₯ y n βˆ’ p βˆ₯ 2 = βˆ₯ ( 1 βˆ’ ΞΈ n ) ( x n βˆ’ p ) + ΞΈ n ( S x n βˆ’ S p ) + ΞΈ n ( S p βˆ’ p ) βˆ₯ 2 ≀ βˆ₯ ( 1 βˆ’ ΞΈ n ) ( x n βˆ’ p ) + ΞΈ n ( S x n βˆ’ S p ) βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 ≀ ( 1 βˆ’ ΞΈ n ) βˆ₯ x n βˆ’ p βˆ₯ 2 + ΞΈ n βˆ₯ S x n βˆ’ S p βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 ≀ βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 .
(3.14)

Substituting (3.14) into (3.13), we get

βˆ₯ z n βˆ’ p βˆ₯ 2 ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) ( βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 ) + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 = ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) .
(3.15)

Since ( Ξ³ n + Ξ΄ n )΢≀ Ξ³ n for all nβ‰₯0, utilizing Lemma 2.4, we get from (2.2) and (3.15)

βˆ₯ x n + 1 βˆ’ p βˆ₯ 2 ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( Ξ³ n + Ξ΄ n ) βˆ₯ z ˜ n βˆ’ p βˆ₯ 2 ≀ Οƒ n βˆ₯ z n βˆ’ p βˆ₯ 2 + ( 1 βˆ’ Οƒ n ) ( βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) 2 ≀ βˆ₯ z n βˆ’ p βˆ₯ 2 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ y n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) + Ξ» Ξ± n βˆ₯ p βˆ₯ ( 2 βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) = ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 + 2 Ξ» Ξ± n βˆ₯ p βˆ₯ ( βˆ₯ y n βˆ’ p βˆ₯ + βˆ₯ z n βˆ’ p βˆ₯ + Ξ» Ξ± n βˆ₯ p βˆ₯ ) ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ p βˆ₯ 2 + 2 ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) ΞΈ n γ€ˆ S p βˆ’ p , y n βˆ’ p 〉 + 2 Ξ² n γ€ˆ Q p βˆ’ p , z n βˆ’ p 〉 + M ˜ Ξ± n ,
(3.16)

where M ˜ = sup n β‰₯ 0 {2Ξ»βˆ₯pβˆ₯(βˆ₯ y n βˆ’pβˆ₯+βˆ₯ z n βˆ’pβˆ₯+Ξ» Ξ± n βˆ₯pβˆ₯)}<∞.

Taking into consideration that P Ξ© ∘Q is a contractive mapping, we know that P Ξ© ∘Q has a unique fixed point x βˆ— ∈Ω. That is, there is a unique solution x βˆ— ∈Ω of the following variational inequality problem (VIP):

γ€ˆ Q x βˆ— βˆ’ x βˆ— , q βˆ’ x βˆ— 〉 ≀0,βˆ€q∈Ω.
(3.17)

Since x βˆ— ∈Ω, it is clear that x βˆ— = P Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ S x βˆ— , and hence x βˆ— ∈Fix(T)∩Fix(Ξ“)∩Ξ. Thus, from (3.16), we conclude that

βˆ₯ x n + 1 βˆ’ x βˆ— βˆ₯ 2 ≀ ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x βˆ— βˆ₯ 2 + 2 ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) ΞΈ n γ€ˆ S x βˆ— βˆ’ x βˆ— , y n βˆ’ x βˆ— 〉 + 2 Ξ² n γ€ˆ Q x βˆ— βˆ’ x βˆ— , z n βˆ’ x βˆ— 〉 + M ˜ Ξ± n = ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) βˆ₯ x n βˆ’ x βˆ— βˆ₯ 2 + ( 1 βˆ’ ρ ) Ξ² n { 2 ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) 1 βˆ’ ρ ΞΈ n Ξ² n γ€ˆ S x βˆ— βˆ’ x βˆ— , y n βˆ’ x βˆ— 〉 + 2 1 βˆ’ ρ γ€ˆ Q x βˆ— βˆ’ x βˆ— , z n βˆ’ x βˆ— 〉 } + M ˜ Ξ± n .
(3.18)

Consider a subsequence { x n i } of { x n } such that

lim sup n β†’ ∞ γ€ˆ Q x βˆ— βˆ’ x βˆ— , x n βˆ’ x βˆ— 〉 = lim i β†’ ∞ γ€ˆ Q x βˆ— βˆ’ x βˆ— , x n i βˆ’ x βˆ— 〉 .

Without loss of generality, we may further assume that x n i ⇀ x ˜ . Then, in view of Theorem 3.1, x ˜ ∈Ω. Since x βˆ— is a unique solution of VIP (3.17) and βˆ₯ x n βˆ’ z n βˆ₯β†’0, we have

lim sup n β†’ ∞ γ€ˆ Q x βˆ— βˆ’ x βˆ— , z n βˆ’ x βˆ— 〉 = lim sup n β†’ ∞ ( γ€ˆ Q x βˆ— βˆ’ x βˆ— , z n βˆ’ x n 〉 + γ€ˆ Q x βˆ— βˆ’ x βˆ— , x n βˆ’ x βˆ— 〉 ) = lim sup n β†’ ∞ γ€ˆ Q x βˆ— βˆ’ x βˆ— , x n βˆ’ x βˆ— 〉 = lim i β†’ ∞ γ€ˆ Q x βˆ— βˆ’ x βˆ— , x n i βˆ’ x βˆ— 〉 = γ€ˆ Q x βˆ— βˆ’ x βˆ— , x ˜ βˆ’ x βˆ— 〉 ≀ 0 ,

which implies that

lim sup n β†’ ∞ 2 1 βˆ’ ρ γ€ˆ Q x βˆ— βˆ’ x βˆ— , z n βˆ’ x βˆ— 〉 ≀0.
(3.19)

Meanwhile, from x βˆ— ∈Ω and (H7), we infer that

γ€ˆ S x βˆ— βˆ’ x βˆ— , y n βˆ’ x βˆ— 〉 = γ€ˆ S x βˆ— βˆ’ x βˆ— , y n βˆ’ P Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ y n 〉 + γ€ˆ S x βˆ— βˆ’ x βˆ— , P Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ y n βˆ’ x βˆ— 〉 ≀ γ€ˆ S x βˆ— βˆ’ x βˆ— , y n βˆ’ P Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ y n 〉 ≀ βˆ₯ S x βˆ— βˆ’ x βˆ— βˆ₯ βˆ₯ y n βˆ’ P Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ y n βˆ₯ = dist ( y n , Fix ( T ) ∩ Fix ( Ξ“ ) ∩ Ξ ) βˆ₯ S x βˆ— βˆ’ x βˆ— βˆ₯ ≀ 1 k βˆ₯ S x βˆ— βˆ’ x βˆ— βˆ₯ βˆ₯ y n βˆ’ T P C ( I βˆ’ Ξ» βˆ‡ f ) y n βˆ₯ .

From (2.2), we have

z n βˆ’ x n ΞΈ n = Ξ² n ΞΈ n (Q y n βˆ’ x n )+ 1 βˆ’ Ξ² n ΞΈ n (T y ˜ n βˆ’ x n ).

This together with lim n β†’ ∞ βˆ₯ z n βˆ’ x n βˆ₯ ΞΈ n =0 and Ξ² n ΞΈ n =0 implies that

lim n β†’ ∞ βˆ₯ T y ˜ n βˆ’ x n βˆ₯ ΞΈ n =0.

Hence,

lim n β†’ ∞ ΞΈ n βˆ₯ T y ˜ n βˆ’ x n βˆ₯ Ξ² n = lim n β†’ ∞ βˆ₯ T y ˜ n βˆ’ x n βˆ₯ ΞΈ n ΞΈ n 2 Ξ² n =0.

Observe that

y n βˆ’ x n = ΞΈ n (S x n βˆ’ x n ).

Therefore, we get

lim n β†’ ∞ ΞΈ n Ξ² n βˆ₯ y n βˆ’ x n βˆ₯= lim n β†’ ∞ ΞΈ n 2 Ξ² n βˆ₯S x n βˆ’ x n βˆ₯=0,

and hence

ΞΈ n Ξ² n βˆ₯ y n βˆ’ T P C ( I βˆ’ Ξ» βˆ‡ f ) y n βˆ₯ ≀ ΞΈ n Ξ² n ( βˆ₯ y n βˆ’ x n βˆ₯ + βˆ₯ x n βˆ’ T P C ( I βˆ’ Ξ» βˆ‡ f ) y n βˆ₯ ) ≀ ΞΈ n Ξ² n ( βˆ₯ y n βˆ’ x n βˆ₯ + βˆ₯ x n βˆ’ T P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ₯ + βˆ₯ T P C ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ T P C ( I βˆ’ Ξ» βˆ‡ f ) y n βˆ₯ ) ≀ ΞΈ n Ξ² n ( βˆ₯ y n βˆ’ x n βˆ₯ + βˆ₯ x n βˆ’ T y ˜ n βˆ₯ + βˆ₯ ( I βˆ’ Ξ» βˆ‡ f Ξ± n ) y n βˆ’ ( I βˆ’ Ξ» βˆ‡ f ) y n βˆ₯ ) = ΞΈ n Ξ² n βˆ₯ y n βˆ’ x n βˆ₯ + ΞΈ n Ξ² n βˆ₯ x n βˆ’ T y ˜ n βˆ₯ + ΞΈ n Ξ² n Ξ» Ξ± n βˆ₯ y n βˆ₯ = ΞΈ n Ξ² n βˆ₯ y n βˆ’ x n βˆ₯ + ΞΈ n Ξ² n βˆ₯ x n βˆ’ T y ˜ n βˆ₯ + ΞΈ n 2 Ξ² n Ξ± n ΞΈ n Ξ» βˆ₯ y n βˆ₯ β†’ 0 as  n β†’ ∞ .

Thus, it follows that

lim sup n β†’ ∞ ΞΈ n Ξ² n γ€ˆ S x βˆ— βˆ’ x βˆ— , y n βˆ’ x βˆ— 〉 ≀0,

and hence

lim sup n β†’ ∞ 2 ( 1 βˆ’ ( 1 βˆ’ ρ ) Ξ² n ) 1 βˆ’ ρ ΞΈ n Ξ² n γ€ˆ S x βˆ— βˆ’ x βˆ— , y n βˆ’ x βˆ— 〉 ≀0.
(3.20)

Utilizing Lemma 2.3, from βˆ‘ n = 0 ∞ M ˜ Ξ± n <∞ and (3.18)-(3.20), we conclude that the sequence { x n } converges strongly to x βˆ— . Taking into consideration that βˆ₯ x n βˆ’ y n βˆ₯β†’0 and βˆ₯ x n βˆ’ z n βˆ₯β†’0, we obtain that βˆ₯ y n βˆ’ x βˆ— βˆ₯β†’0 and βˆ₯ z n βˆ’ x βˆ— βˆ₯β†’0 as nβ†’βˆž. This completes the proof. ░

Remark 3.3 The following parametric sequences satisfy the hypotheses of Theorem 3.2.

  1. (a)

    Ξ± n = 1 n 1 + s + t , Ξ² n = 1 n s and ΞΈ n = 1 n t , where t∈(0, 1 3 ] and s∈(t,2t) or t∈( 1 3 , 1 2 ), s∈(t,1βˆ’t);

  2. (b)

    Οƒ n = 1 2 + 2 n , Ξ³ n = Ξ΄ n = 1 4 βˆ’ 1 n , βˆ€n>4.

Remark 3.4 Theorems 3.1 and 3.2 improve, extend, supplement and develop [[11], Theorems 3.1 and 3.2] and [[1], Theorems 5.2 and 6.1] in the following aspects:

  1. (a)

    Three-step iterative algorithm (2.2) with regularization for MP (1.1), two nonexpansive mappings and a strictly pseudocontractive mapping are more flexible and more subtle than the algorithms in [1, 11].

  2. (b)

    The argument techniques in Theorems 3.1 and 3.2 are different from the ones in [[11], Theorems 3.1 and 3.2] and the ones in [[1], Theorems 5.2 and 6.1] because we use the properties of strict pseudocontractive mappings and maximal monotone mappings (see, for example, Lemmas 2.1, 2.4 and 2.6).

  3. (c)

    Compared with the proof of Theorems 5.2 and 6.1 in [1], the proof of Theorems 3.1 and 3.2 shows lim n β†’ ∞ βˆ₯ y n βˆ’ P C (Iβˆ’Ξ»βˆ‡ f Ξ± n ) y n βˆ₯= lim n β†’ ∞ βˆ₯ z n βˆ’ P C (Iβˆ’Ξ»βˆ‡ f Ξ± n ) z n βˆ₯=0 via the argument of lim n β†’ ∞ βˆ₯βˆ‡ f Ξ± n ( y n )βˆ’βˆ‡f(p)βˆ₯= lim n β†’ ∞ βˆ₯βˆ‡ f Ξ± n ( z n )βˆ’βˆ‡f(p)βˆ₯=0, βˆ€p∈Fix(T)∩Fix(Ξ“)∩Ξ (see Step 3 in the proof of Theorem 3.1).

  4. (e)

    Theorems 3.1 and 3.2 remove the condition Fix(T)∩intCβ‰ βˆ… in [[11], Theorems 3.1 and 3.2].

References

  1. Xu HK: Averaged mappings and the gradient-projection algorithm. J. Optim. Theory Appl. 2011, 150: 360–378. 10.1007/s10957-011-9837-z

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  2. Baillon JB, Haddad G: Quelques proprietes des operateurs angle-bornes et n -cycliquement monotones. Isr. J. Math. 1977, 26: 137–150. 10.1007/BF03007664

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  3. Ceng LC, Ansari QH, Yao JC: Extragradient-projection method for solving constrained convex minimization problems. Numer. Algebra Control Optim. 2011, 1: 341–359.

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  4. Ceng LC, Ansari QH, Wen CF: Implicit relaxed and hybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive mappings in the intermediate sense. Abstr. Appl. Anal. 2013., 2013: Article ID 854297

    Google ScholarΒ 

  5. Ceng LC, Ansari QH, Wen CF: Multi-step implicit iterative methods with regularization for minimization problems and fixed point problems. J. Inequal. Appl. 2013., 2013: Article ID 240

    Google ScholarΒ 

  6. Ansari QH, Lalitha CS, Mehta M: Generalized Convexity, Nonsmooth Variational Inequalities and Nonsmooth Optimization. CRC Press, Boca Raton; 2013.

    MATHΒ  Google ScholarΒ 

  7. Kinderlehrer D, Stampacchia G: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York; 1980.

    MATHΒ  Google ScholarΒ 

  8. Ceng LC, Ansari QH, Wong NC, Yao JC: Implicit iterative methods for hierarchical variational inequalities. J. Appl. Math. 2012., 2012: Article ID 472935

    Google ScholarΒ 

  9. Cianciaruso F, Colao V, Muglia L, Xu HK: On implicit methods for variational inequalities via hierarchical fixed point approach. Bull. Aust. Math. Soc. 2009, 80: 117–124. 10.1017/S0004972709000082

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  10. Yao Y, Liou YC, Kang SM: Approach to common elements of variational inequality problems and fixed point problems via a relaxed extragradient method. Comput. Math. Appl. 2010, 59: 3472–3480. 10.1016/j.camwa.2010.03.036

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  11. Yao Y, Liou YC, Marino G: Two-step iterative algorithms for hierarchical fixed point problems and variational inequality problems. J. Appl. Math. Comput. 2009, 31: 433–445. 10.1007/s12190-008-0222-5

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  12. Byrne C: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20: 103–120. 10.1088/0266-5611/20/1/006

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  13. Combettes PL: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 2004, 53: 475–504. 10.1080/02331930412331327157

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  14. Marino G, Xu HK: Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl. 2007, 329: 336–346. 10.1016/j.jmaa.2006.06.055

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  15. Xu HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66: 240–256. 10.1112/S0024610702003332

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  16. Reineermann J: Uber fixpunkte kontrahierender abbildungen und schwach konvergente Toeplitz-verfahren. Arch. Math. 1969, 20: 59–64. 10.1007/BF01898992

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  17. Rockafellar RT: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 1970, 149: 75–88. 10.1090/S0002-9947-1970-0282272-5

    ArticleΒ  MathSciNetΒ  MATHΒ  Google ScholarΒ 

  18. Moudafi A, Mainge PE: Towards viscosity approximations of hierarchical fixed points problems. Fixed Point Theory Appl. 2006., 2006: Article ID 95453

    Google ScholarΒ 

  19. Moudafi A, Mainge PE: Strong convergence of an iterative method for hierarchical fixed point problems. Pac. J.Β Optim. 2007, 3: 529–538.

    MathSciNetΒ  MATHΒ  Google ScholarΒ 

Download references

Acknowledgements

In this research, second and third author were supported by King Fahd University of Petroleum & Minerals project number IN101009. The first author was partially supported by the National Science Foundation of China (11071169), Innovation Program of Shanghai Municipal Education Commission (09ZZ133) and Leading Academic Discipline Project of Shanghai Normal University (DZL707). The research part of third author was done during his visit to King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suliman Al-Homidan.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ceng, LC., Al-Homidan, S. & Ansari, Q.H. Iterative algorithms with regularization for hierarchical variational inequality problems and convex minimization problems. Fixed Point Theory Appl 2013, 284 (2013). https://doi.org/10.1186/1687-1812-2013-284

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1687-1812-2013-284

Keywords