# Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations

## Abstract

We establish coincidence and fixed point theorems for mappings satisfying generalized weakly contractive conditions on the setting of ordered gauge spaces. Presented theorems extend and generalize many existing studies in the literature. We apply our obtained results to the study of existence and uniqueness of solutions to some classes of nonlinear integral equations.

## 1 Introduction

Fixed point theory is considered as one of the most important tools of nonlinear analysis that widely applied to optimization, computational algorithms, physics, variational inequalities, ordinary differential equations, integral equations, matrix equations and so on (see, for example, ). The Banach contraction principle  is a fundamental result in fixed point theory. It consists of the following theorem.

Theorem 1.1 (Banach) Let (X, d) be a complete metric space and let T : XX be a contraction, i.e., there exists k [0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all x, y X. Then T has a unique fixed point, that is, there exists a unique x* X such that Tx* = x*. Moreover, for any x X, the sequence {Tnx} converges to x*.

Generalization of the above principle has been a heavily investigated branch of research (see, for example, ). In particular, there has been a number of studies involving altering distance functions. There are control functions which alter the distance between two points in a metric space. Such functions were introduced by Khan et al. , where they present some fixed point theorems with the help of such functions.

Definition 1.1 An altering distance function is a function ψ : [0, ∞) → [0, ∞) which satisfies

(a) ψ is continuous and nondecreasing;

(b) ψ(t) = 0 if and only if t = 0.

In , Khan et al. proved the following result.

Theorem 1.2 (Khan et al.) Let (X, d) be a complete metric space, ψ be an altering distance function, c [0, 1) and T : XX satisfying

$\psi \left(d\left(Tx,Ty\right)\right)\le c\psi \left(d\left(x,y\right)\right),$

for all x, y X. Then T has an unique fixed point.

Altering distance has been used in metric fixed point theory in many studies (see, for example, [2, 3, 1219]). On the other hand, Alber and Guerre-Delabriere in  introduced a new class of contractive mappings on closed convex sets of Hilbert spaces, called weakly contractive maps.

Definition 1.2 (Alber and Guerre-Delabriere) Let (E, · ) be a Banach space and C E a closed convex set. A map T : CC is called weakly contractive if there exists an altering distance function ψ : [0, ∞) → [0, ∞) with limt→∞ψ(t) = ∞ such that

$∥Tx-Ty∥\le ∥x-y∥-\psi \left(∥x-y∥\right),$

for all x, y X.

In , Alber and Guerre-Delabriere proved the following result.

Theorem 1.3 (Alber and Guerre-Delabriere) Let H be a Hilbert space and C H a closed convex set. If T : CC is a weakly contractive map, then it has a unique fixed point x* C.

Rhoades  proved that the previous result is also valid in complete metric spaces without the condition limt→∞ψ(t) = ∞.

Theorem 1.4 (Rhoades) Let (X, d) be a complete metric space, ψ be an altering distance function and T : XX satisfying

$d\left(Tx,Ty\right)\le d\left(x,y\right)-\psi \left(d\left(x,y\right)\right)$

for all x, y X. Then T has a unique fixed point.

Dutta and Choudhury  present a generalization of Theorems 1.2 and 1.4 proving the following result.

Theorem 1.5 (Dutta and Choudhury) Let (X, d) be a complete metric space and T : XX be a mapping satisfying

$\psi \left(d\left(Tx,Ty\right)\right)\le \psi \left(d\left(x,y\right)\right)-\phi \left(d\left(x,y\right)\right),$

for all x, y X, where ψ and φ are altering distance functions. Then T has an unique fixed point.

An extension of Theorem 1.5 was considered by Dorić .

Theorem 1.6 (Dorić) Let (X, d) be a complete metric space and T : XX be a mapping satisfying

$\psi \left(d\left(Tx,Ty\right)\right)\le \psi \left(M\left(x,y\right)\right)-\phi \left(M\left(x,y\right)\right),$

for all x, y X, where

$M\left(x,y\right)=\text{max}\left\{d\left(x,y\right),d\left(Tx,x\right),d\left(Ty,y\right),\frac{1}{2}\left[d\left(y,Tx\right)+d\left(x,Ty\right)\right]\right\},$

ψ is an altering distance function and φ is a lower semi-continuous function with φ(t) = 0 if and only if t = 0. Then T has a unique fixed point.

Very recently, Eslamian and Abkar  (see also, Choudhury and Kundu ) introduced the concept of (ψ, α, β)-weak contraction and established the following result.

Theorem 1.7 (Eslamian and Abkar) Let (X, d) be a complete metric space and T : XX be a mapping satisfying

$\psi \left(d\left(Tx,Ty\right)\right)\le \alpha \left(d\left(x,y\right)\right)-\beta \left(d\left(x,y\right)\right),$
(1)

for all x, y X, where ψ, α, β : [0, ∞) → [0, ∞) are such that ψ is an altering distance function, α is continuous, β is lower semi-continuous,

$\alpha \left(0\right)=\beta \left(0\right)=0\phantom{\rule{1em}{0ex}}and\phantom{\rule{1em}{0ex}}\psi \left(t\right)-\alpha \left(t\right)+\beta \left(t\right)>0\phantom{\rule{1em}{0ex}}for\phantom{\rule{2.77695pt}{0ex}}all\phantom{\rule{1em}{0ex}}t>0.$

Then T has a unique fixed point.

Note that Theorem 1.7 seems to be new and original. Unfortunately, it is not the case. Indeed, the contractive condition (1) can be written as follows:

$\psi \left(d\left(Tx,Ty\right)\right)\le \psi \left(d\left(x,y\right)\right)-\phi \left(d\left(x,y\right)\right),$

where φ : [0, ∞) → [0, ∞) is given by

$\phi \left(t\right)=\psi \left(t\right)-\alpha \left(t\right)+\beta \left(t\right),\phantom{\rule{1em}{0ex}}t\ge 0.$

Clearly, from the hypotheses of Theorem 1.7, the function φ is lower semi-continuous with φ(t) = 0 if and only if t = 0. So Theorem 1.7 is similar to Theorem 1.6 of Dorić .

On the other hand, Ran and Reurings  proved the following Banach-Caccioppoli type principle in ordered metric spaces.

Theorem 1.8 (Ran and Reurings) Let (X, ) be a partially ordered set such that every pair x, y X has a lower and an upper bound. Let d be a metric on X such that the metric space (X, d) is complete. Let f : XX be a continuous and monotone (i.e., either decreasing or increasing with respect to ) operator. Suppose that the following two assertions hold:

1. there exists k [0, 1) such that d(fx, fy) ≤ kd(x, y) for each x, y X with x y;

2. there exists x0 X such that x0 f x0or x0 f x0.

Then f has an unique fixed point x* X.

Nieto and Rodŕiguez-López  extended the result of Ran and Reurings for non-continuous mappings.

Theorem 1.9 (Nieto and Rodŕiguez-López) Let (X, ) be a partially ordered set and suppose that there exists a metric d in X such that the metric space (X, d) is complete. Let T : XX be a nondecreasing mapping. Suppose that the following assertions hold:

1. there exists k [0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all x, y X with x y;

2. there exists x0 X such that x0 Tx0;

3. if {x n } is a nondecreasing sequence in X such that x n x X as n → ∞, then x n x for all n.

Then T has a fixed point.

Since then, several authors considered the problem of existence (and uniqueness) of a fixed point for contraction type operators on partially ordered metric spaces (see, for example, [2, 3, 5, 1517, 19, 2138]).

In , Harjani and Sadarangani extended Theorem 1.5 of Dutta and Choudhury  to the setting of ordered metric spaces.

Theorem 1.10 (Harjani and Sadarangani) Let (X, ) be a partially ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Let T : XX be a nondecreasing mapping such that

$\psi \left(d\left(Tx,Ty\right)\right)\le \psi \left(d\left(x,y\right)\right)-\phi \left(d\left(x,y\right)\right),$

for all x, y X with x y, where ψ and φ are altering distance functions. Also suppose either

(I) T is continuous or

(II) If {x n } X is a nondecreasing sequence with x n x X, then x n x for all n.

If there exists x0 X with x0 Tx0, then T has a fixed point.

In , Jachymski established a nice geometric lemma and proved that Theorem 1.10 of Harjani and Sadarangani can be deuced from an earlier result of O'Regan and Petruşel .

In this article, we present new coincidence and fixed point theorems in the setting of ordered gauge spaces for mappings satisfying generalized weak contractions involving two families of functions. Presented theorems extend and generalize many existing results in the literature, in particular Harjani and Sadarangani [3, Theorem 1.10], Nieto and Rodŕiguez-López [4, Theorem 1.9], Ran and Reurings [6, Theorem 1.8], and Dorić [13, Theorem 1.6]. As an application, existence results for some integral equations on the positive real axis are given.

Now, we shall recall some preliminaries on ordered gauge spaces and introduce some definitions.

## 2 Preliminaries

Definition 2.1 Let X be a nonempty set. A map d : X × X → [0, ∞) is called a pseudo-metric in X whenever

1. (i)

d(x, x) = 0 for all x X;

2. (ii)

d(x, y) = d(y, x) for all x, y X;

3. (iii)

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z X.

Definition 2.2 Let X be a nonempty set endowed with a pseudo-metric d. The d-ball of radius ε > 0 centered at x X is the set

$B\left(x;d,\epsilon \right)=\left\{y\in X|d\left(x,y\right)<\epsilon \right\}.$

Definition 2.3 A family$ℱ=\left\{{d}_{\lambda }|\lambda \in \mathcal{A}\right\}$of pseudo-metrics is called separating if for each pair xy, there is a${d}_{\lambda }\in ℱ$such that d λ (x, y) ≠ 0.

Definition 2.4 Let X be a nonempty set and $ℱ=\left\{{d}_{\lambda }|\lambda \in \mathcal{A}\right\}$ be a separating family of pseudo-metrics on X. The topology $\mathcal{T}\left(ℱ\right)$ having for a subbasis the family

$ℬ\left(ℱ\right)=\left\{B\left(x;{d}_{\lambda },\epsilon \right)|x\in X,{d}_{\lambda }\in ℱ,\epsilon >0\right\}$

of balls is called the topology in X induced by the family $ℱ$ . The pair $\left(X,\mathcal{T}\left(ℱ\right)\right)$ is called a gauge space. Note that $\left(X,\mathcal{T}\left(ℱ\right)\right)$ is Hausdorff because we require $ℱ$ to be separating.

Definition 2.5 Let$\left(X,\mathcal{T}\left(ℱ\right)\right)$be a gauge space with respect to the family$ℱ=\left\{{d}_{\lambda }|\lambda \in \mathcal{A}\right\}$of pseudo-metrics on X. Let {x n } be a sequence in X and x X.

(a) The sequence {x n } converges to x if and only if

$\forall \lambda \in \mathcal{A},\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall \epsilon >0,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\exists N\in N|{d}_{\lambda }\left({x}_{n},x\right)<\epsilon ,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall n\ge N.$

In this case, we denote${x}_{n}\to ℱx$.

(b) The sequence {x n } is Cauchy if and only if

$\forall \lambda \in \mathcal{A},\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall \epsilon >0,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\exists N\in ℕ|{d}_{\lambda }\left({x}_{n+p},{x}_{n}\right)<\epsilon ,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\forall n\ge N,p\in ℕ.$

(c) $\left(X,\mathcal{T}\left(ℱ\right)\right)$ is complete if and only if any Cauchy sequence in $\left(X,\mathcal{T}\left(ℱ\right)\right)$ is convergent to an element of X.

(d) A subset of X is said to be closed if it contains the limit of any convergent sequence of its elements.

Definition 2.6 Let$ℱ=\left\{{d}_{\lambda }|\lambda \in \mathcal{A}\right\}$be a family of pseudo-metrics on X.$\left(X,ℱ,\preccurlyeq \right)$is called an ordered gauge space if$\left(X,\mathcal{T}\left(ℱ\right)\right)$is a gauge space and (X, ) is a partially ordered set.

For more details on gauge spaces, we refer the reader to .

Now, we introduce the concept of compatibility of a pair of self mappings on a gauge space.

Definition 2.7 Let$\left(X,\mathcal{T}\left(ℱ\right)\right)$be a gauge space and f, g : XX are giving mappings. We say that the pair {f, g} is compatible if for all$\lambda \in \mathcal{A}$, d λ (fgx n , gfx n ) → 0 as n → ∞ whenever {x n } is a sequence in X such that$f{x}_{n}\to ℱt$and$g{x}_{n}\to ℱt$for some t X.

Definition 2.8 (Ćirić et al.) Let (X, ) be a partially ordered set and f, g : XX are two giving mappings. The mapping f is said to be g-nondecreasing if for all x, y X, we have

$gx\preccurlyeq gy⇒fx\preccurlyeq fy.$

Definition 2.9 Let (X, ) be a partially ordered set. We say that (X, ) is directed if every pair of elements has an upper bound, that is, for every a, b X, there exists c X such that a c and b c.

## 3 Main results

Let $\left(X,\mathcal{T}\left(ℱ\right)\right)$ be a gauge space.

We consider the class of functions ${\left\{{\psi }_{\lambda }\right\}}_{\lambda \in \mathcal{A}}$ and ${\left\{{\phi }_{\lambda }\right\}}_{\lambda \in \mathcal{A}}$ such that for all $\lambda \in \mathcal{A}$, ψ λ , φ λ ,: [0, ∞) → [0, ∞) satisfy the following conditions:

(C1) ψ λ is an altering distance function.

(C2) φ λ is a lower semi-continuous function with φ λ (t) = 0 if and only if t = 0.

Our first result is the following.

Theorem 3.1 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space and let f, g : XX be two continuous mappings such that f is g-nondecreasing, f(X) g(X) and the pair {f, g} is compatible. Suppose that

${\psi }_{\lambda }\left({d}_{\lambda }\left(fx,fy\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(gx,gy\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(gx,gy\right)\right)$
(2)

for all$\lambda \in \mathcal{A}$, for all x, y X for which gx gy. If there exists x0such that gx0 fx0, then f and g have a coincidence point, that is, there exists a z X such that fz = gz.

Proof. Let x0 X such that gx0 fx0 (such a point exists by hypothesis). Since f(X) g(X), we can choose x1 X such that fx0 = gx1. Then gx0 fx0 = gx1. As f is g-nondecreasing, we get fx0 fx1. Continuing this process, we can construct a sequence {x n } in X such that

$g{x}_{n+1}=f{x}_{n},\phantom{\rule{1em}{0ex}}n=0,1,\dots$

for which

$g{x}_{0}\preccurlyeq f{x}_{0}=g{x}_{1}\preccurlyeq f{x}_{1}=g{x}_{2}\preccurlyeq \cdots \preccurlyeq f{x}_{n-1}=g{x}_{n}\preccurlyeq \cdots$

Then from (2), for all p, q , for all $\lambda \in \mathcal{A}$, we have

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{p},f{x}_{q}\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{p},g{x}_{q}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{p},g{x}_{q}\right)\right).$
(3)

We complete the proof in the following three steps.

Step 1. We will prove that

${d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\to 0\phantom{\rule{1em}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}n\to +\infty ,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}\lambda \in \mathcal{A}.$
(4)

Let $\lambda \in \mathcal{A}$. We distinguish two cases.

• First case: We suppose that there exists m such that d λ (fx m , fxm+1) = 0. Applying (3), we get that

$\begin{array}{ll}\hfill {\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{m+1},f{x}_{m+2}\right)\right)& \le {\psi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{m+1},g{x}_{m+2}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{m+1},g{x}_{m+2}\right)\right)\phantom{\rule{2em}{0ex}}\\ ={\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{m},f{x}_{m+1}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{m},f{x}_{m+1}\right)\right)\phantom{\rule{2em}{0ex}}\\ ={\psi }_{\lambda }\left(0\right)-{\phi }_{\lambda }\left(0\right)\phantom{\rule{2em}{0ex}}\\ \hfill \left(\text{from}\phantom{\rule{2.77695pt}{0ex}}\left(\text{C}1\right),\phantom{\rule{2.77695pt}{0ex}}\left(\text{C}2\right)\right)=0.\end{array}$

Then it follows from (C1) that d λ (fxm+1, fxm+2) = 0. Continuing this process, one can show that d λ (fx n , fxn+1) = 0 for all nm. Then our claim (4) holds.

• Second case: We suppose that

${d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)>0,\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\in ℕ.$
(5)

Let, if possible, for some n0 ,

${d}_{\lambda }\left(f{x}_{{n}_{0}-1},f{x}_{{n}_{0}}\right)<{d}_{\lambda }\left(f{x}_{{n}_{0}},f{x}_{{n}_{0}+1}\right).$

By the monotone property of ψ λ , and using (3), we get

$\begin{array}{ll}\hfill {\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{{n}_{0}-1},f{x}_{{n}_{0}}\right)\right)& \le {\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{{n}_{0}},f{x}_{{n}_{0}+1}\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{{n}_{0}},g{x}_{{n}_{0}+1}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{{n}_{0}},g{x}_{{n}_{0}+1}\right)\right)\phantom{\rule{2em}{0ex}}\\ ={\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{{n}_{0}-1},f{x}_{{n}_{0}}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{{n}_{0}-1},f{x}_{{n}_{0}}\right)\right).\phantom{\rule{2em}{0ex}}\end{array}$

Then, by (C2), we have that ${d}_{\lambda }\left(f{x}_{{n}_{0}-1},f{x}_{{n}_{0}}\right)=0$, which contradicts (5). Therefore, we deduce that

${d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\le {d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\ge 1.$

So, it follows that {d λ (fx n , fxn+1)} is a decreasing sequence of non-negative real numbers. Hence, there is r ≥ 0 such that

${d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\to r\phantom{\rule{1em}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}n\to +\infty .$
(6)

On the other hand, from (3), we have

$\begin{array}{ll}\hfill {\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\right)& \le {\psi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{n},g{x}_{n+1}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{n},g{x}_{n+1}\right)\right)\phantom{\rule{2em}{0ex}}\\ ={\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right)\right).\phantom{\rule{2em}{0ex}}\end{array}$

This implies that

$\underset{n\to \infty }{\text{lim sup}}{\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\right)\le \underset{n\to \infty }{\text{lim sup}}{\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right)\right)-\underset{n\to \infty }{\text{lim inf}}{\phi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right)\right).$

Then, using (6), the continuity hypothesis of ψ λ and the lower semi-continuity of φ λ , we get that

${\psi }_{\lambda }\left(r\right)\le {\psi }_{\lambda }\left(r\right)-{\phi }_{\lambda }\left(r\right),$

which, by condition (C2) implies that r = 0. Thus, we proved (4).

Step 2. We will prove that {fx n } is a Cauchy sequence in the gauge space $\left(X,\mathcal{T}\left(ℱ\right)\right)$. Suppose that {fx n } is not a Cauchy sequence. Then there exists $\left(\lambda ,\epsilon \right)\in \mathcal{A}×\left(0,\infty \right)$ for which we can find two sequences of positive integers {m(k)} and {n(k)} such that for all positive integers k,

$n\left(k\right)>m\left(k\right)>k,\phantom{\rule{1em}{0ex}}{d}_{\lambda }\left(f{x}_{m\left(k\right)},f{x}_{n\left(k\right)}\right)\ge \epsilon ,\phantom{\rule{1em}{0ex}}{d}_{\lambda }\left(f{x}_{m\left(k\right)},f{x}_{n\left(k\right)-1}\right)<\epsilon .$
(7)

Using (7) and the triangular inequality, we get that

$\begin{array}{ll}\hfill \epsilon & \le {d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)\phantom{\rule{2em}{0ex}}\\ \le {d}_{\lambda }\left(f{x}_{m\left(k\right)},f{x}_{n\left(k\right)-1}\right)+{d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{n\left(k\right)}\right)\phantom{\rule{2em}{0ex}}\\ <\epsilon +{d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{n\left(k\right)-1}\right).\phantom{\rule{2em}{0ex}}\end{array}$

Thus we have

$\epsilon \le {d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)<\epsilon +{d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{n\left(k\right)-1}\right).$

Letting k → +∞ in the above inequality and using (4), we obtain

${d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)\to \epsilon \phantom{\rule{1em}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}k\to +\infty .$
(8)

On the other hand, we have

${d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)\le {d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{n\left(k\right)-1}\right)+{d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)+{d}_{\lambda }\left(f{x}_{m\left(k\right)-1},f{x}_{m\left(k\right)}\right)$

and

${d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)\le {d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{n\left(k\right)}\right)+{d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)+{d}_{\lambda }\left(f{x}_{m\left(k\right)},f{x}_{m\left(k\right)-1}\right).$

Thus we have

$\left\{\begin{array}{c}\hfill {d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)\ge {d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)-{d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{n\left(k\right)-1}\right)-{d}_{\lambda }\left(f{x}_{m\left(k\right)-1},f{x}_{m\left(k\right)}\right)\hfill \\ \hfill {d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)\le {d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{n\left(k\right)}\right)+{d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)+{d}_{\lambda }\left(f{x}_{m\left(k\right)-1}\right)\hfill \end{array}\right\$

which implies that

$\left|{d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)-{d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)\right|\le {d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{n\left(k\right)}\right)+{d}_{\lambda }\left(f{x}_{m\left(k\right)},f{x}_{m\left(k\right)-1}\right).$

Letting k → ∞ in the above inequality, using (4) and (8), we get that

${d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)\to \epsilon \phantom{\rule{1em}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}k\to +\infty .$
(9)

Applying inequality (3) with p = n(k) and q = m(k), we get that

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{n\left(k\right)},g{x}_{m\left(k\right)}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{n\left(k\right)},g{x}_{m\left(k\right)}\right)\right),$

that is,

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)\right).$

Letting k → +∞ in the above inequality, using (8), (9), the continuity hypothesis of ψ λ and the lower semi-continuity of φ λ , we obtain

${\psi }_{\lambda }\left(\epsilon \right)\le {\psi }_{\lambda }\left(\epsilon \right)-{\phi }_{\lambda }\left(\epsilon \right),$

which implies from (C2) that ε = 0, which is a contradiction with ε > 0. Finally, we deduce that {fx n } is a Cauchy sequence.

Step 3. Existence of a coincidence point.

Since {fx n } is a Cauchy sequence in the complete gauge space $\left(X,\mathcal{T}\left(ℱ\right)\right)$, then there exists a z X such that $f{x}_{n}\to ℱz$. Since f and g are continuous, we get that $ff{x}_{n}\stackrel{ℱ}{\to }fz$ and $gf{x}_{n}\to ℱgz$. On the other hand, from gxn+1= fx n , we have also $g{x}_{n}\to ℱz$. Thus, we

$f{x}_{n}\stackrel{ℱ}{\to }z,\phantom{\rule{0.5em}{0ex}}ff{x}_{n}\stackrel{ℱ}{\to }fz,\phantom{\rule{0.5em}{0ex}}gf{x}_{n}\stackrel{ℱ}{\to }gz,\phantom{\rule{0.5em}{0ex}}g{x}_{n}\stackrel{ℱ}{\to }z.$
(10)

From the compatibility hypothesis of the pair {f, g}, we get that for all $\lambda \in \mathcal{A}$,

${d}_{\lambda }\left(fg{x}_{n},gf{x}_{n}\right)\to 0\phantom{\rule{1em}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}n\to \infty .$
(11)

Now, using the triangular inequality, for all $\lambda \in \mathcal{A}$, we have

${d}_{\lambda }\left(fz,gz\right)\le {d}_{\lambda }\left(fz,ff{x}_{n}\right)+{d}_{\lambda }\left(fg{x}_{n+1},gf{x}_{n+1}\right)+{d}_{\lambda }\left(gf{x}_{n+1},gz\right).$

Letting n → ∞ in the above inequality, and using (10) and (11), we get that d λ (fz, gz) = 0 for all $\lambda \in \mathcal{A}$. In the virtue of the separating structure of $ℱ$, this implies that fz = gz, that

is, z is a coincidence point of f and g.

Let $\left(X,ℱ,\preccurlyeq \right)$ be an ordered gauge space. We consider the following assumption: (H): If {u n } X is a nondecreasing sequence with ${u}_{n}\to ℱu\in X$, then u n u for all n.

Theorem 3.2 Let $\left(X,ℱ,\preccurlyeq \right)$ be an ordered complete gauge space satisfying the assumption (H). Let f, g : XX be two mappings such that f is g-nondecreasing, f(X) g(X) and g(X) is closed. Suppose that

${\psi }_{\lambda }\left({d}_{\lambda }\left(fx,fy\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(gx,gy\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(gx,gy\right)\right)$
(12)

for all$\lambda \in \mathcal{A}$, for all x, y X for which gx gy. If there exists x0such that gx0 fx0, then f and g have a coincidence point.

Proof. Following the proof of Theorem 3.1, we know that {gx n } is a Cauchy sequence in the ordered complete gauge space $\left(X,ℱ,\preccurlyeq \right)$. Since g(X) is closed, there exists z X such that $g{x}_{n}\to ℱgz$. Then we have

$f{x}_{n}\to ℱgz\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}g{x}_{n}\to ℱgz.$
(13)

Since {gx n } is a nondecreasing sequence, from (H), we have gx n gz for all n ≥ 1. Then we can apply (12) with x = x n and y = z, we obtain

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n},fz\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{n},gz\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(g{x}_{n},gz\right)\right)$

for all $\lambda \in \mathcal{A}$ and n ≥ 1. Let $\lambda \in \mathcal{A}$ be fixed. Letting n → ∞ in the above inequality, using (C1), (C2) and (13), we obtain that ψ λ (d λ (gz, fz)) = 0, which implies from (C1) that d λ (gz, fz) = 0. Thus, we proved that d λ (gz, fz) = 0 for all $\lambda \in \mathcal{A}$. Then gz = fz and z is a coincidence point of g and f.

Theorem 3.3 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space and f : XX be a nondecreasing mapping. Suppose that

${\psi }_{\lambda }\left({d}_{\lambda }\left(fx,fy\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(x,y\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(x,y\right)\right)$
(14)

for all$\left(X,ℱ,\preccurlyeq \right)$, for all x, y X with x y. Also suppose either

1. (I)

f is continuous or

2. (II)

If {x n } X is a nondecreasing sequence with ${x}_{n}\to ℱz\in X$ , then x n z for all n.

If there exists x0such that x0 fx0, then f has a fixed point, that is, there exists z X such that z = fz. Moreover, if(X, ) is directed, we obtain the uniqueness of the fixed point of f.

Proof. The existence of a fixed point of f follows immediately from Theorems 3.1 and 3.2 by taking g = I X (the identity mapping on X). Now, suppose that z' X is another fixed point of f, that is, z' = fz'. Since (X, ) is a directed set, there exists w X such that z w and z' w. Monotonicity of f implies that fn(z) fn(w) and fn(z') fn(w). Then we have

$\begin{array}{ll}\hfill {\psi }_{\lambda }\left({d}_{\lambda }\left(z,{f}^{n}\left(w\right)\right)\right)& \le {\psi }_{\lambda }\left({d}_{\lambda }\left({f}^{n-1}\left(z\right),{f}^{n-1}\left(w\right)\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left({f}^{n-1}\left(z\right),{f}^{n-1}\left(w\right)\right)\right)\phantom{\rule{2em}{0ex}}\\ \le {\psi }_{\lambda }\left({d}_{\lambda }\left({f}^{n-1}\left(z\right),{f}^{n-1}\left(w\right)\right)\right)\phantom{\rule{2em}{0ex}}\\ ={\psi }_{\lambda }\left({d}_{\lambda }\left(z,{f}^{n-1}\left(w\right)\right)\right).\phantom{\rule{2em}{0ex}}\end{array}$
(15)

Since ψ λ is a nondecreasing function, we get that

${d}_{\lambda }\left(z,{f}^{n}\left(w\right)\right)\le {d}_{\lambda }\left(z,{f}^{n-1}\left(w\right)\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\ge 1,\phantom{\rule{2.77695pt}{0ex}}\lambda \in \mathcal{A}.$

Then there exists r λ ≥ 0 such that d λ (z, fn(w)) → r λ as n → ∞. Letting n → ∞ in (15), we get that

${\psi }_{\lambda }\left({r}_{\lambda }\right)\le {\psi }_{\lambda }\left({r}_{\lambda }\right)-{\phi }_{\lambda }\left({r}_{\lambda }\right),$

which implies that r λ = 0. Then we have ${f}^{n}\left(w\right)\to ℱz$. Similarly, one can show that ${f}^{n}\left(w\right)\to ℱ{z}^{\prime }$. Since $\left(X,\mathcal{T}\left(ℱ\right)\right)$ is Hausdorff, we obtain that z = z'.

Let $\left(X,\mathcal{T}\left(ℱ\right)\right)$ be a gauge space and f, g : XX are two giving mappings. For all x, y X and $\lambda \in \mathcal{A}$, we denote

${M}_{\lambda }\left(gx,gy\right)=\text{max}\left\{{d}_{\lambda }\left(gx,gy\right),{d}_{\lambda }\left(gx,fx\right),{d}_{\lambda }\left(gy,fy\right),\frac{{d}_{\lambda }\left(gy,fy\right)+{d}_{\lambda }\left(gy,fx\right)}{2}\right\}.$

We shall prove the following result.

Theorem 3.4 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space and let f, g : XX be two continuous mappings such that f is g-nondecreasing, f(X) g(X) and the pair {f, g} is compatible. Suppose that

${\psi }_{\lambda }\left({d}_{\lambda }\left(fx,fy\right)\right)\le {\psi }_{\lambda }\left({M}_{\lambda }\left(gx,gy\right)\right)-{\phi }_{\lambda }\left({M}_{\lambda }\left(gx,gy\right)\right)$
(16)

for all$\lambda \in \mathcal{A}$, for all x, y X for which gx gy. If there exists x0such that gx0 fx0, then f and g have a coincidence point.

Proof. Similarly to the proof of Theorem3.1, we can construct a sequence {x n } in X such that

$g{x}_{n+1}=f{x}_{n},\phantom{\rule{1em}{0ex}}n=0,1,\dots$

for which

$g{x}_{0}\preccurlyeq g{x}_{1}\preccurlyeq g{x}_{2}\preccurlyeq \cdots \preccurlyeq g{x}_{n}\preccurlyeq \cdots$

Then from (16), for all p, q , for all $\lambda \in \mathcal{A}$, we have

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{p},f{x}_{q}\right)\right)\le {\psi }_{\lambda }\left({M}_{\lambda }\left(g{x}_{p},g{x}_{q}\right)\right)-{\phi }_{\lambda }\left({M}_{\lambda }\left(g{x}_{p},g{x}_{q}\right)\right).$
(17)

We complete the proof in the following three steps.

Step 1. We will prove that

${d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\to 0\phantom{\rule{1em}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}n\to +\infty ,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}\lambda \in \mathcal{A}.$
(18)

Let $\lambda \in \mathcal{A}$. We distinguish two cases.

• First case: We suppose that there exists m such that d λ (fx m , fxm+1) = 0. Applying (17), we get that

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{m+1},f{x}_{m+2}\right)\right)\le {\psi }_{\lambda }\left({M}_{\lambda }\left(g{x}_{m+1},g{x}_{m+2}\right)\right)-{\phi }_{\lambda }\left({M}_{\lambda }\left(g{x}_{m+1},g{x}_{m+2}\right)\right).$

A simple computation gives us that

${M}_{\lambda }\left(g{x}_{m+1},g{x}_{m+2}\right)\right)={d}_{\lambda }\left(f{x}_{m+1},f{x}_{m+2}\right).$

Thus, we get that

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{m+1},f{x}_{m+2}\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{m+1},f{x}_{m+2}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{m+1},f{x}_{m+2}\right)\right),$

which implies from (C2) that d λ (fxm+1, fxm+2) = 0. Continuing this process, one can show that d λ (fx n , fxn+1) = 0 for all nm. Then our claim (18) holds.

• Second case: We suppose that

${d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)>0,\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\in N.$
(19)

Applying (17), for all n ≥ 1, we have

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\right)\le {\psi }_{\lambda }\left({M}_{\lambda }\left(g{x}_{n},g{x}_{n+1}\right)\right)-{\phi }_{\lambda }\left({M}_{\lambda }\left(g{x}_{n},g{x}_{n+1}\right)\right).$
(20)

A simple computation gives us that

${M}_{\lambda }\left(g{x}_{n},g{x}_{n+1}\right)=\text{max}\left\{{d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right),{d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\right\}.$

If M λ (gx n , gxn+1) = d λ (fx n , fxn+1), we get that

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\right),$

which implies from (C2) that d λ (fx n , fxn+1) = 0, that is a contradiction with (19). We deduce that M λ (gx n , gxn+1) = d λ (fxn-1, fx n ), that is, d λ (fx n , fxn+1) ≤ d λ (fxn-1, fx n ). So, it follows that {d λ (fxn-1, fx n )} is a decreasing sequence of non-negative real numbers. Hence, there is r ≥ 0 such that

${d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right)\to r\phantom{\rule{1em}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}n\to +\infty .$
(21)

On the other hand, from (20), we have

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n},f{x}_{n+1}\right)\right)\le {\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right)\right)-{\phi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n-1},f{x}_{n}\right)\right).$

Letting n → ∞ in the above inequality and using the properties (C1) and (C2), we get that

${\psi }_{\lambda }\left(r\right)\le {\psi }_{\lambda }\left(r\right)-{\phi }_{\lambda }\left(r\right),$

which implies from (C2) that r = 0. Then our claim (18) holds.

Step 2. We will prove that {fx n } is a Cauchy sequence in the gauge space $\left(X,\mathcal{T}\left(ℱ\right)\right)$. Suppose that {fx n } is not a Cauchy sequence. Then there exists $\left(\lambda ,\epsilon \right)\in \mathcal{A}×\left(0,\infty \right)$ for which we can find two sequences of positive integers {m(k)} and {n(k)} such that for all positive integers k,

$n\left(k\right)>m\left(k\right)>k,\phantom{\rule{1em}{0ex}}{d}_{\lambda }\left(f{x}_{m\left(k\right)},f{x}_{n\left(k\right)}\right)\ge \epsilon ,\phantom{\rule{1em}{0ex}}{d}_{\lambda }\left(f{x}_{m\left(k\right)},f{x}_{n\left(k\right)-1}\right)<\epsilon .$

As in the proof of Theorem 3.1, one can show that

$\underset{k\to \infty }{\text{lim}}{d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)=\underset{k\to \infty }{\text{lim}}{d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)=\epsilon .$
(22)

Applying inequality (17) with p = n(k) and q = m(k), we get that

${\psi }_{\lambda }\left({d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)\right)\le {\psi }_{\lambda }\left({M}_{\lambda }\left(g{x}_{n\left(k\right)},g{x}_{m\left(k\right)}\right)\right)-{\phi }_{\lambda }\left({M}_{\lambda }\left(g{x}_{n\left(k\right)},g{x}_{m\left(k\right)}\right)\right).$
(23)

On the other hand, we have

Using the triangular inequality, we get that

$\left|{d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)}\right)-{d}_{\lambda }\left(f{x}_{n\left(k\right)},f{x}_{m\left(k\right)}\right)\right|\le d\left(f{x}_{n\left(k\right)-1},f{x}_{n\left(k\right)}\right)$

and

$\left|{d}_{\lambda }\left(f{x}_{m\left(k\right)-1},f{x}_{n\left(k\right)}\right)-{d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)-1}\right)\right|\le d\left(f{x}_{n\left(k\right)-1},f{x}_{n\left(k\right)}\right).$

Letting k → ∞ in the above inequalities and using (18), (22), we get that

$\underset{k\to \infty }{\text{lim}}{d}_{\lambda }\left(f{x}_{n\left(k\right)-1},f{x}_{m\left(k\right)}\right)=\underset{k\to \infty }{\text{lim}}{d}_{\lambda }\left(f{x}_{m\left(k\right)-1},f{x}_{n\left(k\right)}\right)=\epsilon .$
(24)

Now, combining (18), (22), and (24), we obtain

${M}_{\lambda }\left(g{x}_{n\left(k\right)},g{x}_{m\left(k\right)}\right)\to \epsilon \phantom{\rule{1em}{0ex}}\text{as}\phantom{\rule{2.77695pt}{0ex}}k\to \infty .$
(25)

Letting k → ∞ in (23), using (22), (25) and the properties of functions ψ λ and φ λ , we get that

${\psi }_{\lambda }\left(\epsilon \right)\le {\psi }_{\lambda }\left(\epsilon \right)-{\phi }_{\lambda }\left(\epsilon \right),$

which implies that ε = 0, a contradiction. Finally, we deduce that {fx n } is a Cauchy sequence.

Step 3. Existence of a coincidence point.

Since {fx n } is a Cauchy sequence in the complete gauge space $\left(X,\mathcal{T}\left(ℱ\right)\right)$, then there exists a z X such that $f{x}_{n}\to ℱz$. The rest part of the proof is similar to that of Theorem 3.1.

Theorem 3.5 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space satisfying the assumption (H). Let f, g : XX be two mappings such that f is g-nondecreasing, f(X) g(X) and g(X) is closed. Suppose that

${\psi }_{\lambda }\left({d}_{\lambda }\left(fz,fy\right)\right)\le {\psi }_{\lambda }\left({M}_{\lambda }\left(gx,gy\right)\right)-{\phi }_{\lambda }\left({M}_{\lambda }\left(gx,gy\right)\right)$

for all$\lambda \in \mathcal{A}$, for all x, y X for which gx gy. If there exists x0such that gx0 fx0, then f and g have a coincidence point.

Proof. It is similar to the proof of Theorem 3.2.

Using the same technique of the proof of Theorem 3.3, we deduce from Theorems 3.4 and 3.5 the following fixed point result.

Theorem 3.6 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space and f : XX be a nondecreasing mapping. Suppose that

${\psi }_{\lambda }\left({d}_{\lambda }\left(fx,fy\right)\right)\le \left({\psi }_{\lambda }-{\phi }_{\lambda }\right)\left(\text{max}\left\{{d}_{\lambda }\left(x,y\right),{d}_{\lambda }\left(x,fx\right),{d}_{\lambda }\left(y,fy\right),\frac{{d}_{\lambda }\left(x,fy\right)+{d}_{\lambda }\left(y,fx\right)}{2}\right\}\right)$

for all$\lambda \in \mathcal{A}$, for all x, y X with x y. Also suppose either

1. (I)

f is continuous or

2. (II)

If {x n } X is a nondecreasing sequence with ${x}_{n}\to ℱz\in X$ , then x n z for all n.

If there exists x0such that x0 f x0, then f has a fixed point. Moreover, if (X, ) is directed, we obtain the uniqueness of the fixed point of f.

## 4 Some consequences

In this section, we present some fixed point theorems of integral-type on ordered gauge spaces, deduced from our previous obtained results.

Let Γ be the set of functions a : [0, ∞) → [0, ∞) satisfying

1. (i)

a is locally integrable on [0, ∞).

2. (ii)

For all ε > 0, we have ${\int }_{0}^{\epsilon }a\left(t\right)dt>0$.

Theorem 4.1 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space and let f, g : XX be two continuous mappings such that f is g-nondecreasing, f(X) g(X) and the pair {f, g} is compatible. Suppose that

$\underset{0}{\overset{{d}_{\lambda }\left(fx,fy\right)}{\int }}{a}_{\lambda }\left(t\right)dt\le \underset{0}{\overset{{d}_{\lambda }\left(gx,gy\right)}{\int }}{a}_{\lambda }\left(t\right)dt-\underset{0}{\overset{{d}_{\lambda }\left(gx,gy\right)}{\int }}{b}_{\lambda }\left(t\right)dt$

for all$\lambda \in \mathcal{A}$, for all x, y X for which gx gy, where a λ , b λ Γ for all$\lambda \in \mathcal{A}$. If there exists x0such that gx0 fx0, then f and g have a coincidence point.

Proof. It follows from Theorem 3.1, by taking for all $\lambda \in \mathcal{A}$,

${\psi }_{\lambda }\left(t\right)=\underset{0}{\overset{t}{\int }}{a}_{\lambda }\left(s\right)ds\phantom{\rule{1em}{0ex}}\text{and}\phantom{\rule{1em}{0ex}}{\phi }_{\lambda }\left(t\right)=\underset{0}{\overset{t}{\int }}{b}_{\lambda }\left(s\right)ds,\phantom{\rule{1em}{0ex}}t\ge 0.$

It is clear that for all $\lambda \in \mathcal{A}$, the functions ψ λ and ϕ λ satisfy conditions (C1) and (C2).

Theorem 4.2 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space satisfying the assumption (H). Let f, g : XX be two mappings such that f is g-nondecreasing, f(X) g(X) and g(X) is closed. Suppose that

$\underset{0}{\overset{{d}_{\lambda }\left(fx,fy\right)}{\int }}{a}_{\lambda }\left(t\right)dt\le \underset{0}{\overset{{d}_{\lambda }\left(gx,gy\right)}{\int }}{a}_{\lambda }\left(t\right)dt-\underset{0}{\overset{{d}_{\lambda }\left(gx,gy\right)}{\int }}{b}_{\lambda }\left(t\right)dt$

for all$\lambda \in \mathcal{A}$, for all x, y X for which gx gy, where a λ , b λ Γ for all$\lambda \in \mathcal{A}$. If there exists x0such that gx0 fx0, then f and g have a coincidence point.

Proof. It follows from Theorem 3.2.

Theorem 4.3 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space and f : XX be a nondecreasing mapping. Suppose that

$\underset{0}{\overset{{d}_{\lambda }\left(fx,fy\right)}{\int }}{a}_{\lambda }\left(t\right)dt\le \underset{0}{\overset{{d}_{\lambda }\left(x,y\right)}{\int }}{a}_{\lambda }\left(t\right)dt-\underset{0}{\overset{{d}_{\lambda }\left(x,y\right)}{\int }}{b}_{\lambda }\left(t\right)dt$

for all$\lambda \in \mathcal{A}$, for all x, y X with x y, where a λ , b λ Γ for all$\lambda \in \mathcal{A}$. Also suppose either

1. (I)

f is continuous or

2. (II)

If {x n } X is a nondecreasing sequence with ${x}_{n}\to ℱz\in X$ , then x n z for all n.

If there exists x0such that x0 fx0, then f has a fixed point. Moreover, if (X, ) is directed, we obtain the uniqueness of the fixed point of f.

Proof. It follows from Theorem 3.3.

Theorem 4.4 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space and let f, g : XX be two continuous mappings such that f is g-nondecreasing, f(X) g(X) and the pair {f, g} is compatible. Suppose that

$\underset{0}{\overset{{d}_{\lambda }\left(fx,fy\right)}{\int }}{a}_{\lambda }\left(t\right)dt\le \underset{0}{\overset{{M}_{\lambda }\left(gx,gy\right)}{\int }}{a}_{\lambda }\left(t\right)dt-\underset{0}{\overset{{M}_{\lambda }\left(gx,gy\right)}{\int }}{b}_{\lambda }\left(t\right)dt$

for all$\lambda \in \mathcal{A}$, for all x, y X for which gx gy, where a λ , b λ Γ for all$\lambda \in \mathcal{A}$. If there exists x0such that gx0 fx0, then f and g have a coincidence point.

Proof. It follows from Theorem 3.4.

Theorem 4.5 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space satisfying the assumption (H). Let f, g : XX be two mappings such that f is g-nondecreasing, f(X) g(X) and g(X) is closed. Suppose that

$\underset{0}{\overset{{d}_{\lambda }\left(fx,fy\right)}{\int }}{a}_{\lambda }\left(t\right)dt\le \underset{0}{\overset{{M}_{\lambda }\left(gx,gy\right)}{\int }}{a}_{\lambda }\left(t\right)dt-\underset{0}{\overset{{M}_{\lambda }\left(gx,gy\right)}{\int }}{b}_{\lambda }\left(t\right)dt$

for all$\lambda \in \mathcal{A}$, for all x, y X for which gx gy, where a λ , b λ Γ for all$\lambda \in \mathcal{A}$. If there exists x0such that gx0 fx0, then f and g have a coincidence point.

Proof. It follows from Theorem 3.5.

Theorem 4.6 Let$\left(X,ℱ,\preccurlyeq \right)$be an ordered complete gauge space and f : XX be a nondecreasing mapping. Suppose that

$\underset{0}{\overset{{d}_{\lambda }\left(fx,fy\right)}{\int }}{a}_{\lambda }\left(t\right)dt\le \underset{0}{\overset{{M}_{\lambda }\left(x,y\right)}{\int }}{a}_{\lambda }\left(t\right)dt-\underset{0}{\overset{{M}_{\lambda }\left(x,y\right)}{\int }}{b}_{\lambda }\left(t\right)dt$

for all$\lambda \in \mathcal{A}$, for all x, y X with x y, where a λ , b λ Γ for all$\lambda \in \mathcal{A}$. Also suppose either

1. (I)

f is continuous or

2. (II)

If {x n } X is a nondecreasing sequence with ${x}_{n}\to ℱz\in X$ , then x n z for all n.

If there exists x0such that x0 fx0, then f has a fixed point. Moreover, if (X, ) is directed, we obtain the uniqueness of the fixed point of f.

Proof. It follows from Theorem 3.6.

## 5 Applications

In this section, we present some examples of nonlinear integral equations, where our obtained results can be applied.

Consider the integral equation

$x\left(t\right)=\underset{0}{\overset{t}{\int }}k\left(t,s,x\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right),\phantom{\rule{1em}{0ex}}t\ge 0,$
(26)

where k : [0, ∞) × [0, ∞) × and h : [0, ∞) → .

Previously, we consider the space X = C([0, ∞), ) of real continuous functions defined on [0, ∞). For each positive integer n ≥ 1, we define the map · n : X → [0, ∞) by

${∥x∥}_{n}=\underset{0\le t\le n}{\text{max}}\left|x\left(t\right)\right|,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}x\in X.$

This map is a semi-norm on X. Define now,

${d}_{n}\left(x,y\right)={∥x-y∥}_{n},\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\ge 1,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}x,y\in X.$

Then $ℱ={\left\{{d}_{n}\right\}}_{n\ge 1}$ is a separating family of pseudo-metrics on X. The gauge space $\left(X,\mathcal{T}\left(ℱ\right)\right)$ with respect to the family $ℱ$ is complete. Consider on X the partial order defined by

$x,y\in X,\phantom{\rule{1em}{0ex}}x\preccurlyeq y⇔x\left(t\right)\le y\left(t\right)\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}t\ge 0.$

For any increasing sequence {x n } in X converging to some z X we have x n (t) ≤ z(t) for any t ≥ 0. Also, for every x, y X, there exists c(x, y) X which is comparable to x and y.

We shall prove the following result.

Theorem 5.1 Suppose that

(i) k : [0, ∞) × [0, ∞) × and h : [0, ∞) → are continuous;

(ii) k(t, s, ·): is increasing for each t, s ≥ 0;

(iii) for each t, s ≥ 0, u, v , uv, we have

$\left|k\left(t,s,u\right)-k\left(t,s,v\right)\right|\le \gamma \left(t,s\right)\sqrt{\text{ln}\left[{\left(v-u\right)}^{2}+1\right]},$

where γ : [0, ∞) × [0, ∞) → [0, ∞) is continuous, the function$t↦{\int }_{0}^{t}\gamma \left(t,s\right)\phantom{\rule{2.77695pt}{0ex}}ds$is bounded on [0, ∞) and

$\underset{t\ge 0}{\text{sup}}\underset{0}{\overset{t}{\int }}\gamma \left(t,s\right)\phantom{\rule{2.77695pt}{0ex}}ds\le 1;$

(iv) there exists x0 C([0, ∞), ) such that

${x}_{0}\left(t\right)\le \underset{0}{\overset{t}{\int }}k\left(t,s,{x}_{0}\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right),\phantom{\rule{1em}{0ex}}for\phantom{\rule{2.77695pt}{0ex}}any\phantom{\rule{2.77695pt}{0ex}}t\ge 0.$

Then the integral equation (26) has a unique solution x* C([0, ∞), ).

Proof. Consider the operator f : XX given by

$fx\left(t\right)=\underset{0}{\overset{t}{\int }}k\left(t,s,x\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right),\phantom{\rule{1em}{0ex}}t\ge 0,x\in X.$

It is clear that f is well defined since k and h are continuous functions.

From condition (ii), for every x, y X with x y, we have

$k\left(t,s,x\left(s\right)\right)\le k\left(t,s,y\left(s\right)\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}t,s\ge 0,$

which implies that

$\underset{0}{\overset{t}{\int }}k\left(t,s,x\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right)\le \underset{0}{\overset{t}{\int }}k\left(t,s,y\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}t\ge 0,$

that is, fx fy. This proves that f is a nondecreasing operator.

Taking into account (iii), for each x, y X with x y, for all t [0, n], n ≥ 1, we have

$\begin{array}{ll}\hfill \left|fx\left(t\right)-fy\left(t\right)\right|& \le \underset{0}{\overset{t}{\int }}\left|k\left(t,s,y\left(s\right)\right)-k\left(t,s,x\left(s\right)\right)\right|\phantom{\rule{2.77695pt}{0ex}}ds\phantom{\rule{2em}{0ex}}\\ \le \underset{0}{\overset{t}{\int }}\gamma \left(t,s\right)\sqrt{\text{ln}\left[{\left(y\left(s\right)-x\left(s\right)\right)}^{2}+1\right]}\phantom{\rule{2.77695pt}{0ex}}ds\phantom{\rule{2em}{0ex}}\\ \le \sqrt{\text{ln}\left[{\left({d}_{n}\left(x,y\right)\right)}^{2}+1\right]}\underset{0}{\overset{t}{\int }}\gamma \left(t,s\right)\phantom{\rule{2.77695pt}{0ex}}ds\phantom{\rule{2em}{0ex}}\\ \le \sqrt{\text{ln}\left[{\left({d}_{n}\left(x,y\right)\right)}^{2}+1\right]}.\phantom{\rule{2em}{0ex}}\end{array}$

Then, for all n ≥ 1, we have

${d}_{n}\left(fx,fy\right)\le \sqrt{\text{ln}\left[{\left({d}_{n}\left(x,y\right)\right)}^{2}+1\right]},\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}x,y\in X,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}x\preccurlyeq y.$

Hence, for all n ≥ 1, we have

${\psi }_{n}\left({d}_{n}\left(fx,fy\right)\right)\le {\psi }_{n}\left({d}_{n}\left(fx,fy\right)\right)-{\phi }_{n}\left({d}_{n}\left(fx,fy\right)\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}x,y\in X,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}x\preccurlyeq y,$

where ψ n (t) = t2 and φ n (t) = t2 - ln(t2 + 1). Obviously, ψ n , φ n satisfy the conditions (C1) and (C2). Moreover, from (iv), there exists x0 X such that x0 f x0.

Now, applying Theorem 3.3, we obtain that f has a unique fixed point x* X, that is, x* C([0, ∞), ) is the unique solution to (26).

Consider now the integral equation

$x\left(t\right)=\underset{-{t}^{2}}{\overset{{t}^{2}}{\int }}k\left(t,s,x\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right),\phantom{\rule{1em}{0ex}}t\in ℝ,$
(27)

where k : × × and h : .

We consider the space X = C(, ) of real continuous functions defined on . For each positive integer n ≥ 1, we define the map · n : X → [0, ∞) by

${∥x∥}_{n}=\underset{-n\le t\le n}{\text{max}}\left|x\left(t\right)\right|,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}x\in X.$

This map is a semi-norm on X. Define now,

${d}_{n}\left(x,y\right)={∥x-y∥}_{n},\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}n\ge 1,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}x,y\in X.$

Then $ℱ={\left\{{d}_{n}\right\}}_{n\ge 1}$ is a separating family of pseudo-metrics on X. The gauge space $\left(X,\mathcal{T}\left(ℱ\right)\right)$ with respect to the family $ℱ$ is complete. As before, consider on X the partial order defined by

$x,y\in X,\phantom{\rule{1em}{0ex}}x\preccurlyeq y⇔x\left(t\right)\le y\left(t\right)\phantom{\rule{2.77695pt}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}t\in ℝ.$

For any increasing sequence {x n } in X converging to some z X we have x n (t) ≤ z(t) for any t . Also, for every x, y X, there exists c(x, y) X which is comparable to x and y. We shall prove the following result.

Theorem 5.2 Suppose that

(i) k : × × and h : are continuous;

(ii) k(t, s, ·): is increasing for each t, s ;

(iii) for each t, s , u, v , uv, we have

$\left|k\left(t,s,u\right)-k\left(t,s,v\right)\right|\le \gamma \left(t,s\right)\sqrt{\text{ln}\left[{\left(v-u\right)}^{2}+1\right]},$

where γ : × → [0, ∞) is continuous, the function$t↦{\int }_{-{t}^{2}}^{{t}^{2}}\gamma \left(t,s\right)\phantom{\rule{2.77695pt}{0ex}}ds$is bounded on and

$\underset{t\in ℝ}{\text{sup}}\underset{-{t}^{2}}{\overset{{t}^{2}}{\int }}\gamma \left(t,s\right)\phantom{\rule{2.77695pt}{0ex}}ds\le 1;$

(iv) there exists x0 C(, ) such that

${x}_{0}\left(t\right)\le \underset{0}{\overset{t}{\int }}k\left(t,s,{x}_{0}\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{any}\phantom{\rule{2.77695pt}{0ex}}t\in ℝ.$

Then the integral equation (27) has a unique solution x* C(, ).

Proof. Consider the operator f : XX given by

$fx\left(t\right)=\underset{-{t}^{2}}{\overset{{t}^{2}}{\int }}k\left(t,s,x\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right),\phantom{\rule{1em}{0ex}}t\in R,x\in X.$

From condition (ii), for every x, y X with x y, we have

$k\left(t,s,x\left(s\right)\right)\le k\left(t,s,y\left(s\right)\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}t,s\in R,$

which implies that

$\underset{-{t}^{2}}{\overset{{t}^{2}}{\int }}k\left(t,s,x\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right)\le \underset{-{t}^{2}}{\overset{{t}^{2}}{\int }}k\left(t,s,y\left(s\right)\right)\phantom{\rule{2.77695pt}{0ex}}ds+h\left(t\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}t\in R,$

that is, fx fy. This proves that f is a nondecreasing operator.

Taking into account (iii), for each x, y X with x y, for all t [-n, n], n ≥ 1, we have

$\begin{array}{ll}\hfill \left|fx\left(t\right)-fy\left(t\right)\right|& \le \underset{-{t}^{2}}{\overset{{t}^{2}}{\int }}\left|k\left(t,s,y\left(s\right)\right)-k\left(t,s,x\left(s\right)\right)\right|\phantom{\rule{2.77695pt}{0ex}}ds\phantom{\rule{2em}{0ex}}\\ \le \underset{-{t}^{2}}{\overset{{t}^{2}}{\int }}\gamma \left(t,s\right)\sqrt{\text{ln}\left[{\left(y\left(s\right)-x\left(s\right)\right)}^{2}+1\right]}\phantom{\rule{2.77695pt}{0ex}}ds\phantom{\rule{2em}{0ex}}\\ \le \sqrt{\text{ln}\left[{\left({d}_{n}\left(x,y\right)\right)}^{2}+1\right]}\underset{-{t}^{2}}{\overset{{t}^{2}}{\int }}\gamma \left(t,s\right)\phantom{\rule{2.77695pt}{0ex}}ds\phantom{\rule{2em}{0ex}}\\ \le \sqrt{\text{ln}\left[{\left({d}_{n}\left(x,y\right)\right)}^{2}+1\right]}.\phantom{\rule{2em}{0ex}}\end{array}$

Then, for all n ≥ 1, we have

${d}_{n}\left(fx,fy\right)\le \sqrt{\text{ln}\left[{\left({d}_{n}\left(x,y\right)\right)}^{2}+1\right]},\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}x,y\in X,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}x\preccurlyeq y.$

Hence, for all n ≥ 1, we have

${\psi }_{n}\left({d}_{n}\left(fx,fy\right)\right)\le {\psi }_{n}\left({d}_{n}\left(fx,fy\right)\right)-{\phi }_{n}\left({d}_{n}\left(fx,fy\right)\right),\phantom{\rule{1em}{0ex}}\text{for}\phantom{\rule{2.77695pt}{0ex}}\text{all}\phantom{\rule{2.77695pt}{0ex}}x,y\in X,\phantom{\rule{2.77695pt}{0ex}}\phantom{\rule{2.77695pt}{0ex}}x\preccurlyeq y,$

where ψ n (t) = t2 and φ n (t) = t2 - ln(t2 + 1). Moreover, from (iv), there exists x0 X such that x0 fx0.

Now, applying Theorem 3.3, we obtain that f has a unique fixed point x* X that is, x* C(, ) is the unique solution to (27).

## References

1. Chen JW, Cho YJ, Kim JK, Li J: Multiobjective optimization problems with modified objective functions and cone constraints and applications. J Global Optim 2011, 49: 137–147. 10.1007/s10898-010-9539-3

2. Choudhury BS, Kundu A: ( ψ, α, β )-weak contractions in partially ordered metric spaces. Appl Math Lett 2012, 25: 6–10. 10.1016/j.aml.2011.06.028

3. Harjani J, Sadarangani K: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal 2010, 72: 1188–1197. 10.1016/j.na.2009.08.003

4. Nieto JJ, Rodríguez-López R: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations. Order 2005, 22: 223–239. 10.1007/s11083-005-9018-5

5. Nieto JJ, Rodríguez-López R: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations. Acta Math Sin (Engl Ser) 2007, 23: 2205–2212. 10.1007/s10114-005-0769-0

6. Ran ACM, Reurings MCB: A fixed point theorem in partially orederd sets and some applications to matrix equations. Proc Am Math Soc 2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4

7. Banach S: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund Math 1922, 3: 133–181.

8. Agarwal RP, Meehan M, O'Regan D: Fixed Point Theory and Applications. Cambridge University Press, Cambridge; 2001.

9. Ćirić Lj: Non-self mappings satisfying nonlinear contractive condition with applications. Nonlinear Anal 2009, 71: 2927–2935. 10.1016/j.na.2009.01.174

10. Zeidler E: Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems. Springer-Verlag, Berlin; 1986.

11. Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distances between the points. Bull Austral Math Soc 1984, 30(1):1–9. 10.1017/S0004972700001659

12. Albera YaI, Guerre-Delabriere S: Principles of weakly contractive maps in Hilbert spaces. In New Results in Operator Theory and its Applications. Edited by: Gohberg, I, Lyu-bich, Y. Birkhäuser, Basel; 1997:7–22. vol. 98 of Operator Theory: Advances and Applications

13. Dorić D: Common fixed point for generalized ( ψ, ϕ )-weak contractions. Appl Math Lett 2009, 22: 1896–1900. 10.1016/j.aml.2009.08.001

14. Eslamian M, Abkar A: A fixed point theorems for generalized weakly contractive mappings in complete metric space. Ital J Pure Appl Math, in press.

15. Harjani J, Sadarangani K: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal 2008, 71: 3403–3410.

16. Jachymski J: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal 2011, 74: 768–774. 10.1016/j.na.2010.09.025

17. Nashine HK, Samet B: Fixed point results for mappings satisfying ( ψ, ϕ )-weak contractive condition in partially ordered metric spaces. Nonlinear Anal 2011, 74: 2201–2209. 10.1016/j.na.2010.11.024

18. Rhoades BE: Some theorems on weakly contractive maps. Nonlinear Anal 2001, 47: 2683–2693. 10.1016/S0362-546X(01)00388-1

19. Samet B, Vetro C, Vetro P: Fixed point theorems for α - ψ -contractive type mappings. Nonlinear Anal 2012, 75: 2154–2165. 10.1016/j.na.2011.10.014

20. Dutta PN, Choudhury BS: A generalization of contraction principle in metric spaces. Fixed Point Theory Appl 2008, 8. vol. 2008, Article ID 406368

21. Agarwal RP, El-Gebeily MA, O'Regan D: Generalized contractions in partially ordered metric spaces. Appl Anal 2008, 87: 109–116. 10.1080/00036810701556151

22. Altun I, Simsek H: Some fixed point theorems on ordered metric spaces and application. Fixed Point Theory Appl 2010, 17. vol. 2010, Article ID 621492

23. Beg I, Butt AR: Fixed point for set-valued mappings satisfying an implicit relation in ordered metric spaces. Nonlinear Anal 2009, 71: 3699–3704. 10.1016/j.na.2009.02.027

24. Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal 2006, 65: 1379–1393. 10.1016/j.na.2005.10.017

25. Caballero J, Harjani J, Sadarangani K: Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations. Fixed Point Theory Appl 2010, 14. vol. 2010, Article ID 916064

26. Chifu C, Petruşel G: Fixed-point results for generalized contractions on ordered Gauge spaces with applications. Fixed Point Theory Appl 2011, 10. vol. 2011, Article ID 979586

27. Choudhury BS, Kundu A: A coupled coincidence point result in partially ordered metric spaces for compatible mappings. Nonlinear Anal 2010, 73: 2524–2531. 10.1016/j.na.2010.06.025

28. Ćirić Lj, Agarwal RP, Samet B: Mixed monotone-generalized contractions in partially ordered probabilistic metric spaces. Fixed Point Theory Appl 2011, 56. vol. 2011

29. Ćirić Lj, Cakić N, Rajović M, Ume JS: Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl 2008, 11. vol. 2008, Article ID 131294

30. Ćirić Lj, Lakshmikantham V: Coupled random fixed point theorems for nonlinear contractions in partially ordered metric spaces. Stoch Anal Appl 2009, 27: 1246–1259. 10.1080/07362990903259967

31. Du W-S: Coupled fixed point theorems for nonlinear contractions satisfied Mizoguchi-Takahashi's condition in Quasiordered metric spaces. Fixed Point Theory Appl 2010, 9. vol. 2010, Article ID 876372

32. Lakshmikantham V, Ćirić Lj: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal 2009, 70: 4341–4349. 10.1016/j.na.2008.09.020

33. O'Regan D, Petruşel A: Fixed point theorems for generalized contractions in ordered metric spaces. J Math Anal Appl 2008, 341: 1241–1252. 10.1016/j.jmaa.2007.11.026

34. Radenović S, Kadelburg Z: Generalized weak contractions in partially ordered metric spaces. Comput Math Appl 2010, 60: 1776–1783. 10.1016/j.camwa.2010.07.008

35. Radenović S, Kadelburg Z, Jandrlić D, Jandrlić A: Some results on weakly contractive maps. Bull Iran Math Soc 2011, in press.

36. Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal 2010, 72: 4508–4517. 10.1016/j.na.2010.02.026

37. Samet B, Vetro C: Coupled fixed point, F-invariant set and fixed point of N -order. Ann Funct Anal 2010, 1: 46–56.

38. Samet B, Vetro C: Coupled fixed point theorems for multi-valued nonlinear contraction mappings in partially ordered metric spaces. Nonlinear Anal 2011, 74: 4260–4268. 10.1016/j.na.2011.04.007

39. Dugundji J: Topology. Allyn and Bacon, Boston; 1966.

## Author information

Authors

### Corresponding author

Correspondence to Bessem Samet.

### Competing interests

The authors declare that they have no competing interests.

### Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

## Rights and permissions

Reprints and Permissions

Cherichi, M., Samet, B. Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations. Fixed Point Theory Appl 2012, 13 (2012). https://doi.org/10.1186/1687-1812-2012-13 