 Research Article
 Open Access
 Published:
Iterative Algorithms for Finding Common Solutions to Variational Inclusion Equilibrium and Fixed Point Problems
Fixed Point Theory and Applications volume 2011, Article number: 915629 (2011)
Abstract
The main purpose of this paper is to introduce an explicit iterative algorithm to study the existence problem and the approximation problem of solution to the quadratic minimization problem. Under suitable conditions, some strong convergence theorems for a family of nonexpansive mappings are proved. The results presented in the paper improve and extend the corresponding results announced by some authors.
1. Introduction
Throughout this paper, we assume that is a real Hilbert space with inner product and norm , is a nonempty closed convex subset of , and is the set of fixed points of mapping .
A mapping is called nonexpansive if
Let be a singlevalued nonlenear mapping and be a multivalued mapping. The socalled quasivariational inclusion problem (see [1–3]) is to find such that
The set of solutions to quasivariational inclusion problem (1.2) is denoted by .
Special Cases

(I)
If , where is a proper convex lower semicontinuous function and is the subdifferential of , then the quasivariational inclusion problem (1.2) is equivalent to finding such that
(1.3)
which is called the mixed quasivariational inequality (see [4]).

(II)
If , where is a nonempty closed convex subset of and is the indicator function of , that is,
(1.4)
then the quasivariational inclusion problem (1.2) is equivalent to finding such that
This problem is called the HartmanStampacchia variational inequality (see [5]). The set of solutions to variational inequality (1.5) is denoted by .
Let be a nonlinear mapping and be a bifunction. The socalled generalized equilibrium problem is to find a point such that
The set of solutions to (1.6) is denoted by GEP (see [5, 6]). If , then (1.6) reduces to the following equilibrium problem: to find such that
The set of solutions to (1.7) is denoted by EP.
Iterative methods for nonexpansive mappings and equilibrium problems have been applied to solve convex minimization problems (see [7–9]). A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space :
where is the fixed point set of a nonexpansive mapping on .
In 2010, Zhang et al. (see [10]) proposed the following iteration method for variational inclusion problem (1.5) and equilibrium problem (1.6) in a Hilbert space :
Under suitable conditions, they proved the sequence generated by (1.9) converges strongly to the fixed point , which solves the quadratic minimization problem (1.8).
Motivated and inspired by the researches going on in this direction, especially inspired by Zhang et al. [10], the purpose of this paper is to introduce an explicit iterative algorithm to studying the existence problem and the approximation problem of the solution to the quadratic minimization problem (1.8) and prove some strong convergence theorems for a family of nonexpansive mappings in the setting of Hilbert spaces.
2. Preliminaries
Let be a real Hilbert space, and be a nonempty closed convex subset of . For any , there exists a unique nearest point in , denoted by , such that
Such a mapping from onto is called the metric projection. It is wellknown that the metric projection is nonexpansive.
In the sequel, we use and to denote the weak convergence and the strong convergence of the sequence , respectively.
Definition 2.1.
A mapping is called inverse strongly monotone if there exists an such that
A multivalued mapping is called monotone if ,
A multivalued mapping is called maximal monotone if it is monotone and for any , when
then .
Proposition 2.2 (see [11]).
Let be an inverse strongly monotone mapping. Then, the following statements hold:
(i) is an Lipschitz continuous and monotone mapping;
(ii)if is any constant in , then the mapping is nonexpansive, where is the identity mapping on .
Lemma 2.3 (see [12]).
Let be a strictly convex Banach space, be a closed convex subset of , and be a sequence of nonexpansive mappings. Suppose . Let be a sequence of positive numbers with . Then the mapping defined by
is well defined. And it is nonexpansive and
Definition 2.4.
Let be a Hilbert space and be a multivalued maximal monotone mapping. Then, the singlevalued mapping defined by
is called the resolvent operator associated with, where is any positive number and is the identity mapping.
Proposition 2.5 (see [11]).

(i)
The resolvent operator associated with is singlevalued and nonexpansive for all , that is,
(2.8)
(ii) The resolvent operator is 1inverse strongly monotone, that is,
Definition 2.6.
A singlevalued mapping is said to be hemicontinuous if for any , function is continuous at 0.
It is wellknown that every continuous mapping must be hemicontinuous.
Lemma 2.7 (see [13]).
Let and be bounded sequences in a Banach space . Let be a sequence in with
Suppose that
Then,
Lemma 2.8 (see [14]).
Let be a real Banach space, be the dual space of , be a maximal monotone mapping, and be a hemicontinuous bound monotone mapping with . Then, the mapping is a maximal monotone mapping.
Lemma 2.9 (see [15]).
Let be a uniformly convex Banach space, let be a nonempty closed convex subset of , and be a nonexpansive mapping with a fixed point. Then, is demiclosed in the sense that if is a sequence in satisfying
then
Throughout this paper, we assume that the bifunction satisfies the following conditions:
for all ;
is monotone, that is,
for each ,
for each , is convex and lower semicontinuous.
Lemma 2.10 (see [16]).
Let be a real Hilbert space, be a nonempty closed convex subset of , and be a bifunction satisfying the conditions . Let and . Then, there exists a point such that
Moreover, if is a mapping defined by
then the following results hold:
(i) is singlevalued and firmly nonexpansive, that is, for any ,
(ii)EP is closed and convex, and .
Lemma 2.11.

(i)
(see [11]) is a solution of variational inclusion (1.2) if and only if
(2.20)
that is,

(ii)
(see [10]) is a solution of generalized equilibrium problem (1.6) if and only if
(2.22)
that is,
(iii) (see [10]) Let be an inverse strongly monotone mapping and be a inverse strongly monotone mapping. If and , then is a closed convex subset in and GEP is a closed convex subset in .
Lemma 2.12 (see [17]).
Assume that is a sequence of nonnegative real numbers such that
where is a sequence in and is a sequence such that:
(i);
(ii) or .
Then, .
3. Main Results
Theorem 3.1.
Let be a real Hilbert space, be a nonempty closed convex subset of , be an inverse strongly monotone mapping and be a inverse strongly monotone mapping. Let be a maximal monotone mapping, be a sequence of nonexpansive mappings with , be the nonexpansive mapping defined by (2.5), and be a bifunction satisfying conditions . Let be the sequence defined by
where the mapping is defined by (2.18), and are two constants with , and
If
where and GEP is the set of solutions of variational inclusion (1.2) and generalized equilibrium problem (1.6), respectively, then the sequence defined by (3.1) converges strongly to , which is the unique solution of the following quadratic minimization problem:
Proof.
We divide the proof of Theorem 3.1 into four steps.
Step 1 (The sequence is bounded).
Set
Taking , then it follows from Lemma 2.11 that
Since both and are nonexpansive, and are inverse strongly monotone and inverse strongly monotone, respectively, from Proposition 2.2, we have
This implies that
It follows from (3.1) and (3.9) that
where . This shows that is bounded. Hence, it follows from (3.9) that the sequence and are also bounded.
It follows from (3.5), (3.6), and (3.9) that
This shows that is bounded.
Step 2.
Now, we prove that
Since is nonexpansive, from (3.5) and (3.9), we have that
Let in (3.14), in view of condition , we have
By virtue of Lemma 2.7, we have
This implies that
We derive from (3.17) that
From (3.1) and (3.8), we have
where
that is,
Let , noting the assumptions that , , from (3.2) and (3.18), we have
By virtue of Lemma 2.10(i) and (3.1), we have
Simplifying it, we have
Similarly, in view of Proposition 2.5(ii) and (3.1), we have
Simplifying it, from (3.24), we have
From (3.19) and (3.26), we have
Let nd in view of (3.18) and (3.22), we have
This shows that
Then, we have
Step 3 (sequence converges strongly to ).
Because is bounded, without loss of generality, we can assume that . In view of (3.12), it yields that and . From Lemma 2.9 and (3.30), we know that .
Next, we prove that .
Since , we have
It follows from condition that
Therefore,
For any and , then . From (3.33), we have
Since is inverse strongly monotone, from Proposition 2.2(i) and (3.12), we have
Let in (3.34), in view of condition and , we have
It follows from conditions , and (3.36) that
that is,
Let to 0 in (3.38), we have
This shows that .
Step 4 (now, we prove that ).
Since is inverse strongly monotone, from Proposition 2.2 (i), we know that is an Lipschitz continuous and monotone mapping and , where is the domain of . It follows from Lemma 2.8 that is maximal monotone. Let , that is, . Since , we have , that is, . By virtue of the maximal monotonicity of , we have
Therefore we have
Since is monotone, this implies that
Since
from (3.42), we have
Since is maximal monotone, , that is, .
Summing up the above arguments, we have proved that
On the other hand, for any , we have
and so we have
Put in (3.47), we have
where and . Since , it is easy to see that and . By Lemma 2.12, we conclude that as , where is the unique solution of the following quadratic minimization problem:
This completes the proof of Theorem 3.1.
In Theorem 3.1, if , then the following corollary can be obtained immediately.
Corollary 3.2.
Let be a real Hilbert space, be a nonempty closed convex subset of , be an inverse strongly monotone mapping and be a inverse strongly monotone mapping. Let be a maximal monotone mapping, be a nonexpansive mappings with . Let be a bifunction satisfying conditions . Let be the sequence defined by
where the mapping is defined by (2.18), and are two constants with , and
If
where and GEP are the sets of solutions of variational inclusion (1.2) and generalized equilibrium problem (1.6), then the sequence defined by (3.50) converges strongly to , which is the unique solution of the following quadratic minimization problem:
In Theorem 3.1, if , where is the indicator function of , then the variational inclusion problem (1.2) is equivalent to variational inequality (1.5), that is, to find such that , for all . Since . Consequently, we have the following corollary.
Corollary 3.3.
Let be a real Hilbert space, be a nonempty closed convex subset of , be an inverse strongly monotone mapping and be a inverse strongly monotone mapping. Let and be a nonexpansive mappings with . Let be a bifunction satisfying conditions . Let be the sequence defined by
where the mapping is defined by (2.18), and are two constants with , and
If
where and GEP are the sets of solutions of variational inclusion (1.5) and generalized equilibrium problem (1.6), then the sequence defined by (3.54) converges strongly to , which is the unique solution of the following quadratic minimization problem:
References
 1.
Noor MA, Noor KI: Sensitivity analysis for quasivariational inclusions. Journal of Mathematical Analysis and Applications 1999,236(2):290–299. 10.1006/jmaa.1999.6424
 2.
Chang SS: Setvalued variational inclusions in Banach spaces. Journal of Mathematical Analysis and Applications 2000,248(2):438–454. 10.1006/jmaa.2000.6919
 3.
Chang SS: Existence and approximation of solutions for setvalued variational inclusions in Banach space. Nonlinear Analysis. Theory, Methods & Applications 2001,47(1):583–594. 10.1016/S0362546X(01)002036
 4.
Noor MA: Generalized setvalued variational inclusions and resolvent equations. Journal of Mathematical Analysis and Applications 1998,228(1):206–220. 10.1006/jmaa.1998.6127
 5.
Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. The Mathematics Student 1994,63(1–4):123–145.
 6.
Tang F: Strong convergence theorem for a generalized equilibrium problems and a family of infinitely relatively nonexpansive mappings in a Banach space. Acta Analysis Functionalis Applicata 2010,12(3):259–265.
 7.
Ceng LC, Yao JC: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems. Journal of Computational and Applied Mathematics 2008,214(1):186–201. 10.1016/j.cam.2007.02.022
 8.
Li S, Li L, Su Y: General iterative methods for a oneparameter nonexpansive semigroup in Hilbert space. Nonlinear Analysis. Theory, Methods & Applications 2009,70(9):3065–3071. 10.1016/j.na.2008.04.007
 9.
Colao V, Marino G, Xu HK: An iterative method for finding common solutions of equilibrium and fixed point problems. Journal of Mathematical Analysis and Applications 2008,344(1):340–352. 10.1016/j.jmaa.2008.02.041
 10.
Zhang SS, Lee HW, Chan CK: Quadratic minimization for equilibrium problem variational inclusion and fixed point problem. Applied Mathematics and Mechanics 2010,31(7):917–928. 10.1007/s1048301013266
 11.
Zhang SS, Lee JHW, Chan CK: Algorithms of common solutions to quasi variational inclusion and fixed point problems. Applied Mathematics and Mechanics 2008,29(5):571–581. 10.1007/s104830080502y
 12.
Bruck RE Jr.: Properties of fixedpoint sets of nonexpansive mappings in Banach spaces. Transactions of the American Mathematical Society 1973, 179: 251–262.
 13.
Suzuki T: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory and Applications 2005, (1):103–123.
 14.
Pascali D: Nonlinear Mappings of Monotone Type. Sijthoff and Noordhoff International Publishers, The Netherlands; 1978.
 15.
Goebel K, Kirk WA: Topics in Metric Fixed Point Theory. Volume 28. Cambridge University Press, Cambridge, UK; 1990:viii+244.
 16.
Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces. Journal of Nonlinear and Convex Analysis 2005,6(1):117–136.
 17.
Xu HK: Viscosity approximation methods for nonexpansive mappings. Journal of Mathematical Analysis and Applications 2004,298(1):279–291. 10.1016/j.jmaa.2004.04.059
Author information
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Tan, J., Chang, S. Iterative Algorithms for Finding Common Solutions to Variational Inclusion Equilibrium and Fixed Point Problems. Fixed Point Theory Appl 2011, 915629 (2011). https://doi.org/10.1155/2011/915629
Received:
Accepted:
Published:
Keywords
 Equilibrium Problem
 Nonexpansive Mapping
 Multivalued Mapping
 Maximal Monotone
 Real Hilbert Space