Skip to content


  • Research Article
  • Open Access

Existence and Data Dependence of Fixed Points and Strict Fixed Points for Contractive-Type Multivalued Operators

Fixed Point Theory and Applications20072007:034248

  • Received: 21 October 2006
  • Accepted: 2 December 2006
  • Published:


The purpose of this paper is to present several existence and data dependence results of the fixed points of some multivalued generalized contractions in complete metric spaces. As for application, a continuation result is given.


  • Differential Geometry
  • Computational Biology
  • Data Dependence
  • Dependence Result
  • Generalize Contraction


Authors’ Affiliations

Department of Business, Faculty of Business, Babeş-Bolyai University Cluj-Napoca, Horea 7, Cluj-Napoca, 400174, Romania
Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University Cluj-Napoca, Kogălniceanu 1, Cluj-Napoca, 400084, Romania


  1. Rus IA, Petruşel A, Petruşel G: Fixed Point Theory: 1950–2000. Romanian Contributions. House of the Book of Science, Cluj-Napoca, Romania; 2002:xiv+308.Google Scholar
  2. Rus IA, Petruşel A, Sîntămărian A: Data dependence of the fixed point set of some multivalued weakly Picard operators. Nonlinear Analysis 2003,52(8):1947–1959. 10.1016/S0362-546X(02)00288-2MATHMathSciNetView ArticleGoogle Scholar
  3. Reich S: Fixed points of contractive functions. Bollettino della Unione Matematica Italiana. Serie IV 1972, 5: 26–42.MATHGoogle Scholar
  4. Petruşel A: Multivalued weakly Picard operators and applications. Scientiae Mathematicae Japonicae 2004,59(1):169–202.MATHMathSciNetGoogle Scholar
  5. Feng Y, Liu S: Fixed point theorems for multi-valued contractive mappings and multi-valued Caristi type mappings. Journal of Mathematical Analysis and Applications 2006,317(1):103–112. 10.1016/j.jmaa.2005.12.004MATHMathSciNetView ArticleGoogle Scholar
  6. Ćirić LB: Generalized contractions and fixed-point theorems. Publications de l'Institut Mathématique. Nouvelle Série 1971, 12(26): 19–26.Google Scholar
  7. Covitz H, Nadler SB Jr.: Multi-valued contraction mappings in generalized metric spaces. Israel Journal of Mathematics 1970, 8: 5–11. 10.1007/BF02771543MATHMathSciNetView ArticleGoogle Scholar
  8. Nadler SB Jr.: Multi-valued contraction mappings. Pacific Journal of Mathematics 1969, 30: 475–488.MATHMathSciNetView ArticleGoogle Scholar
  9. Petruşel A: Generalized multivalued contractions. Nonlinear Analysis 2001,47(1):649–659. 10.1016/S0362-546X(01)00209-7MATHMathSciNetView ArticleGoogle Scholar
  10. Reich S: A fixed point theorem for locally contractive multi-valued functions. Revue Roumaine de Mathématiques Pures et Appliquées 1972, 17: 569–572.MATHGoogle Scholar
  11. Rus IA: Fixed point theorems for multi-valued mappings in complete metric spaces. Mathematica Japonica 1975, 20: 21–24. special issueMathSciNetGoogle Scholar
  12. Rus IA: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca, Romania; 2001:198.MATHGoogle Scholar
  13. Frigon M, Granas A: Résultats du type de Leray-Schauder pour des contractions multivoques. Topological Methods in Nonlinear Analysis 1994,4(1):197–208.MATHMathSciNetGoogle Scholar
  14. Agarwal RP, Dshalalow J, O'Regan D: Fixed point and homotopy results for generalized contractive maps of Reich type. Applicable Analysis 2003,82(4):329–350. 10.1080/0003681031000098470MATHMathSciNetView ArticleGoogle Scholar
  15. Chiş A, Precup R: Continuation theory for general contractions in gauge spaces. Fixed Point Theory and Applications 2004,2004(3):173–185. 10.1155/S1687182004403027MATHGoogle Scholar