# Block Iterative Methods for a Finite Family of Relatively Nonexpansive Mappings in Banach Spaces

- Fumiaki Kohsaka
^{1}Email author and - Wataru Takahashi
^{2}

**2007**:021972

https://doi.org/10.1155/2007/21972

© F. Kohsaka and W. Takahashi. 2007

**Received: **7 November 2006

**Accepted: **12 November 2006

**Published: **16 January 2007

## Abstract

Using the convex combination based on Bregman distances due to Censor and Reich, we define an operator from a given family of relatively nonexpansive mappings in a Banach space. We first prove that the fixed-point set of this operator is identical to the set of all common fixed points of the mappings. Next, using this operator, we construct an iterative sequence to approximate common fixed points of the family. We finally apply our results to a convex feasibility problem in Banach spaces.

## Authors’ Affiliations

## References

- Aharoni R, Censor Y:
**Block-iterative projection methods for parallel computation of solutions to convex feasibility problems.***Linear Algebra and Its Applications*1989,**120:**165–175. 10.1016/0024-3795(89)90375-3MATHMathSciNetView ArticleGoogle Scholar - Butnariu D, Censor Y:
**On the behavior of a block-iterative projection method for solving convex feasibility problems.***International Journal of Computer Mathematics*1990,**34**(1–2):79–94. 10.1080/00207169008803865MATHView ArticleGoogle Scholar - Butnariu D, Censor Y:
**Strong convergence of almost simultaneous block-iterative projection methods in Hilbert spaces.***Journal of Computational and Applied Mathematics*1994,**53**(1):33–42. 10.1016/0377-0427(92)00123-QMATHMathSciNetView ArticleGoogle Scholar - Cohen N, Kutscher T:
**On spherical convergence, convexity, and block iterative projection algorithms in Hilbert space.***Journal of Mathematical Analysis and Applications*1998,**226**(2):271–291. 10.1006/jmaa.1998.6026MATHMathSciNetView ArticleGoogle Scholar - Flåm SD, Zowe J:
**Relaxed outer projections, weighted averages and convex feasibility.***BIT*1990,**30**(2):289–300. 10.1007/BF02017349MATHMathSciNetView ArticleGoogle Scholar - Kikkawa M, Takahashi W:
**Approximating fixed points of nonexpansive mappings by the block iterative method in Banach spaces.***International Journal of Computational and Numerical Analysis and Applications*2004,**5**(1):59–66.MATHMathSciNetGoogle Scholar - Crombez G:
**Image recovery by convex combinations of projections.***Journal of Mathematical Analysis and Applications*1991,**155**(2):413–419. 10.1016/0022-247X(91)90010-WMATHMathSciNetView ArticleGoogle Scholar - Kitahara S, Takahashi W:
**Image recovery by convex combinations of sunny nonexpansive retractions.***Topological Methods in Nonlinear Analysis*1993,**2**(2):333–342.MATHMathSciNetGoogle Scholar - Takahashi W:
**Iterative methods for approximation of fixed points and their applications.***Journal of the Operations Research Society of Japan*2000,**43**(1):87–108.MATHMathSciNetView ArticleGoogle Scholar - Takahashi W, Tamura T:
**Limit theorems of operators by convex combinations of nonexpansive retractions in Banach spaces.***Journal of Approximation Theory*1997,**91**(3):386–397. 10.1006/jath.1996.3093MATHMathSciNetView ArticleGoogle Scholar - Butnariu D, Reich S, Zaslavski AJ:
**Asymptotic behavior of relatively nonexpansive operators in Banach spaces.***Journal of Applied Analysis*2001,**7**(2):151–174. 10.1515/JAA.2001.151MATHMathSciNetView ArticleGoogle Scholar - Matsushita S, Takahashi W:
**Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces.***Fixed Point Theory and Applications*2004,**2004**(1):37–47. 10.1155/S1687182004310089MATHMathSciNetView ArticleGoogle Scholar - Matsushita S, Takahashi W:
**An iterative algorithm for relatively nonexpansive mappings by a hybrid method and applications.**In*Nonlinear Analysis and Convex Analysis*. Edited by: Takahashi W, Tanaka T. Yokohama Publishers, Yokohama, Japan; 2004:305–313.Google Scholar - Matsushita S, Takahashi W:
**A strong convergence theorem for relatively nonexpansive mappings in a Banach space.***Journal of Approximation Theory*2005,**134**(2):257–266. 10.1016/j.jat.2005.02.007MATHMathSciNetView ArticleGoogle Scholar - Alber YI:
**Metric and generalized projection operators in Banach spaces: properties and applications.**In*Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math.*.*Volume 178*. Edited by: Kartsatos AG. Markel Dekker, New York, NY, USA; 1996:15–50.Google Scholar - Kamimura S, Takahashi W:
**Strong convergence of a proximal-type algorithm in a Banach space.***SIAM Journal on Optimization*2002,**13**(3):938–945. 10.1137/S105262340139611XMathSciNetView ArticleGoogle Scholar - Bregman LM:
**A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming.***USSR Computational Mathematics and Mathematical Physics*1967,**7:**200–217.View ArticleGoogle Scholar - Censor Y, Reich S:
**Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization.***Optimization*1996,**37**(4):323–339. 10.1080/02331939608844225MATHMathSciNetView ArticleGoogle Scholar - Kohsaka F, Takahashi W:
**Strong convergence of an iterative sequence for maximal monotone operators in a Banach space.***Abstract and Applied Analysis*2004,**2004**(3):239–249. 10.1155/S1085337504309036MATHMathSciNetView ArticleGoogle Scholar - Cioranescu I:
*Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its Applications*.*Volume 62*. Kluwer Academic, Dordrecht, The Netherlands; 1990.View ArticleGoogle Scholar - Diestel J:
*Geometry of Banach Spaces—Selected Topics, Lecture Notes in Mathematics*.*Volume 485*. Springer, Berlin, Germany; 1975.Google Scholar - Gossez J-P, Lami Dozo E:
**Some geometric properties related to the fixed point theory for nonexpansive mappings.***Pacific Journal of Mathematics*1972,**40:**565–573.MATHMathSciNetView ArticleGoogle Scholar - Reich S:
**A weak convergence theorem for the alternating method with Bregman distances.**In*Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math.*.*Volume 178*. Edited by: Kartsatos AG. Markel Dekker, New York, NY, USA; 1996:313–318.Google Scholar - Xu HK:
**Inequalities in Banach spaces with applications.***Nonlinear Analysis*1991,**16**(12):1127–1138. 10.1016/0362-546X(91)90200-KMATHMathSciNetView ArticleGoogle Scholar - Zălinescu C:
**On uniformly convex functions.***Journal of Mathematical Analysis and Applications*1983,**95**(2):344–374. 10.1016/0022-247X(83)90112-9MATHMathSciNetView ArticleGoogle Scholar - Zălinescu C:
*Convex Analysis in General Vector Spaces*. World Scientific, River Edge, NJ, USA; 2002.MATHView ArticleGoogle Scholar - Takahashi W:
*Convex Analysis and Approximation of Fixed Points, Mathematical Analysis Series*.*Volume 2*. Yokohama Publishers, Yokohama, Japan; 2000.Google Scholar - Takahashi W:
*Nonlinear Functional Analysis. Fixed Point Theory and Its Applications*. Yokohama Publishers, Yokohama, Japan; 2000.MATHGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.