Skip to main content

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Demiclosed Principle for Asymptotically Nonexpansive Mappings in CAT(0) Spaces

  • 1658 Accesses

  • 28 Citations

Abstract

We prove the demiclosed principle for asymptotically nonexpansive mappings in CAT(0) spaces. As a consequence, we obtain a -convergence theorem of the Krasnosel'skii-Mann iteration for asymptotically nonexpansive mappings in this setting. Our results extend and improve many results in the literature.

Publisher note

To access the full article, please see PDF

Author information

Correspondence to B Panyanak.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Nanjaras, B., Panyanak, B. Demiclosed Principle for Asymptotically Nonexpansive Mappings in CAT(0) Spaces. Fixed Point Theory Appl 2010, 268780 (2010). https://doi.org/10.1155/2010/268780

Download citation

Keywords

  • Differential Geometry
  • Nonexpansive Mapping
  • Computational Biology
  • Full Article
  • Publisher Note