Open Access

Generalized metrics and Caristi’s theorem

Fixed Point Theory and Applications20132013:129

DOI: 10.1186/1687-1812-2013-129

Received: 4 February 2013

Accepted: 29 April 2013

Published: 15 May 2013

The Erratum to this article has been published in Fixed Point Theory and Applications 2014 2014:177

Abstract

A ‘generalized metric space’ is a semimetric space which does not satisfy the triangle inequality, but which satisfies a weaker assumption called the quadrilateral inequality. After reviewing various related axioms, it is shown that Caristi’s theorem holds in complete generalized metric spaces without further assumptions. This is noteworthy because Banach’s fixed point theorem seems to require more than the quadrilateral inequality, and because standard proofs of Caristi’s theorem require the triangle inequality.

MSC:54H25, 47H10.

Keywords

fixed points contraction mappings metric spaces semimetric spaces generalized metric spaces Caristi’s theorem

1 Introduction

In an effort to generalize Banach’s contraction mapping principle, which holds in all complete metric spaces, to a broader class of spaces, Branciari [1] conceived of the notion to replace the triangle inequality with a weaker assumption he called the quadrilateral inequality. He called these spaces ‘generalized metric spaces’. These spaces retain the fundamental notion of distance. However, as we shall see, the quadrilateral inequality, while useful in some sense, ignores the importance of such things as the continuity of the distance function, uniqueness of limits, etc. In fact it has been asserted (see, e.g., [2]) that for an accurate generalization of Banach’s fixed point theorem along the lines envisioned by Branciari, one needs the quadrilateral inequality in conjunction with the assumption that the space is Hausdorff.

We begin by discussing the relationship of Branciari’s concept to the classical axioms of semimetric spaces. Then we show that Caristi’s fixed point theorem holds within Branciari’s framework without any additional assumptions. This is possibly surprising. All proofs of Caristi’s theorem that the writers are aware of rely in some way on use of the triangle inequality. (In contrast, it has been noted that the proof of the first author’s fundamental fixed point theorem for nonexpansive mappings does not require the triangle inequality; see [3].)

2 Semimetric spaces

In the absence of relevant examples, it is not clear whether Branciari’s concept of weakening the triangle inequality will prove useful in analysis. However, the notion of assigning a ‘distance’ between each two points of an abstract set is fundamental in geometry. According to Blumenthal [[4], p.31], this notion has its origins in the late nineteenth century in axiomatic studies of de Tilly [5]. In his 1928 treatise [6], Karl Menger used the term halb-metrischer Raume, or semimetric space, to describe the same concept. We begin by summarizing the results of Wilson’s seminal paper [7] on semimetric spaces.

Definition 1 Let X be a set and let D : X × X R https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq1_HTML.gif be a mapping satisfying for each a , b X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq2_HTML.gif:
  1. I.

    d ( a , b ) 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq3_HTML.gif, and d ( a , b ) = 0 a = b https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq4_HTML.gif;

     
  2. II.

    d ( a , b ) = d ( b , a ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq5_HTML.gif. Then the pair ( X , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq6_HTML.gif is called a semimetric space.

     

In such a space, convergence of sequences is defined in the usual way: A sequence { x n } X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq7_HTML.gif is said to converge to x X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq8_HTML.gif if lim n d ( x n , x ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq9_HTML.gif. Also, a sequence is said to be Cauchy (or d-Cauchy) if for each ε > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq10_HTML.gif there exists N N https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq11_HTML.gif such that m , n N d ( x m , x n ) < ε https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq12_HTML.gif. The space ( X , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq13_HTML.gif is said to be complete if every Cauchy sequence has a limit.

With such a broad definition of distance, three problems are immediately obvious: (i) There is nothing to assure that limits are unique (thus the space need not be Hausdorff); (ii) a convergent sequence need not be a Cauchy sequence; (iii) the mapping d ( a , ) : X R https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq14_HTML.gif need not even be continuous. Therefore it is unlikely there could be an effective topological theory in such a setting.

With the introduction of the triangle inequality, problems (i), (ii), and (iii) are simultaneously eliminated.
  1. VI.
    (Triangle inequality) With X and d as in Definition 1, assume also that for each a , b , c X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq15_HTML.gif,
    d ( a , b ) d ( a , c ) + d ( c , b ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equa_HTML.gif
     

Definition 2 A pair ( X , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq6_HTML.gif satisfying Axioms I, II, and VI is called a metric space.a

In his study [7], Wilson introduces three axioms in addition to I and II which are weaker than VI. These are the following.
  1. III.
    For each pair of (distinct) points a , b X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq2_HTML.gif, there is a number r a , b > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq16_HTML.gif such that for every c X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq17_HTML.gif,
    r a , b d ( a , c ) + d ( c , b ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equb_HTML.gif
     
  2. IV.
    For each point a X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq18_HTML.gif and each k > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq19_HTML.gif, there is a number r a , k > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq20_HTML.gif such that if b X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq21_HTML.gif satisfies d ( a , b ) k https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq22_HTML.gif, then for every c X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq17_HTML.gif,
    r a , k d ( a , c ) + d ( c , b ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equc_HTML.gif
     
  3. V.
    For each k > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq19_HTML.gif, there is a number r k > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq23_HTML.gif such that if a , b X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq2_HTML.gif satisfy d ( a , b ) k https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq22_HTML.gif, then for every c X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq17_HTML.gif,
    r k d ( a , c ) + d ( c , b ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equd_HTML.gif
     

Obviously, if Axiom V is strengthened to r k = k https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq24_HTML.gif, then the space becomes metric. Chittenden [8] has shown (using an equivalent definition) that a semimetric space satisfying Axiom V is always homeomorphic to a metric space.

Axiom III is equivalent to the assertion that there do not exist distinct points a , b X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq2_HTML.gif and a sequence { c n } X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq25_HTML.gif such that d ( a , c n ) + d ( b , c n ) 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq26_HTML.gif as n https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq27_HTML.gif. Thus, as Wilson observes, the following is self-evident.

Proposition 1 In a semimetric space, Axiom  III is equivalent to the assertion that limits are unique.

For r > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq28_HTML.gif, let U ( p ; r ) = { x X : d ( x , p ) < r } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq29_HTML.gif. Then Axiom III is also equivalent to the assertion that X is Hausdorff in the sense that given any two distinct points a , b X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq2_HTML.gif, there exist positive numbers r a https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq30_HTML.gif and r b https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq31_HTML.gif such that U ( a ; r a ) U ( b ; r b ) = https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq32_HTML.gif. This suggests the presence of a topology.

Definition 3 Let ( X , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq6_HTML.gif be a semimetric space. Then the distance function d is said to be continuous if for any sequences { p n } , { q n } X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq33_HTML.gif, lim n d ( p n , p ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq34_HTML.gif and lim n d ( q n , q ) = 0 lim n d ( p n , q n ) = d ( p , q ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq35_HTML.gif.

Remark Some writers call a space satisfying Axioms I and II a ‘symmetric space’ and reserve the term semimetric space for a symmetric space with a continuous distance function (see, e.g., [9]; cf. also [10, 11]). Here we use Menger’s original terminology.

A point p in a semimetric space X is said to be an accumulation point of a subset E of X if, given any ε > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq36_HTML.gif, U ( p ; ε ) E https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq37_HTML.gif. A subset of a semimetric space is said to be closed if it contains each of its accumulation points. A subset of a semimetric space is said to be open if its complement is closed. With these definitions, if X is a semimetric space with a continuous distance function, then U ( p ; r ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq38_HTML.gif is an open set for each p X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq39_HTML.gif and r > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq28_HTML.gif and, moreover, X is a Hausdorff topological space [4].

We now turn to the concept introduced by Branciari.

Definition 4 ([1])

Let X be a nonempty set, and let d : X × X [ 0 , ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq40_HTML.gif be a mapping such that for all x , y X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq41_HTML.gif and all distinct points u , v X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq42_HTML.gif, each distinct from x and y:
  1. (i)

    d ( x , y ) = 0 x = y https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq43_HTML.gif;

     
  2. (ii)

    d ( x , y ) = d ( y , x ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq44_HTML.gif;

     
  3. (iii)

    d ( x , y ) d ( x , u ) + d ( u , v ) + d ( v , y ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq45_HTML.gif (quadrilateral inequality).

     

Then X is called a generalized metric space (g.m.s.).

Proposition 2 If ( X , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq6_HTML.gif is a generalized metric space which satisfies Axiom  III, then the distance function is continuous.

Proof Suppose that { p n } , { q n } X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq33_HTML.gif satisfy lim n d ( p n , p ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq34_HTML.gif and lim n d ( q n , q ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq46_HTML.gif, where p q https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq47_HTML.gif. Also assume that for n arbitrarily large, p n p https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq48_HTML.gif and q n q https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq49_HTML.gif. In view of Axiom III, we may also assume that for n sufficiently large, p n q n https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq50_HTML.gif. Then
d ( p , q ) d ( p , p n ) + d ( p n , q n ) + d ( q n , q ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Eque_HTML.gif
and
d ( p n , q n ) d ( p n , p ) + d ( p , q ) + d ( q , q n ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equf_HTML.gif
Together these inequalities imply
lim inf n d ( p n , q n ) d ( p , q ) lim sup n d ( p n , q n ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equg_HTML.gif

Thus lim n d ( p n , q n ) = d ( p , q ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq51_HTML.gif. □

Therefore if a generalized metric space satisfies Axiom III, it is a Hausdorff topological space. However, the following observation shows that the quadrilateral inequality implies a weaker but useful form of distance continuity. (This is a special case of Proposition 1 of [12].)

Proposition 3 Suppose that { q n } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq52_HTML.gif is a Cauchy sequence in a generalized metric space X and suppose lim n d ( q n , q ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq53_HTML.gif. Then lim n d ( p , q n ) = d ( p , q ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq54_HTML.gif for all p X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq39_HTML.gif. In particular, { q n } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq52_HTML.gif does not converge to p if p q https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq47_HTML.gif.

Proof We may assume that p q https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq47_HTML.gif. If q n = p https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq55_HTML.gif for arbitrarily large n, it must be the case that p = q https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq56_HTML.gif. So, we may also assume that p q n https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq57_HTML.gif for all n. Also, q n q https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq49_HTML.gif for infinitely many n; otherwise, the result is trivial. So, we may assume that q n q m q https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq58_HTML.gif and q n q m p https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq59_HTML.gif for all m , n N https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq60_HTML.gif with m n https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq61_HTML.gif. Then, by the quadrilateral inequality,
d ( p , q ) d ( p , q n ) + d ( q n , q n + 1 ) + d ( q n + 1 , q ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equh_HTML.gif
and
d ( p , q n ) d ( p , q ) + d ( q , q n + 1 ) + d ( q n + 1 , q n ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equi_HTML.gif
Since { q n } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq52_HTML.gif is a Cauchy sequence, lim n d ( q n , q n + 1 ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq62_HTML.gif. Therefore, letting n https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq27_HTML.gif in the above inequalities,
lim sup n d ( p , q n ) d ( p , q ) lim inf n d ( p , q n ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equj_HTML.gif

 □

We now come to Branciari’s extension of Banach’s contraction mapping theorem. Although in his proof Branciari makes the erroneous assertion that a g.m.s. is a Hausdorff topological space with a neighborhood basis given by
B = { B ( x ; r ) : x S , r R + 0 } , https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equk_HTML.gif

with the aid of Proposition 3, Branciari’s proof carries over with only a minor change. The assertion in [2] that the space needs to be Hausdorff is superfluous, a fact first noted in [12]. See also the example in [13].

Theorem 1 ([1])

Let ( X , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq6_HTML.gif be a complete generalized metric space, and suppose that the mapping f : X X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq63_HTML.gif satisfies d ( f ( x ) , f ( y ) ) λ d ( x , y ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq64_HTML.gif for all x , y X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq41_HTML.gif and fixed λ ( 0 , 1 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq65_HTML.gif. Then f has a unique fixed point x 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq66_HTML.gif, and lim n f n ( x ) = x 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq67_HTML.gif for each x X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq8_HTML.gif.

It is possible to prove this theorem by following the proof given by Branciari up to the point of showing that { f n ( x ) } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq68_HTML.gif is a Cauchy sequence for each x X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq8_HTML.gif. Then, by completeness of X, there exists x 0 X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq69_HTML.gif such that lim n f n ( x ) = x 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq70_HTML.gif. But lim n d ( f n + 1 ( x ) , f ( x 0 ) ) λ lim n d ( f n ( x ) , x 0 ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq71_HTML.gif, so lim n f n + 1 x = f ( x 0 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq72_HTML.gif. In view of Proposition 3, f ( x 0 ) = x 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq73_HTML.gif.

3 Caristi’s theorem

We now turn to a proof of Caristi’s theorem in a complete g.m.s.

Theorem 2 (cf. Caristi [14])

Let ( X , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq6_HTML.gif be a complete g.m.s. Let f : X X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq63_HTML.gif be a mapping, and let φ : X R + https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq74_HTML.gif be a lower semicontinuous function. Suppose that
d ( x , f ( x ) ) φ ( x ) φ ( f ( x ) ) , x X . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equl_HTML.gif

Then f has a fixed point.

Typically, proofs of Caristi’s theorem (and there have been many) involve assigning a partial order to X by setting x y d ( x , y ) φ ( x ) φ ( y ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq75_HTML.gif, and then either using Zorn’s lemma or the Brézis-Browder order principle (see Section 4). However, the triangle inequality is needed for these approaches in order to show that ( X , ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq76_HTML.gif is transitive. The proof we give below is based on Wong’s modification [15] of Caristi’s original transfinite induction argument [14]. (Recall that if M is a metric space, a mapping φ : M R https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq77_HTML.gif is said to be lower semicontinuous (l.s.c.) if given x X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq8_HTML.gif and a net { x α } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq78_HTML.gif in M, the conditions x α x https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq79_HTML.gif and φ ( x α ) r https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq80_HTML.gif imply φ ( x ) r https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq81_HTML.gif.)

Proof of Theorem 2 Let n N https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq82_HTML.gif. Then
φ ( x ) φ ( f n ( x ) ) = φ ( x ) φ ( f ( x ) ) + φ ( f ( x ) ) φ ( f 2 ( x ) ) + + φ ( f n 1 ( x ) ) φ ( f n ( x ) ) d ( x , f ( x ) ) + d ( f ( x ) , f 2 ( x ) ) + + d ( f n 1 ( x ) , f n ( x ) ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equm_HTML.gif
Hence
i = 0 n 1 d ( f i ( x ) , f i + 1 ( x ) ) φ ( x ) φ ( f n ( x ) ) φ ( x ) , https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equn_HTML.gif
so
i = 0 d ( f i ( x ) , f i + 1 ( x ) ) < . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equo_HTML.gif

This proves that { f n ( x ) } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq83_HTML.gif is a Cauchy sequence. If f were continuous, one could immediately conclude that there exists x 0 X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq69_HTML.gif such that lim n f n ( x ) = x 0 = f ( x 0 ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq84_HTML.gif. (The quadrilateral inequality is not needed in this case, but it is necessary for Cauchy sequences to have unique limits.)

Let Γ denote the set of countable ordinals. For α , β Γ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq85_HTML.gif, α < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq86_HTML.gif, we use | [ α , β ] | https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq87_HTML.gif to denote the cardinality of the set
{ μ : α μ β } . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equp_HTML.gif
Now let x 0 X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq69_HTML.gif, let β Γ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq88_HTML.gif, and suppose that the net { x α } α < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq89_HTML.gif has been defined so that
  1. (i)

    x α + 1 = f ( x α ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq90_HTML.gif for all α < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq91_HTML.gif;

     
  2. (ii)

    if γ < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq92_HTML.gif is a limit ordinal, then the net { x α } α < γ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq93_HTML.gif converges to x γ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq94_HTML.gif;

     
  3. (iii)

    if 0 α μ < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq95_HTML.gif and | [ α , μ ] | 4 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq96_HTML.gif, then d ( x α , x μ ) φ ( x α ) φ ( x μ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq97_HTML.gif.

     
If β = γ + 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq98_HTML.gif, define x β = f ( x γ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq99_HTML.gif. If α < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq86_HTML.gif and | [ α , β ] | 4 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq100_HTML.gif, then | [ α + 1 , γ ] | 4 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq101_HTML.gif and by the quadrilateral inequality,
d ( x α , x β ) d ( x α , x α + 1 ) + d ( x α + 1 , x γ ) + d ( x γ , x β ) = d ( x α , x α + 1 ) + d ( x α + 1 , x γ ) + d ( x γ , x γ + 1 ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equq_HTML.gif
Thus if | [ α + 1 , γ ] | 4 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq102_HTML.gif, by the inductive assumption,
d ( x α , x β ) φ ( x α ) φ ( x β ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equr_HTML.gif
Otherwise, | [ α + 1 , γ ] | 3 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq103_HTML.gif. If γ = α + 1 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq104_HTML.gif, | [ α , β ] | = | { α , α + 1 , α + 2 } | = 3 < 4 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq105_HTML.gif. If γ = α + 2 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq106_HTML.gif, then β = α + 3 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq107_HTML.gif and we have
d ( x α , x β ) = d ( x α , x α + 3 ) d ( x α , x α + 1 ) + d ( x α + 1 , x α + 2 ) + d ( x α + 2 , x α + 3 ) φ ( x α ) φ ( x β ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equs_HTML.gif
Finally, if γ = α + 3 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq108_HTML.gif, we can write (here order 3 is needed!)
d ( x α , x β ) d ( x α , x α + 1 ) + d ( x α + 1 , x α + 2 ) + d ( x α + 2 , x α + 3 ) + d ( x α + 3 , x α + 4 ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equt_HTML.gif
Now suppose β is a limit ordinal. We claim that { x α } α < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq109_HTML.gif is a Cauchy net. If not, there exists ε > 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq10_HTML.gif and a strictly increasing sequence { α n } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq110_HTML.gif in ( 0 , β ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq111_HTML.gif such that | [ α n , α n + 1 ] | 4 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq112_HTML.gif and d ( x α n , x α n + 1 ) ε https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq113_HTML.gif. This leads to the contradiction
= n = 1 d ( x α n , x α n + 1 ) n = 1 ( φ ( x α n ) φ ( x α n + 1 ) ) φ ( x α 1 ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equu_HTML.gif

Therefore { x α } α < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq114_HTML.gif is a Cauchy net and, since X is complete, it is possible to take x β = lim α < β x α https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq115_HTML.gif.

Since β is a limit ordinal, the cardinality of [ α , β ] https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq116_HTML.gif is infinite for all α < β https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq86_HTML.gif. Consequently, since φ is lower semicontinuous,
d ( x α , x β ) = lim γ < β d ( x α , x γ ) lim inf γ < β ( φ ( x α ) φ ( x γ ) ) = φ ( x α ) lim sup γ < β φ ( x γ ) φ ( x α ) φ ( x β ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equv_HTML.gif

Therefore a net { x α } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq78_HTML.gif has been defined satisfying (i), (ii), and (iii) for all α Γ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq117_HTML.gif. Let Γ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq118_HTML.gif denote the set of limit ordinals in Γ. If f has no fixed point, the net { φ ( x α ) } α Γ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq119_HTML.gif is strictly decreasing. This is a contradiction because Γ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq120_HTML.gif is uncountable and any strictly decreasing net of real numbers must be countable. □

4 Another approach

We now examine an easy proof of Caristi’s original theorem based on Zorn’s lemma. (A more constructive proof which uses the Brézis-Browder order principle is given in [16].)

Theorem 3 Let ( X , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq6_HTML.gif be a complete metric space. Let f : X X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq63_HTML.gif be a mapping, and let φ : X R + https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq121_HTML.gif be a lower semicontinuous function. Suppose that
d ( x , f ( x ) ) φ ( x ) φ ( f ( x ) ) x X . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equ1_HTML.gif
(C)

Then f has a fixed point.

Proof Introduce the Brøndsted partial order on X by setting x y d ( x , y ) φ ( x ) φ ( y ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq75_HTML.gif. Let I be a totally ordered set, and let { x γ } γ I https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq122_HTML.gif be a chain in ( X , ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq123_HTML.gif. Then α β x α x β d ( x α , x β ) φ ( x α ) φ ( x β ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq124_HTML.gif. Therefore { φ ( x γ ) } γ I https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq125_HTML.gif is decreasing. Since φ is bounded below, lim γ φ ( x γ ) = r https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq126_HTML.gif. This implies lim α , β d ( x α , x β ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq127_HTML.gif; hence { x γ } γ I https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq128_HTML.gif is a Cauchy net. Since X is complete, there exists x X https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq8_HTML.gif such that lim γ x γ = x https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq129_HTML.gif. Thus for α I https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq130_HTML.gif,
d ( x α , x ) = lim γ d ( x α , x γ ) lim γ ( φ ( x α ) φ ( x γ ) ) = φ ( x α ) r φ ( x α ) φ ( x ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equw_HTML.gif

Therefore x α x https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq131_HTML.gif for each α I https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq130_HTML.gif, so x is an upper bound for the chain { φ ( x γ ) } γ I https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq132_HTML.gif. By Zorn’s lemma, ( X , ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq133_HTML.gif has a maximal element x ¯ https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq134_HTML.gif. But condition (C) implies x ¯ f ( x ¯ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq135_HTML.gif, so it must be the case that x ¯ = f ( x ¯ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq136_HTML.gif. □

The above argument fails in the setting of Theorem 2 because it is not possible to show that ( X , ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq133_HTML.gif is transitive in a g.m.s. In a metric space, transitivity follows directly from the triangle inequality. A way to circumvent this difficulty is to only consider points of X that are limits of nontrivial Cauchy sequences. The proof of Theorem 2 implies that nontrivial Cauchy sequences exist. So, let
X C = { x X : x  is the limit of an infinite Cauchy sequence in  X } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equx_HTML.gif
and define
x y x , y X C and φ ( x ) φ ( y ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equy_HTML.gif
Now let x, y, and z be three distinct points in ( X C , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq137_HTML.gif, and let { z n } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq138_HTML.gif be a Cauchy sequence converging to z. Then, by the quadrilateral inequality,
d ( x , y ) d ( x , z n ) + d ( z n , z n + 1 ) + d ( z n + 1 , y ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equz_HTML.gif

Letting n https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq27_HTML.gif and applying Proposition 3, we see that d ( x , y ) d ( x , z ) + d ( z , y ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq139_HTML.gif. Therefore ( X C , d ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq140_HTML.gif is a metric space. In the proof of Theorem 3 x ¯ X C https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq141_HTML.gif. To show that x ¯ f ( x ¯ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq135_HTML.gif, it is necessary to show that f ( x ¯ ) X C https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq142_HTML.gif. Assume that x ¯ f ( x ¯ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq143_HTML.gif. Then { f n ( x ¯ ) } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq144_HTML.gif is a Cauchy sequence. So, let x = lim n f n ( x ¯ ) https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq145_HTML.gif.

By induction,
d ( x ¯ , f 2 n + 1 ( x ¯ ) ) φ ( x ¯ ) φ ( f 2 n + 1 ( x ¯ ) ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equaa_HTML.gif
Then
d ( x ¯ , x ) = lim n d ( x ¯ , f 2 n + 1 ( x ¯ ) ) lim n ( φ ( x ¯ ) φ ( f 2 n + 1 ( x ¯ ) ) ) = φ ( x ¯ ) lim n φ ( f 2 n + 1 ( x ¯ ) ) φ ( x ¯ ) φ ( x ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equab_HTML.gif
This leads to the contradiction x ¯ x https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq146_HTML.gif. The other alternative is that there exists a periodic point. This is impossible because
f n ( x ) f n + 1 ( x ) φ ( f n + 1 ( x ) ) < φ ( f n ( x ) ) . https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_Equac_HTML.gif

Remark In view of Proposition 3, it seems reasonable to introduce the following definition.

Definition 5 A point p in a generalized metric space X is said to be an accumulation point of a subset E of X if some infinite Cauchy sequence in E converges to p. A set E in X is said to be closed if it contains all of its accumulation points.

Observe that with convergence defined as above, lim n x n = x { x n } https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq147_HTML.gif is a Cauchy sequence and lim n d ( x n , x ) = 0 https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-129/MediaObjects/13663_2013_Article_464_IEq148_HTML.gif.

Endnote

The term ‘metric space’ for spaces satisfying Axioms I, II, and VI is apparently due to Hausdorff [17].

Notes

Declarations

Acknowledgements

We thank a referee for pointing out some oversights in the original draft of this manuscript. The research of N. Shahzad was partially supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, Saudi Arabia.

Authors’ Affiliations

(1)
Department of Mathematics, University of Iowa
(2)
Department of Mathematics, King Abdulaziz University

References

  1. Branciari A: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. (Debr.) 2000, 57: 31–37.MathSciNet
  2. Sarma IR, Rao JM, Rao SS: Contractions over generalized metric spaces. J. Nonlinear Sci. Appl. 2009, 2: 180–182.MathSciNet
  3. Kirk WA, Kang BG: A fixed point theorem revisited. J. Korean Math. Soc. 1997, 34(2):285–291.MathSciNet
  4. Blumenthal LM: Theory and Applications of Distance Geometry. 2nd edition. Chelsea, New York; 1970.
  5. de Tilly, J: ‘Essai de géométrie analytique gén érale’, Mémoires couronnés et autres mémoires publiés par l’Académie Royale de Belgique, 47, mémoire 5 (1892–93)
  6. Menger K: Untersuchungen über allgemeine Metrik. Math. Ann. 1928, 100: 75–163. 10.1007/BF01448840MathSciNetView Article
  7. Wilson WA: On semimetric spaces. Am. J. Math. 1931, 53(2):361–373. 10.2307/2370790View Article
  8. Chittenden EW: On the equivalence of ecart and voisinage. Trans. Am. Math. Soc. 1917, 18(2):161–166.MathSciNet
  9. Jachymski J, Matkowski J, Świątkowski T: Nonlinear contractions on semimetric spaces. J. Appl. Anal. 1995, 1(2):125–134.MathSciNetView Article
  10. Hicks TL, Rhoades BE: Fixed point theory in symmetric spaces with applications to probabilistic spaces. Nonlinear Anal., Theory Methods Appl. 1999, 36(3):331–344. 10.1016/S0362-546X(98)00002-9MathSciNetView Article
  11. Miheţ DL: A note on a paper of T. L. Hicks and B. E. Rhoades: ‘Fixed point theory in symmetric spaces with applications to probabilistic spaces’ [Nonlinear Anal. 36 (1999), no. 3, Ser. A: Theory Methods, 331–344; MR1688234]. Nonlinear Anal. 2006, 65(7):1411–1413. 10.1016/j.na.2005.10.021MathSciNetView Article
  12. Turinici, M: Functional contractions in local Branciari metric spaces. arXiv:1208.4610v1 [math.GN] 22 Aug 2012
  13. Samet B: Discussion on: a fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces by A. Branciari. Publ. Math. (Debr.) 2010, 76(4):493–494.MathSciNet
  14. Caristi J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 1976, 215: 241–251.MathSciNetView Article
  15. Wong CS: On a fixed point theorem of contractive type. Proc. Am. Math. Soc. 1976, 57(2):283–284. 10.1090/S0002-9939-1976-0407826-5View Article
  16. Brézis H, Browder FE: A general principle on ordered sets in nonlinear functional analysis. Adv. Math. 1976, 21(3):355–364. 10.1016/S0001-8708(76)80004-7View Article
  17. Hausdorff, F: Grundzüge der Mengenlehre. Leipzig (1914)

Copyright

© Kirk and Shahzad; licensee Springer 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.