Open Access

Approximation of the common minimum-norm fixed point of a finite family of asymptotically nonexpansive mappings

Fixed Point Theory and Applications20132013:1

DOI: 10.1186/1687-1812-2013-1

Received: 21 September 2012

Accepted: 28 November 2012

Published: 2 January 2013

Abstract

We introduce an iterative process which converges strongly to the common minimum-norm fixed point of a finite family of asymptotically nonexpansive mappings. As a consequence, convergence result to a common minimum-norm fixed point of a finite family of nonexpansive mappings is proved.

MSC:47H09, 47H10, 47J05, 47J25.

Keywords

asymptotically nonexpansive mappings minimum-norm fixed point nonexpansive mappings split feasibility problem strong convergence

1 Introduction

Let K and D be nonempty closed convex subsets of real Hilbert spaces H 1 and H 2 , respectively. The split feasibility problem is formulated as finding a point x ¯ satisfying
x ¯ K and A x ¯ D ,
(1.1)

where A is bounded linear operator from H 1 into H 2 . A split feasibility problem in finite dimensional Hilbert spaces was first studied by Censor and Elfving [1] for modeling inverse problems which arise in medical image reconstruction, image restoration and radiation therapy treatment planing (see, e.g., [13]).

It is clear that x ¯ is a solution to the split feasibility problem (1.1) if and only if x ¯ K and A x ¯ P D A x ¯ = 0 , where P D is the metric projection from H 2 onto D. Set
min x K φ ( x ) : = min x K 1 2 A x P D A x 2 .
(1.2)
Then x ¯ is a solution of (1.1) if and only if x ¯ solves the minimization problem (1.2) with the minimum equal to zero. Now, assume that (1.1) is consistent (i.e., (1.1) has a solution), and let Ω denote the (closed convex) solution set of (1.1) (or equivalently, solution of (1.2)). Then, in this case, Ω has a unique element x ¯ if and only if it is a solution of the following variational inequality:
x ¯ K , φ ( x ¯ ) , x x ¯ = A ( I P D ) A x ¯ , x x ¯ 0 , x K ,
(1.3)
where A is the adjoint of A. In addition, inequality (1.3) can be rewritten as
x ¯ K , x ¯ γ A ( I P D ) A x ¯ x ¯ , x x ¯ 0 , x K ,
(1.4)
where γ > 0 is any positive scalar. Using the nature of projection, (1.4) is equivalent to the fixed point equation
x ¯ = P K ( x ¯ γ A ( I P D ) A x ¯ ) .
(1.5)

Recall that a point x ¯ K is said to be a fixed point of T if T ( x ¯ ) = x ¯ . We denote the set of fixed points of T by F ( T ) , i.e., F ( T ) : = { x ¯ K : T x ¯ = x ¯ } . Therefore, finding a solution to the split feasibility problem (1.1) is equivalent to finding the minimum-norm fixed point of the mapping x P K ( x γ A ( I P D ) A x ) .

Motivated by the above split feasibility problem, we study the general case of finding the minimum-norm fixed point of an asymptotically nonexpansive self-mapping T on K; that is, we find a minimum-norm fixed point of T which satisfies
x ¯ F ( T ) such that  x ¯ = min { x : x F ( T ) } .
(1.6)
Let K be a nonempty subset of a real Hilbert space H; a mapping T : K K is said to be nonexpansive if T x T y x y for all x , y K and it is called asymptotically nonexpansive if there exists a sequence { k n } [ 1 , ) with k n 1 , as n , such that
T n x T n y k n x y , x , y K ,  and  n 1 .
(1.7)

The class of asymptotically nonexpansive mappings was introduced as a generalization of the class of nonexpansive mappings by Goebel and Kirk [4] who proved that if K is a nonempty closed convex bounded subset of a real uniformly convex Banach spaces which includes Hilbert spaces as a special case and T is an asymptotically nonexpansive self-mapping of K, then T has a fixed point.

Let T : K K be a nonexpansive mapping. For a given u K and a given t ( 0 , 1 ) , define a contraction T t : K K by
T t x = ( 1 t ) u + t T x , x K .
By the Banach contraction principle, it yields a fixed point z t K of T t , i.e., z t is the unique solution of the equation
z t = ( 1 t ) u + t T z t .
(1.8)

In [5], Browder proved that, as t 1 , z t converges strongly to the nearest point projection of u onto F ( T ) .

In [6], Halpern introduced an explicit iteration scheme { x n } (which was referred to as Halpern iteration) defined by
x n + 1 = α n u + ( 1 α n ) T x n .
(1.9)
He proved that, as n , { x n } converges strongly to the fixed point of a nonexpansive self-mapping T that is closest to u provided that { α n } satisfies (i) lim n α n = 0 , (ii) α n = and (iii) lim n α n α n + 1 = 0 . Wittmann [7] also showed that the sequence { x n } defined by
x 0 = u K , x n + 1 = a n + 1 u + ( 1 a n + 1 ) T x n , n 1 ,
(1.10)

converges strongly to the element of F ( T ) which is nearest to u under certain conditions on { a n } ( 0 , 1 ) .

Moreover, using the idea of Browder [5], Shioji and Takahashi [8] studied the following scheme for an approximating fixed point of an asymptotically nonexpansive mapping. Let T be an asymptotically nonexpansive mapping from K into itself with F ( T ) nonempty. Then they proved that the sequence generated by
x 0 = u K , x n = a n u + ( 1 a n ) 1 n + 1 j = 0 n T j x n , n 1 ,
(1.11)
where { a n } ( 0 , 1 ) satisfies certain conditions, converges strongly to the element of F ( T ) which is nearest to u. Shioji and Takahashi [8] also studied an explicit scheme for asymptotically nonexpansive mappings. They showed that the sequence { x n } defined by
x 0 = u K , x n + 1 = b n u + ( 1 b n ) 1 n + 1 j = 0 n T j x n , n 1 ,
(1.12)

where { b n } ( 0 , 1 ) satisfies certain conditions, converges strongly to the element of F ( T ) which is nearest to u.

Several authors have extended the above results either to a more general Banach spaces or to a more general class of mappings (see, e.g., [918]).

It is worth mentioning that the methods studied above are used to approximate the fixed point of T which is closest to the point u K . These methods can be used to find the minimum-norm fixed point x of T if 0 K . If, however, 0 K , any of the methods above fails to provide the minimum-norm fixed point of T.

In connection with the iterative approximation of the minimum-norm fixed point of a nonexpansive self-mapping T, Yang et al. [19] introduced an explicit scheme given by
x n + 1 = β T x n + ( 1 β ) P K [ ( 1 α n ) x n ] , n 1 .

They proved that under appropriate conditions on { α n } and β, the sequence { x n } converges strongly to the minimum-norm fixed point of T in real Hilbert spaces.

More recently, Yao and Xu [20] have also shown that the explicit scheme x n + 1 = P K ( ( 1 α n ) T x n ) , n 1 , converges strongly to the minimum-norm fixed point of a nonexpansive self-mapping T provided that { α n } satisfies certain conditions.

A natural question arises whether we can extend the results of Yang et al. [19]and Yao and Xu [20]to a class of mappings more general than nonexpansive mappings or not.

Let K be a closed convex subset of a real Hilbert space H and let T i : K K , i = 1 , 2 , , N be a finite family of asymptotically nonexpansive mappings.

It is our purpose in this paper to introduce an explicit iteration process which converges strongly to the common minimum-norm fixed point of { T i : i = 1 , 2 , , N } . Our theorems improve several results in this direction.

2 Preliminaries

In what follows, we shall make use of the following lemmas.

Lemma 2.1 Let H be a real Hilbert space. Then, for any given x , y H , the following inequality holds:
x + y 2 x 2 + 2 y , x + y .

Lemma 2.2 [21]

Let E be a real Hilbert space and B R ( 0 ) be a closed ball of H. Then, for any given subset { x 0 , x 1 , , x N } B r ( 0 ) and for any positive numbers α 0 , α 1 , , α N with i = 0 N α i = 1 , we have that
α 0 x 0 + α 1 x 1 + α 2 x 2 + + α N x N 2 = i = 0 N α i x i 2 0 i , j N α i α j x i x j 2 .

Lemma 2.3 [22]

Let K be a closed and convex subset of a real Hilbert space H. Let x H . Then x 0 = P K x if and only if
z x 0 , x x 0 0 , z K .

Lemma 2.4 [23]

Let H be a real Hilbert space, K be a closed convex subset of H and T : K K be an asymptotically nonexpansive mapping, then ( I T ) is demiclosed at zero, i.e., if { x n } is a sequence in K such that x n x and T x n x n 0 , as n , then x = T ( x ) .

Lemma 2.5 [24]

Let { a n } be a sequence of nonnegative real numbers satisfying the following relation:
a n + 1 ( 1 α n ) a n + α n δ n , n n 0 ,

where { α n } ( 0 , 1 ) , and { δ n } R satisfying the following conditions: lim n α n = 0 , n = 1 α n = , and lim sup n δ n 0 , as n . Then lim n a n = 0 .

Lemma 2.6 [25]

Let { a n } be a sequence of real numbers such that there exists a subsequence { n i } of { n } such that a n i < a n i + 1 for all i N . Then there exists a nondecreasing sequence { m k } N such that m k and the following properties are satisfied by all (sufficiently large) numbers k N :
a m k a m k + 1 and a k a m k + 1 .

In fact, m k = max { j k : a j < a j + 1 } .

Proposition 2.7 Let H be a real Hilbert space, let K be a closed convex subset of H, and let T be an asymptotically nonexpansive mapping from K into itself. Then F ( T ) is closed and convex.

Proof Clearly, the continuity of T implies that F ( T ) is closed. Now, we show that F ( T ) is convex. For x , y F ( T ) and t ( 0 , 1 ) , put z = t x + ( 1 t ) y . Now, we show that z = T ( z ) . In fact, we have
z T n z 2 = z 2 2 z , T n z + T n z 2 = z 2 2 t x + ( 1 t ) y , T n z + T n z 2 = z 2 2 t x , T n z 2 ( 1 t ) y , T n z + T n z 2 = z 2 + t x T n z 2 + ( 1 t ) y T n z 2 t x 2 ( 1 t ) y 2 z 2 + t k n 2 x z 2 + ( 1 t ) k n 2 y z 2 t x 2 ( 1 t ) y 2 z 2 + t k n 2 x z , x z + ( 1 t ) k n 2 y z , y z t x 2 ( 1 t ) y 2 ( k n 2 1 ) [ t x 2 + ( 1 t ) y 2 + z 2 ] ,
(2.1)

and hence, since k n 1 as n , we get that lim n z T n z 2 = 0 , which implies that lim n T n z = z . Now, by the continuity of T, we obtain that z = lim n T n z = lim n T ( T n 1 z ) = T ( lim n T n 1 z ) = T ( z ) . Hence, z F ( T ) and that F ( T ) is convex. □

3 Main result

We now state and proof our main theorem.

Theorem 3.1 Let K be a nonempty, closed and convex subset of a real Hilbert space H. Let T i : K K be asymptotically nonexpansive mappings with sequences { k n , i } for each i = 1 , 2 , , N . Assume that F : = i = 1 N F ( T i ) is nonempty. Let { x n } be a sequence generated by
{ x 1 K , chosen arbitrarily , y n = P K [ ( 1 α n ) x n ] , x n + 1 = β n , 0 x n + i = 1 N β n , i T i n y n , n 1 ,
(3.1)

where α n ( 0 , 1 ) such that lim n α n = 0 , lim n ( k n , i 2 1 ) α n = 0 , for each i { 1 , 2 , , N } and n = 1 α n = , { β n , i } [ a , b ] ( 0 , 1 ) for i = 1 , 2 , , N , satisfying β n , 0 + β n , 1 + + β n , N = 1 for each n 1 . Then { x n } converges strongly to the common minimum-norm point of F.

Proof Let x P F 0 . Let k n : = max { k n , i : i = 1 , 2 , , N } . Then from (3.1) and asymptotical nonexpansiveness of T i , for each i { 1 , 2 , , N } , we have that
y n x = P C [ ( 1 α n ) x n ] P K x ( 1 α n ) x n x = α n ( 0 x ) + ( 1 α n ) ( x n x ) α n x + ( 1 α n ) x n x ,
(3.2)
and
x n + 1 x = β n , 0 x n + i = 1 N β n , i T i n y n x β n , 0 x n x + i = 1 N β n , i T i n y n x β n , 0 x n x + ( 1 β n , 0 ) k n y n x β n , 0 x n x + ( 1 β n , 0 ) k n [ α n x + ( 1 α n ) x n x ] [ β n , 0 + ( 1 β n , 0 ) k n ( 1 α n ) ] x n x + [ ( 1 β n , 0 ) k n α n ] x δ n x + [ 1 ( 1 ϵ ) δ n ] x n x ,
(3.3)
where δ n = ( 1 β n , 0 ) k n α n , since there exists N 0 > 0 such that ( k n 1 ) α n ϵ k n for all n N 0 and for some ϵ > 0 satisfying ( 1 ϵ ) δ n 1 . Thus, by induction,
x n + 1 x max { x 0 x , ( 1 ϵ ) 1 x } , n N 0 ,
which implies that { x n } and hence { y n } is bounded. Moreover, from (3.2) and Lemma 2.1, we obtain that
y n x 2 = P K [ ( 1 α n ) x n ] P K x 2 α n ( 0 x ) + ( 1 α n ) ( x n x ) 2 ( 1 α n ) x n x 2 2 α n x , y n x .
(3.4)
Furthermore, from (3.1), Lemma 2.2 and asymptotical nonexpansiveness of T i , for each i = 1 , 2 , , N , we have that
x n + 1 x 2 = β n , 0 x n + i = 1 N β n , i T i n y n x 2 β n , 0 x n x 2 + i = 1 N β n , i T i n y n x 2 i = 1 N β n , 0 β n , i x n T i n y n 2 β n , 0 x n x 2 + ( 1 β n , 0 ) k n 2 y n x 2 i = 1 N β n , 0 β n , i x n T i n y n 2 ,
which implies, using (3.4), that
x n + 1 x 2 β n , 0 x n x 2 + ( 1 β n , 0 ) k n 2 [ ( 1 α n ) x n x 2 2 α n x , y n x ] i = 1 N β n , 0 β n , i x n T i n y n 2 ( 1 θ n ) x n x 2 2 θ n x , y n x + ( k n 2 1 ) M i = 1 N β n , 0 β n , i x n T i n y n 2
(3.5)
( 1 θ n ) x n x 2 2 θ n x , y n x + ( k n 2 1 ) M
(3.6)

for some M > 0 , where θ n : = α n ( 1 β n , 0 ) for all n N .

Now, we consider the following two cases.

Case 1. Suppose that there exists n 0 N such that { x n x } is non-increasing for all n n 0 . In this situation, { x n x } is convergent. Then from (3.5), we have that i = 1 N β n , 0 β n , i x n T i n y n 2 0 , which implies that
x n T i n y n 0 , as  n ,
(3.7)
for each i { 1 , 2 , , N } . Moreover, from (3.1) and (3.7) and the fact that α n 0 , we get that
x n + 1 x n = β n , 1 T 1 n y n x n + + β n , N T N n y n x n 0 ,
(3.8)
and
y n x n = P C [ ( 1 α n ) x n ] P k x n α n x n 0 ,
(3.9)
as n and hence
y n + 1 y n y n + 1 x n + 1 + x n + 1 x n + x n y n 0 ,
(3.10)
as n . Furthermore, from (3.7) and (3.9), we get that
y n T i n y n y n x n + x n T i n y n 0 , as  n .
(3.11)
Therefore, since
y n T i y n y n y n + 1 + y n + 1 T i n + 1 y n + 1 + T i n + 1 y n + 1 T i n + 1 y n + T i n + 1 y n T i y n , y n y n + 1 + y n + 1 T i n + 1 y n + 1 + k n + 1 y n + 1 y n + T i ( T i n y n ) T i y n ,
(3.12)
we have from (3.10), (3.11), (3.12) and uniform continuity of T i that
y n T i y n 0 , as  n ,  for each  i = 1 , 2 , , N .
(3.13)
Let { y n k } be a subsequence of { y n } such that
lim sup n x , y n x = lim k x , y n k x ,
and y n k z . Then from (3.9), we have that x n k z . Therefore, by Lemma 2.3, we obtain that
lim sup n x , y n x = lim k x , y n k x = x , z x 0 .
(3.14)
Now, we show that x n + 1 x , as n . But from (3.13) and Lemma 2.4, we get that z F ( T i ) for each i { 1 , 2 , , N } and hence z i = 1 N F ( T i ) . Then from (3.6), we get that
x n + 1 x 2 ( 1 θ n ) x n x 2 2 θ n x , y n x + ( k n 2 1 ) M
(3.15)

for some M > 0 . But note that θ n satisfies lim n θ n = 0 and n = 1 θ n = . Thus, it follows from (3.15) and Lemma 2.5 that x n x 0 , as n . Consequently, x n x .

Case 2. Suppose that there exists a subsequence { n i } of { n } such that
x n i x < x n i + 1 x
for all i N . Then by Lemma 2.6, there exists a nondecreasing sequence { m k } N such that m k , x m k x x m k + 1 x and x k x x m k + 1 x for all k N . Then from (3.5) and the fact that θ n 0 , we have
https://static-content.springer.com/image/art%3A10.1186%2F1687-1812-2013-1/MediaObjects/13663_2012_Article_340_Equl_HTML.gif
This implies that x m k T i m k y m k 0 , as k . Thus, following the method of Case 1, we obtain that x m k y m k 0 and y m k T i y m k 0 as k for each i = 1 , 2 , , N and hence there exists z F such that
lim sup n x , y n x = lim k x , y n k x = x , z x 0 .
(3.16)
Then from (3.6), we get that
x m k + 1 x 2 ( 1 θ m k ) x m k x 2 2 θ m k x , y m k x + ( k m k 2 1 ) M .
(3.17)
Since x m k x x m k + 1 x , (3.17) implies that
θ m k x m k x 2 x m k x 2 x m k + 1 x 2 2 θ m k x , y m k x + ( k m k 2 1 ) M 2 θ m k x , y m k x + ( k m k 2 1 ) M .
In particular, since θ m k > 0 , we have that
x m k x 2 2 x , y m k x + ( k m k 2 1 ) θ m k M .

Thus, from (3.16) and the fact that ( k m k 2 1 ) θ m k 0 , we obtain that x m k x 0 as k . This together with (3.17) gives x m k + 1 x 0 as k . But x k x x m k + 1 x for all k N , thus we obtain that x k x . Therefore, from the above two cases, we can conclude that { x n } converges strongly to a point x of F which is the common minimum-norm fixed point of the family { T i , i = 1 , 2 , , N } and the proof is complete. □

If in Theorem 3.1 we assume that N = 1 , then we get the following corollary.

Corollary 3.2 Let K be a nonempty, closed and convex subset of a real Hilbert space H. Let T : K K be an asymptotically nonexpansive mapping with a sequence { k n } . Assume that F ( T ) is nonempty. Let { x n } be a sequence generated by
{ x 1 C , chosen arbitrarily , y n = P K [ ( 1 α n ) x n ] , x n + 1 = β n x n + ( 1 β n ) T n y n , n 1 ,
(3.18)

where α n ( 0 , 1 ) such that lim n α n = 0 , lim n ( k n 2 1 ) α n = 0 and n = 1 α n = , { β n } [ a , b ] ( 0 , 1 ) for each n 1 . Then { x n } converges strongly to the minimum-norm fixed point of T.

If in Theorem 3.1 we assume that each T i is nonexpansive for i = 1 , 2 , , N , then the method of proof of Theorem 3.1 provides the following corollary.

Corollary 3.3 Let K be a nonempty, closed and convex subset of a real Hilbert space H. Let T i : K K be nonexpansive mappings with F : = i = 1 N F ( T i ) nonempty. Let { x n } be a sequence generated by
{ x 1 K , chosen arbitrarily , y n = P K [ ( 1 α n ) x n ] , x n + 1 = β n , 0 x n + i = 1 N β n , i T i y n , n 1 ,
(3.19)

where α n ( 0 , 1 ) such that lim n α n = 0 and n = 1 α n = , { β n , i } [ a , b ] ( 0 , 1 ) , for i = 1 , 2 , , N , satisfying β n , 0 + β n , 1 + + β n , N = 1 for each n 1 . Then { x n } converges strongly to the common minimum-norm point of F.

If in Corollary 3.3 we assume that N = 1 , then we have the following corollary.

Corollary 3.4 Let K be a nonempty, closed and convex subset of a real Hilbert space H. Let T : K K be a nonexpansive mapping with F ( T ) nonempty. Let { x n } be a sequence generated by
{ x 1 K , chosen arbitrarily , y n = P K [ ( 1 α n ) x n ] , x n + 1 = β n x n + ( 1 β n ) T y n , n 1 ,
(3.20)

where α n ( 0 , 1 ) such that lim n α n = 0 and n = 1 α n = , { β n } [ a , b ] ( 0 , 1 ) for each n 1 . Then { x n } converges strongly to the minimum-norm point of F ( T ) .

4 Applications

In this section, we study the problem of finding a minimizer of a continuously Fréchet-differentiable convex functional which has the minimum norm in Hilbert spaces.

Let K be a closed convex subset of a real Hilbert space H. Consider the minimization problem given by
min x K φ ( x ) ,
(4.1)
and φ : K R be a continuously Fréchet-differentiable convex functional. Let Ω, the solution set of (4.1), be nonempty; that is,
Ω : = { z K : φ ( z ) = min x K φ ( x ) } .
(4.2)
It is known that a point z K is a solution of (4.1) if and only if the following optimality condition holds:
z K , φ ( z ) , x z 0 , x K ,
(4.3)
where φ ( x ) is the gradient of φ at x K . It is also known that the optimality condition (4.3) is equivalent to the following fixed point problem:
z = T γ ( z ) , where  T γ : = P K ( I γ φ ) ,
(4.4)

for all γ > 0 .

Now, we have the following corollary deduced from Corollary 3.2.

Corollary 4.1 Let K be a closed convex subset of a real Hilbert space H. Let φ be a continuously Fréchet-differentiable convex functional on K such that T γ : = P K ( I γ φ ) is asymptotically nonexpansive with a sequence { k n } for some γ > 0 . Assume that the solution of the minimization problem (4.1) is nonempty. Let { x n } be a sequence generated by
{ x 1 K , chosen arbitrarily , y n = P K [ ( 1 α n ) x n ] , x n + 1 = β n x n + ( 1 β n ) [ P K ( I γ φ ) ] n y n , n 1 ,
(4.5)

where α n ( 0 , 1 ) such that lim n α n = 0 , lim n ( k n 2 1 ) α n = 0 and n = 1 α n = , { β n } [ a , b ] ( 0 , 1 ) for each n 1 . Then { x n } converges strongly to the minimum-norm solution of the minimization problem (4.1).

Remark 4.2 Our results extend and unify most of the results that have been proved for this important class of nonlinear mappings. In particular, Theorem 3.1 improves Theorem 3.2 of Yang et al. [19] and of Yao and Xu [20] to a more general class of a finite family of asymptotically nonexpansive mappings.

Declarations

Acknowledgements

The second author gratefully acknowledges the sup- port provided by the Deanship of Scientific Research (DSR), King Abdulaziz University during this research.

Authors’ Affiliations

(1)
Departement of Mathematics, University of Botswana
(2)
Department of Mathematics, King Abdulaziz University

References

  1. Censor Y, Elfving T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8: 221–239. 10.1007/BF02142692MathSciNetView ArticleGoogle Scholar
  2. Byrne C: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 2002, 18: 441–453. 10.1088/0266-5611/18/2/310MathSciNetView ArticleGoogle Scholar
  3. Censor Y, Bortfeld T, Martin B, Trofimov A: A unified approach for inversion problem in intensity-modulated radiation therapy. Phys. Med. Biol. 2006, 51: 2353–2365. 10.1088/0031-9155/51/10/001View ArticleGoogle Scholar
  4. Goebel K, Kirk WA: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 1972, 35: 171–174. 10.1090/S0002-9939-1972-0298500-3MathSciNetView ArticleGoogle Scholar
  5. Browder FE: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Ration. Mech. Anal. 1967, 24: 82–90.MathSciNetView ArticleGoogle Scholar
  6. Halpern B: Fixed points of nonexpansive maps. Bull. Am. Math. Soc. 1967, 73: 957–961. 10.1090/S0002-9904-1967-11864-0View ArticleGoogle Scholar
  7. Wittmann R: Approximation of fixed point of nonexpansive mappings. Arch. Math. 1992, 58: 486–491. 10.1007/BF01190119MathSciNetView ArticleGoogle Scholar
  8. Shimizu T, Takahashi W: Strong convergence theorems for asymptotically nonexpansive semigroups in Hilbert spaces. Nonlinear Anal. 1998, 34: 87–99. 10.1016/S0362-546X(97)00682-2MathSciNetView ArticleGoogle Scholar
  9. Bruck RE, Kuczumow T, Reich S: Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloq. Math. 1993, 65: 169–179.MathSciNetGoogle Scholar
  10. Lim TC, Xu HK: Fixed point theorems for asymptotically nonexpansive mappings. Nonlinear Anal. 1994, 22: 1345–1355. 10.1016/0362-546X(94)90116-3MathSciNetView ArticleGoogle Scholar
  11. Morales CH, Jung JS: Convergence of paths for pseudo-contractive mappings in Banach spaces. Proc. Am. Math. Soc. 2000, 128: 3411–3419. 10.1090/S0002-9939-00-05573-8MathSciNetView ArticleGoogle Scholar
  12. Reich S: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 1980, 75: 287–292. 10.1016/0022-247X(80)90323-6MathSciNetView ArticleGoogle Scholar
  13. Schu J: Iterative construction of fixed points of asymptotically nonexpansive mappings. J. Math. Anal. Appl. 1991, 158: 407–413. 10.1016/0022-247X(91)90245-UMathSciNetView ArticleGoogle Scholar
  14. Schu J: Weak and strong convergence of fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 1991, 43: 153–159. 10.1017/S0004972700028884MathSciNetView ArticleGoogle Scholar
  15. Shioji N, Takahashi W: A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces. Arch. Math. 1999, 72: 354–359. 10.1007/s000130050343MathSciNetView ArticleGoogle Scholar
  16. Shioji N, Takahashi W: Strong convergence of averaged approximants for asymptotically nonexpansive mappings in Banach spaces. J. Approx. Theory 1999, 97: 53–64. 10.1006/jath.1996.3251MathSciNetView ArticleGoogle Scholar
  17. Takahashi W, Ueda Y: On Reich’s strong convergence theorems for resolvents of accretive operators. J. Math. Anal. Appl. 1984, 104: 546–553. 10.1016/0022-247X(84)90019-2MathSciNetView ArticleGoogle Scholar
  18. Tan KK, Xu HK: Fixed point iteration processes for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 1994, 122: 733–739. 10.1090/S0002-9939-1994-1203993-5MathSciNetView ArticleGoogle Scholar
  19. Yang X, Liou Y-C, Yao Y: Finding minimum norm fixed point of nonexpansive mappings and applications. Math. Probl. Eng. 2011., 2011: Article ID 106450. doi:10.1155/2011/106450Google Scholar
  20. Yao Y, Xu H-K: Iterative methods for finding minimum-norm fixed points of nonexpansive mappings with applications. Optimization 2011, 60: 645–658. 10.1080/02331930903582140MathSciNetView ArticleGoogle Scholar
  21. Zegeye H: A hybrid iteration method for equilibrium, variational inequality problems and common fixed point problems in Banach spaces. Nonlinear Anal. 2010, 72(3–4):2136–2146. 10.1016/j.na.2009.10.014MathSciNetView ArticleGoogle Scholar
  22. Takahashi W: Nonlinear Functional Analysis-Fixed Point Theory and Applications. Yokohama Publishers, Yokohama; 2000.Google Scholar
  23. Chang SS, Cho YJ, Zhou H: Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings. J. Korean Math. Soc. 2001, 38: 1245–1260.MathSciNetGoogle Scholar
  24. Ohara JG, Pillay P, Xu HK: Iterative approaches to convex feasibility problems in Banach spaces. Nonlinear Anal. 2006, 64: 2022–2042. 10.1016/j.na.2005.07.036MathSciNetView ArticleGoogle Scholar
  25. Maingé PE: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 2008, 16: 899–912. 10.1007/s11228-008-0102-zMathSciNetView ArticleGoogle Scholar

Copyright

© Zegeye and Shahzad; licensee Springer 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.