# Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type

- Yeol Je Cho
^{1}, - Billy E Rhoades
^{2}, - Reza Saadati
^{3}Email author, - Bessem Samet
^{4}and - Wasfi Shatanawi
^{5}

**2012**:8

**DOI: **10.1186/1687-1812-2012-8

© Cho et al; licensee Springer. 2012

**Received: **22 August 2011

**Accepted: **26 January 2012

**Published: **26 January 2012

## Abstract

In this article, we study coupled coincidence and coupled common fixed point theorems in ordered generalized metric spaces for nonlinear contraction condition related to a pair of altering distance functions. Our results generalize and modify several comparable results in the literature.

**2000 MSC**: 54H25; 47H10; 54E50.

### Keywords

ordered set coupled coincidence point coupled common fixed point generalized metric space altering distance function weakly contractive condition contraction of integral type## 1 Introduction

Fixed points of mappings in ordered metric space are of great use in many mathematical problems in applied and pure mathematics. The first result in this direction was obtained by Ran and Reurings [1], in this study the authors presented some applications of their obtained results to matrix equations. In [2, 3], Nieto and López extended the result of Ran and Reurings [1] for non-decreasing mappings and applied their result to get a unique solution for a first order differential equation. While Agarwal et al. [4] and O'Regan and Petrutel [5] studied some results for a generalized contractions in ordered metric spaces. Bhaskar and Lakshmikantham [6] introduced the notion of a coupled fixed point of a mapping *F* from *X* × *X* into *X*. They established some coupled fixed point results and applied their results to the study of existence and uniqueness of solution for a periodic boundary value problem. Lakshmikantham and Ćirić [7] introduced the concept of coupled coincidence point and proved coupled coincidence and coupled common fixed point results for mappings *F* from *X* × *X* into *X* and *g* from *X* into *X* satisfying nonlinear contraction in ordered metric space. For the detailed survey on coupled fixed point results in ordered metric spaces, topological spaces, and fuzzy normed spaces, we refer the reader to [6–24].

On the other hand, in [25], Mustafa and Sims introduced a new structure of generalized metric spaces called *G*-metric spaces. In [26–32], some fixed point theorems for mappings satisfying different contractive conditions in such spaces were obtained. Abbas et al. [33] proved some coupled common fixed point results in two generalized metric spaces. While Shatanawi [34] established some coupled fixed point results in *G-* metric spaces. Saadati et al. [35] established some fixed point in generalized ordered metric space. Recently, Choudhury and Maity [36] initiated the study of coupled fixed point in generalized ordered metric spaces.

In this article, we derive coupled coincidence and coupled common fixed point theorems in generalized ordered metric spaces for nonlinear contraction condition related to a pair of altering distance functions.

## 2 Basic concepts

Khan et al. [37] introduced the concept of altering distance function.

**Definition 2.1**. A function

*ϕ*: [0, + ∞) → [0, + ∞) is called an

*altering distance function*if the following properties are satisfied:

- (1)
*ϕ*is continuous and non-decreasing, - (2)
*ϕ*(*t*) = 0 if and only if*t*= 0.

For more details on the following definitions and results, we refer the reader to Mustafa and Sims [25].

**Definition 2.2**. Let *X* be a non-empty set and let *G* : *X* × *X* × *X* → ℝ^{+} be a function satisfying the following properties:

(G1) *G*(*x*, *y*, *z*) = 0 if and only if *x* = *y* = *z*,

(G2) 0 < *G*(*x*, *x*, *y*) for all *x*, *y* ∈ *X* with *x* ≠ *y*,

(G3) *G*(*x*, *x*, *y*) ≤ *G*(*x*, *y*, *z*) for all *x*, *y*, *z* ∈ *X* with *z* ≠ *y*,

(G4) *G*(*x*, *y*, *z*) = *G*(*x*, *z*, *y*) = *G*(*y*, *z*, *x*) = ...(: symmetry in all three variables),

(G5) *G*(*x*, *y*, *z*) ≤ *G*(*x*, *a*, *a*) + *G*(*a*, *y*, *z*) for all *x*, *y*, *z*, *a* ∈ *X*.

Then the function *G* is called a *generalized metric* or, more specifically, a *G-metric* on *X* and the pair (*X*, *G*) is called a *G-metric space*.

**Definition 2.3**. Let (*X*, *G*) be a *G*-metric space and (*x*_{
n
}) be a sequence in *X*. We say that (*x*_{
n
}) is *G-convergent* to a point *x* ∈ *X* or (*x*_{
n
}) *G*-converges to *x* if, for any *ε* > 0, there exists *k* ∈ ℕ such that *G*(*x, x*_{
n
}*, x*_{
m
}) < *ε* for all *m, n* ≥ *k*, that is, $\underset{n,m\to +\infty}{\text{lim}}G\left(x,{x}_{n},{x}_{m}\right)=0$. In this case, we write *x*_{
n
}→ *x* or $\underset{n\to +\infty}{\text{lim}}{x}_{n}=x$.

**Proposition 2.1**.

*Let*(

*X*,

*G*)

*be a G-metric space. Then the following are equivalent:*

- (1)
(

*x*_{ n })*is G-convergent to x.* - (2)
*G*(*x*_{ n },*x*_{ n }*, x*) → 0*as n*→ + ∞. - (3)
*G*(*x*_{ n },*x*,*x*) → 0*as n*→ + ∞. - (4)
*G*(*x*_{ n },*x*_{ m }*, x*) → 0*as n, m*→ + ∞.

**Definition 2.4**. Let (*X*, *G*) be a *G*-metric space and (*x*_{
n
}) be a sequence in *X*. We say that (*x*_{
n
}) is a *G-Cauchy sequence* if, for any *ε* > 0, there exists *k* ∈ ℕ such that *G*(*x*_{
n
}, *x*_{
m
}, *x*_{
l
}) < *ε* for all *n, m, l* ≥ *k*, that is, *G*(*x*_{
n
}, *x*_{
m
}, *x*_{
l
}) → 0 as *n*, *m*, *l* → +∞.

**Proposition 2.2**.

*Let*(

*X*,

*G*)

*be a G-metric space. Then the following are equivalent:*

- (1)
*The sequence*(*x*_{ n })*is a G-Cauchy sequence*. - (2)
*For any ε*> 0,*there exists k*∈ ℕ*such that G*(*x*_{ n },*x*_{ m }*, x*_{ m }) <*ε for all n*,*m*≥*k*.

**Definition 2.5**. Let (

*X*,

*G*) and (

*X*',

*G*') be two

*G*-metric spaces. We say that a function

*f*: (

*X*,

*G*) → (

*X'*,

*G'*) is

*G-continuous*at a point

*a*∈

*X*if and only if, for any

*ε*> 0, there exists

*δ*> 0 such that

A function *f* is *G-continuous* on *X* if and only if it is *G*-continuous at every point *a* ∈ *X*.

**Proposition 2.3**. *Let* (*X*, *G*) *be a G-metric space. Then the function G is jointly continuous in all three of its variables.*

We give some examples of *G*-metric spaces.

**Example 2.1**. Let (ℝ

*, d*) be the usual metric space. Define a function

*G*

_{ s }:ℝ × ℝ × ℝ → ℝ by

for all *x*, *y*, *z* ∈ ℝ. Then it is clear that (ℝ, *G*_{
s
}) is a *G*-metric space.

**Example 2.2**. Let

*X*= {

*a*,

*b*}. Define a function

*G*:

*X*×

*X*×

*X*ℝ

*by*

and extend *G to X* × *X* × *X by* using the symmetry in the variables. Then it is clear that (*X*, *G*) is a *G*-metric space.

**Definition 2.6**. A *G*-metric space (*X*, *G*) is said to be *G-complete* if every *G*-Cauchy sequence in (*X*, *G*) is *G*-convergent in (*X*, *G*).

For more details about the following definitions, we refer the reader to [6, 7].

**Definition 2.7**. Let *X* be a non-empty set and *F* : *X* × *X* → *X* be a given mapping. An element (*x*, *y*) ∈ *X* × *X* is called a *coupled fixed point* of *F* if *F*(*x*, *y*) = *x* and *F*(*y*, *x*) = *y*.

**Definition 2.8**. Let (

*X*, ≤) be a partially ordered set. A mapping

*F*:

*X*×

*X*→

*X is*said to have the

*mixed monotone property*if

*F*(

*x*,

*y*) is monotone non-decreasing in

*x*and is monotone non-increasing in

*y*, that is, for any

*x*,

*y*∈

*X*,

Lakshmikantham and Ćirić [7] introduced the concept of a *g*-mixed monotone mapping.

**Definition 2.9**. Let (

*X*, ≤) be a partially ordered set,

*F*:

*X*×

*X*→

*X and g*:

*X*→

*X be*mappings. The mapping

*F*is said to have the

*mixed g-monotone property*if

*F*(

*x*,

*y*) is monotone

*g*-non-decreasing in

*x*and is monotone

*g*-non-increasing in

*y*, that is, for any

*x*,

*y*∈

*X*,

**Definition 2.10**. Let *X* be a non-empty set, *F* : *X* × *X* → *X* and *g* : *X* → *X* be mappings. An element (*x, y*) ∈ *X* × *X* is called a *coupled coincidence point* of *F* and *g* if *F*(*x*, *y*) = *gx* and *F*(*y*, *x*) = *gy*.

**Definition 2.11**. Let *X* be a non-empty set, *F* : *X* × *X* → *X and g* : *X* → *X be* mappings. An element (*x*, *y*) ∈ *X* × *X* is called a *coupled common fixed point* of *F* and *g* if *F*(*x*, *y*) = *gx* = *x* and *F*(*y*, *x*) = *gy* = *y*.

**Definition 2.12**. Let *X* be a non-empty set, *F* : *X* × *X* → *X and g: X* → *X be* mappings. We say that *F* and *g* are *commutative* if *g*(*F*(*x*, *y*)) = *F*(*gx*, *gy*) for all *x*, *y* ∈ *X.*

**Definition 2.13**. Let *X* be a non-empty set, *F* : *X* × *X* → *X* and *g* : *X* → *X* be mappings. Then *F* and *g* are said to be *weak* compatible* (or *w*-compatible*) *if g*(*F*(*x*, *x*)) = *F*(*gx, gx*) whenever *g*(*x*) = *F*(*x*, *x*).

## 3 Main results

The following is the first result.

**Theorem 3.1**.

*Let*(

*X*, ≤)

*be a partially ordered set and*(

*X*,

*G*)

*be a complete G-metric space. Let F*:

*X*×

*X*→

*X and g*:

*X*→

*X be continuous mappings such that F has the mixed g-monotone property and g commutes with F. Assume that there are altering distance functions ψ and ϕ such that*

*for all x*, *y*, *u*, *v*, *w*, *z* ∈ *X with gw* ≤ *gu* ≤ *gx and gy* ≤ *gv* ≤ *gz*. *Also, suppose that F*(*X* × *X*) ⊆ *g*(*X*). *If there exist x*_{0}, *y*_{0} ∈ *X such that gx*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *gy*_{0}, *then F and g have a coupled coincidence point*.

**Proof**. Let

*x*

_{0},

*y*

_{0}∈

*X*such that

*gx*

_{0}≤

*F*(

*x*

_{0},

*y*

_{0}) and

*F*(

*y*

_{0},

*x*

_{0}) ≤

*gy*

_{0}. Since we have

*F*(

*X*×

*X*) ⊆

*g*(

*X*), we can choose

*x*

_{1},

*y*

_{1}∈

*X*such that

*gx*

_{1}=

*F*(

*x*

_{0},

*y*

_{0}) and

*gy*

_{1}=

*F*(

*y*

_{0},

*x*

_{0}). Again, since

*F*(

*X*×

*X*) ⊆

*g*(

*X*), we can choose

*x*

_{2},

*y*

_{2}∈

*X*such that

*gx*

_{ 2 }=

*F*(

*x*

_{1},

*y*

_{1}) and

*gy*

_{2}=

*F*(

*y*

_{1},

*x*

_{1}). Since

*F*has the mixed

*g*-monotone property, we have

*gx*

_{0}≤

*gx*

_{1}≤

*gx*

_{2}and

*gy*

_{2}≤

*gy*

_{1}≤

*gy*

_{0}. Continuing this process, we can construct two sequences (

*x*

_{ n }) and (

*y*

_{ n }) in

*X*such that

If, for some integer *n*, we have (*gx*_{n+ 1}, *gy*_{n+1}) = (*gx*_{
n
}, *gy*_{
n
}), then *F*(*x*_{
n
}, *y*_{
n
}) = *gx*_{
n
}and *F*(*y*_{
n
}, *x*_{
n
}) = *gy*_{
n
}, that is, (*x*_{
n
}, *y*_{
n
}) is a coincidence point of *F* and *g*. So, from now on, we assume that (*gx*_{n+1}, *gy*_{n+1}) ≠ (*gx*_{
n
}, *gy*_{
n
}) for all *n* ∈ ℕ, that is, we assume that either *gx*_{n+1}≠ *gx*_{
n
}or *gy*_{n+1}≠ *gy*_{
n
}.

We complete the proof with the following steps.

**Step 1**: We show that

*n*∈ ℕ, using the inequality (1), we obtain

*ψ*is a non-decreasing function, we get

*ψ*is a non-decreasing function, we get

*G*(

*gx*

_{n- 1},

*gx*

_{ n },

*gx*

_{ n }),

*G*(

*gy*

_{n- 1},

*gy*

_{ n },

*gy*

_{ n })}) is a non-negative decreasing sequence. Hence, there exists

*r*≥ 0 such that

*r*= 0. Since

*ϕ*: [0, + ∞) → [0, + ∞) is a non-decreasing function, then, for any

*a*,

*b*∈ [0, + ∞), we have

*ψ*(max{

*a*,

*b*}) = max{

*ψ*(

*a*)

*, ψ*(

*b*)}. Thus, by (3)) and (5), we have

*n*→ +∞ in the above inequality and using the continuity of

*ψ*, we get

Hence *ϕ*(*r*) = 0. Thus *r* = 0 and (2) holds.

**Step 2**: We show that (

*gx*

_{ n }) and (

*gy*

_{ n }) are

*G*-Cauchy sequences. Assume that (

*x*

_{ n }) or (

*y*

_{ n }) is not a

*G*-Cauchy sequence, that is,

*m*(

*k*)) and (

*n*(

*k*)) with

*n*(

*k*) >

*m*(

*k*) >

*k*such that

*m*(

*k*) we can choose

*n*(

*k*) in such a way that it is the smallest integer with

*n*(

*k*) >

*m*(

*k*) and satisfying (7). Then we have

*G*

_{5}) and (8), we have

*k*→ +∞ in the above inequality and using (11) and the fact that

*ψ*and

*ϕ*are continuous, we get

Hence *ϕ*(ϵ) = 0 and so ϵ = 0, which is a contradiction. Therefore, (*gx*_{
n
}) and (*gy*_{
n
}) are *G*-Cauchy sequences.

**Step 3**: The existence of a coupled coincidence point. Since (

*gx*

_{ n }) and (

*gy*

_{ n }) are

*G*-Cauchy sequences in a complete

*G*-metric space (

*X*,

*G*), there exist

*x, y*∈

*X*such that (

*gx*

_{ n }) and (

*gyn*) are

*G*-convergent to points

*x*and

*y*, respectively, that is,

*g*, we have

*g*(

*gx*

_{ n })) is

*G*-convergent to

*gx*and (

*g*(

*gy*

_{ n })) is

*G*-convergent to

*gy*. Since

*F*and

*g*commute, we get

Using the continuity of *F* and letting *n* → +∞ in (18) and (19), we get *gx* = *F*(*x*, *y*) and *gy* = *F*(*y*, *x*). This implies that (*x*, *y*) is a coupled coincidence point of *F* and *g*. This completes the proof.

Tacking *g* = *I*_{
X
}(: the identity mapping) in Theorem 3.1., we obtain the following coupled fixed point result.

**Corollary 3.1**.

*Let*(

*X*, ≤)

*be a partially ordered set and*(

*X*,

*G*)

*be a complete G-metric space. Let F*:

*X*×

*X*→

*X be a continuous mapping satisfying the mixed monotone property. Assume that there exist the altering distance functions ψ and ϕ such that*

*for all x*, *y*, *u*, *v*, *w*, *z* ∈ *X with w* ≤ *u* ≤ *x and y* ≤*v* ≤ *z. If there exist x*_{0}, *y*_{0} ∈ *X such that x*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *y*_{0}, *then F has a coupled fixed point.*

Now, we derive coupled coincidence point results without the continuity hypothesis of the mappings *F, g* and the commutativity hypothesis of *F, g*. However, we consider the additional assumption on the partially ordered set (*X*, ≤).

We need the following definition.

**Definition 3.1**. Let (

*X*, ≤) be a partially ordered set and

*G*be a

*G*-metric on

*X*. We say that (

*X*,

*G*, ≤) is

*regular*if the following conditions hold:

- (1)
if a non-decreasing sequence (

*x*_{ n }) is such that*x*_{ n }→*x*, then*x*_{ n }≤*x*for all*n*∈ ℕ, - (2)
if a non-increasing sequence (

*y*_{ n }) is such that*y*_{ n }→*y*, then*y*≤*y*_{ n }for all*n*∈ ℕ.

The following is the second result.

**Theorem 3.2**.

*Let*(

*X*, ≤)

*be a partially ordered set and G be a G-metric on × such that*(

*X*,

*G*, ≤)

*is regular. Assume that there exist the altering distance functions ψ, ϕ and mappings F*:

*X*×

*X*→

*X and g*:

*X*→

*X such that*

*for all x*, *y*, *u*, *v*, *w*, *z* ∈ *X with gw* ≤ *gu* ≤ *gx and gy* ≤ *gv* ≤ *gz. Suppose also that* (*g*(*X*), *G*) *is G-complete, F has the mixed g-monotone property and F*(*X* × *X*) ⊆ *g*(*X*). *If there exist x*_{0}, *y*_{0} ∈ *X such that gx*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *gy*_{0}, *then F and g have a coupled coincidence point*.

**Proof**. Following Steps 1 and 2 in the proof of Theorem 3.1., we know that (

*gx*

_{ n }) and (

*gy*

_{ n }) are

*G-*Cauchy sequences in

*g*(

*X*) with

*gx*

_{ n }≤

*gx*

_{n+1}and

*gy*

_{ n }≥

*gy*

_{n+1}for all

*n*∈ ℕ. Since (

*g*(

*X*),

*G*) is

*G*-complete, there exist

*x, y*∈

*X*such that

*gx*

_{ n }→

*gx*and

*gy*

_{ n }→

*gy*. Since (

*X*,

*G*, ≤) is regular, we have

*gx*

_{ n }≤

*gx*and

*gy*≤

*gy*

_{ n }for all

*n*∈ ℕ. Thus we have

Letting *n* → +∞ in the above inequality and using the continuity of *ψ* and *ϕ*, we obtain *ψ*(*G*(*F*(*x*, *y*),*gx*, *gx*)) = 0, which implies that *G*(*F*(*x*, *y*), *gx*, *gx*) = 0. Therefore, *F*(*x*, *y*) = *gx*.

Similarly, one can show that *F*(*y*, *x*) = *gy*. Thus (*x*, *y*) is a coupled coincidence point of *F* and *g*, this completes the proof.

Tacking *g* = *I*_{
X
}in Theorem 3.2., we obtain the following result.

**Corollary 3.2**. *Let* (*X*, ≤) *be a partially ordered set and G be a G-metric on X such that* (*X*, *G*, ≤) *is regular and* (*X*, *G*) *is G-complete. Assume that there exist the altering distance functions ψ*, *ϕ and a mapping*

*F*:

*X*×

*X*→

*X having the mixed monotone property such that*

*for all x, y, u, v, w, z* ∈ *X with w* ≤ *u* ≤ *x and y* ≤ *v* ≤ *z*. *If there exist x*_{0}, *y*_{0} ∈ *X such that x*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *y*_{0}, *then F has a coupled fixed point*.

*X*, ≤) is a partially ordered set, we endow the product set

*X*×

*X*with the partial order defined by

**Theorem 3.3**. *In addition to the hypotheses of Theorem* 3.1.*, suppose that, for any* (*x*, *y*), (*x**, *y**) ∈ *X* × *X*, *there exists* (*u*, *v)* ∈ *X* × *X such that* (*F*(*u*, *v*), *F*(*v*, *u*)) *is comparable with* (*F*(*x*, *y*), *F*(*y*, *x*)) *and* (*F*(*x**, *y**), *F*(*y**, *x**)). *Then F and g have a unique coupled common fixed point, that is, there exists a unique* (*x*, *y*) ∈ *X* × *X such that x* = *gx* = *F*(*x*, *y*) *and y* = *gy* = *F*(*y*, *x*).

**Proof**. From Theorem 3.1., the set of coupled coincidence points is non-empty. We shall show that if (

*x*,

*y*) and (

*x**,

*y**) are coupled coincidence points, then

*u*,

*v*) ∈

*X*×

*X*such that (

*F*(

*u*,

*v*),

*F*(

*v*,

*u*)) is comparable to (

*F*(

*x*,

*y*),

*F*(

*y*,

*x*)) and (

*F*(

*x**,

*y**),

*F*(

*y**,

*x**)). Without the restriction to the generality, we can assume that (

*F*(

*x*,

*y*),

*F*(

*y*,

*x*)) ≤ (

*F*(

*u*,

*v*),

*F*(

*v*,

*u*)) and (

*F*(

*x**,

*y**),

*F*(

*y**,

*x**)) ≤ (

*F*(

*u*,

*v*),

*F*(

*v*,

*u*)). Put

*u*

_{0}=

*u*,

*v*

_{0}=

*v*and choose

*u*

_{1},

*v*

_{1}∈

*X*so that

*gu*

_{1}=

*F*(

*u*

_{0},

*v*

_{0}) and

*gv*

_{1}=

*F*(

*v*

_{0},

*u*

_{0}). As in the proof of Theorem 3.1., we can inductively define the sequences (

*u*

_{ n }) and (

*v*

_{ n }) such that

*x*

_{ n }), (

*y*

_{ n }) and $\left({x}_{n}^{*}\right),\left({y}_{n}^{*}\right)$. Since (

*gx, gy*) = (

*F*(

*x*,

*y*),

*F*(

*y*,

*x*)) = (

*gx*

_{1},

*gy*

_{1}) and (

*F*(

*u*,

*v*),

*F*(

*v*,

*u*)) = (

*gu*

_{1},

*gv*

_{1}) are comparable,

*gx*≤

*gu*

_{1}and

*gv*

_{1}≤

*gy*. One can show, by induction, that

*n*∈ ℕ. From (1), we have

Since *ψ* is non-decreasing, it follows that (*max*{*G*(*gx*, *gx*, *gu*_{
n
}),*G*(*gy*, *gy*, *gv*_{
n
})}) is a decreasing sequence.

*r*such that

*n*→ +∞ in the above inequality, we get

*ϕ*(

*r*) = 0 and hence

*r*= 0. Thus

*G*

_{5}), (22), and (23), we have, as

*n*→ +∞,

Hence *gx* = *gx** and *gy* = *gy**. Thus we proved (20).

*gx*=

*F*(

*x*,

*y*) and

*gy*=

*F*(

*y*,

*x*), by commutativity of

*F*and

*g*, we have

*gx*=

*z*and

*gy*=

*w*. Then, from (24), it follows that

*z*,

*w*) is a coupled coincidence point. Then, from (20) with

*x** =

*z*and

*y** =

*w*, it follows that

*gz*=

*gx*and

*gw*=

*gy*, that is,

Thus, from (25) and (26), we have *z* = *gz* = *F*(*z*, *w*) and *w* = *gw* = *F*(*w*, *z*). Therefore, (*z*, *w*) is a coupled common fixed point of *F* and *g*.

*z*,

*w*), assume that (

*s*,

*t*) is another coupled common fixed point of

*F*and

*g*. Then we have

Since the pair (*s*, *t*) is a coupled coincidence point of *F* and *g*, we have *gs* = *gx* = *z* and *gt* = *gy* = *w*. Thus *s* = *gs* = *gz* = *z* and *t* = *gt* = *gw* = *w*. Hence, the coupled fixed point is unique. this completes the proof.

Now, we present coupled coincidence and coupled common fixed point results for mappings satisfying contractions of integral type. Denote by Λ the set of functions *α* : [0, +∞) → [0, + ∞) satisfying the following hypotheses:

(h1) *α* is a Lebesgue integrable mapping on each compact subset of [0, + ∞),

(h2) for any *ε* > 0, we have $\underset{0}{\overset{\epsilon}{\int}}\alpha \left(s\right)\text{d}s>0$.

Finally, we give the following results.

**Theorem 3.4**.

*Let*(

*X*, ≤)

*be a partially ordered set and*(

*X*,

*G*)

*be a complete G-metric space. Let F*:

*X*×

*X*→

*X and g*:

*X*→

*X be continuous mappings such that F has the mixed g-monotone property and g commutes with F. Assume that there exist α*,

*β*∈ Λ

*such that*

*for all x*, *y*, *u*, *v*, *w*, *z* ∈ *X with gw* ≤ *gu* ≤ *gx and gy* ≤ *gv* ≤ *gz. Also, suppose that F*(*X* × *X*) ⊆ *g*(*X*). *If there exist x*_{0}, *y*_{0} ∈ *X such that gx*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *gy*_{0}, *then F and g have a coupled coincidence point.*

**Proof**. We consider the functions

*ψ, ϕ*: [0, +∞) → [0, +∞) defined by

for all *t* ≥ 0. It is clear that *ψ* and *ϕ* are altering distance functions. Then the results follow immediately from Theorem 3.1.. This completes the proof.

**Corollary 3.3**.

*Let*(

*X*, ≤)

*be a partially ordered set and*(

*X*,

*G*)

*be a complete G-metric space. Let F*:

*X*×

*X*→

*X be a continuous mappings satisfying the mixed monotone property. Assume that there exist α*,

*β*∈ Λ

*such that*

*for all x*, *y*, *u*, *v*, *w*, *z* ∈ *X with w* ≤ *u* ≤ *x and y* ≤ *v* ≤ *z. If there exist x*_{0}, *y*_{0} ∈ *X such that x*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *y*_{0}, *then F has a coupled fixed point.*

**Proof**. Tacking *g* = *I*_{
X
}in Theorem 3.3., we obtain Corollary 3.3..

Putting *β*(*s*) = (1 - *k*)*α*(*s*) with *k* ∈ [0,1) in Theorem 3.3., we obtain the following result.

**Corollary 3.4**.

*Let*(

*X*, ≤)

*be a partially ordered set and*(

*X*,

*G*)

*be a complete G-metric space. Let F*:

*X*×

*X*→

*X and g*:

*X*→

*X be continuous mappings such that F has the mixed g-monotone property and g commutes with F. Assume that there exist α*∈ Λ

*and k*∈ [0, 1)

*such that*

*for all x*, *y*, *u*, *v*, *w*, *z* ∈ *X with gw* ≤ *gu* ≤ *gx and gy* ≤ *gv* ≤ *gz. Also, suppose that F*(*X* × *X)* ⊆ *g*(*X*).

*If there exist x*_{0}, *y*_{0} ∈ *X such that gx*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *gy*_{0}, *then F and g have a coupled coincidence point.*

Tacking *α*(*s*) = 1 in Corollary 3.4., we obtain the following result.

**Corollary 3.5**.

*Let*(

*X*, ≤)

*be a partially ordered set and*(

*X*,

*G*)

*be a complete G-metric space. Let F*:

*X*×

*X*→

*X and g*:

*X*→

*X be continuous mappings such that F has the mixed g-monotone property and g commutes with F. Assume that there exists k*∈ [0, 1)

*such that*

*for all x*, *y*, *u*, *v*, *w*, *z* ∈ *X with gw* ≤ *gu* ≤ *gx and gy* ≤ *gv* ≤ *gz. Also, suppose that F*(*X* × *X*) ⊆ *g*(*X*). *If there exist x*_{0}, *y*_{0} ∈ *X such that gx*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *gy*_{0}, *then F and g have a coupled coincidence point.*

**Corollary 3.6**.

*Let*(

*X*, ≤)

*be a partially ordered set and*(

*X*,

*G*)

*be a complete G-metric space. Let F*:

*X*×

*X*→

*X and g*:

*X*→

*X be continuous mappings such that F has the mixed g-monotone property and g commutes with F. Assume that there exist non-negative real numbers a, b with a*+

*b*∈ [0,1)

*such that*

*for all x*, *y*, *u*, *v*, *w*, *z* ∈ *X with gw* ≤ *gu* ≤ *gx and gy* ≤ *gv* ≤ *gz. Also, suppose that F*(*X* × *X*) ⊆ *g*(*X*). *If there exist x*_{0}, *y*_{0} ∈ *X such that gx*_{0} ≤ *F*(*x*_{0}, *y*_{0}) *and F*(*y*_{0}, *x*_{0}) ≤ *gy*_{0}, *then F and g have a coupled coincidence point*.

**Proof**. We have

for all *x*, *y*, *u*, *v*, *w*, *z* ∈ *X* with *gw* ≤ *gu* ≤ *gx* and *gy* ≤ *gv* ≤ *gz*. Then Corollary 3.6. follows from Corollary 3.5..

**Remark 3.1**. Note that similar results can be deduced from Theorems 3.2. and 3.3..

**Remark 3.2**. (1) Theorem 3.1 in [36] is a special case of Theorem 3.1..

- (2)
Theorem 3.2 in [36] is a special case of Theorem 3.2..

**Example 3.1**. Let

*X*= 0,1, 2, 3,... and

*G*:

*X*×

*X*×

*X*→

*R*

^{+}be defined as follows:

*X*,

*G*) is a complete

*G*-metric space [36]. Let a partial order ≼ on

*X*be defined as follows: For

*x*,

*y*∈

*X*,

*x*≼

*y*holds if

*x*>

*y*and 3 divides (

*x*-

*y*) and 3 ≼ 1 and 0 ≼ 1 hold. Let

*F*:

*X*×

*X*→

*X be*defined as follows:

*Let w* ≼ *u* ≼ *x* ≼ *y* ≼ *v* ≼ *z* hold, then equivalently, we have *w* ≥ *u* ≥ *x* ≥ *y* ≥ *v* ≥ *z*. Then *F*(*x*, *y*) = *F*(*u*, *v*) = *F*(*w*, *z*) = 1. Let $\psi \left(t\right)=t,\varphi \left(t\right)=\left(1-\frac{k}{2}\right)t$ for *t* ≥ 0 and *k* ∈ [0,1) and let *g*(*x*) = *x* for *x* ∈ *X*. Thus left-hand side of (1) is *G*(1, 1,1) = 0 and hence (1) is satisfied. Then with *x*_{0} = 81 and *y*_{0} = 0 the Theorem 3.2. is applicable to this example. It may be observed that in this example the coupled fixed point is not unique. Hence, (0,0) and (1,0) are two coupled fixed point of *F*.

## Declarations

### Acknowledgements

YJC was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2011-0021821).

## Authors’ Affiliations

## References

- Ran ACM, Reurings MCB: A fixed point theorem in partially ordered sets and some applications to matrix equations.
*Proc Am Math Soc*2004, 132: 1435–1443. 10.1090/S0002-9939-03-07220-4MathSciNetView Article - Nieto JJ, López RR: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations.
*Order*2005, 22: 223–239. 10.1007/s11083-005-9018-5MathSciNetView Article - Nieto JJ, López RR: Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations.
*Acta Math Sinica Engl Ser*2007, 23(12):2205–2212. 10.1007/s10114-005-0769-0View Article - Agarwal RP, El-Gebeily MA: O'Regan D: Generalized contractions in partially ordered metric spaces.
*Appl Anal*2008, 87: 1–8. 10.1080/00036810701714164MathSciNetView Article - O'Regan D, Petrutel A: Fixed point theorems for generalized contractions in ordered metric spaces.
*J Math Anal Appl*2008, 341: 241–1252.View Article - Bhaskar TG, Lakshmikantham V: Fixed point theorems in partially ordered metric spaces and applications.
*Nonlinear Anal*2006, 65: 1379–1393. 10.1016/j.na.2005.10.017MathSciNetView Article - Lakshmikantham V, Cirić LJ: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces.
*Nonlinear Anal*2009, 70: 4341–4349. 10.1016/j.na.2008.09.020MathSciNetView Article - Abbas M, Cho YJ, Nazir T: Common fixed point theorems for four mappings in TVS-valued cone metric spaces.
*J Math Inequal*2011, 5: 287–299.MathSciNetView Article - Abbas M, Khan MA, Radenović S: Common coupled fixed point theorem in cone metric space for
*w*-compatible mappings.*Appl Math Comput*2010, 217: 195–202. 10.1016/j.amc.2010.05.042MathSciNetView Article - Cho YJ, He G, Huang NJ: The existence results of coupled quasi-solutions for a class of operator equations.
*Bull Korean Math Soc*2010, 47: 455–465.MathSciNetView Article - Cho YJ, Saadati R, Wang S: Common fixed point theorems on generalized distance in order cone metric spaces.
*Comput Math Appl*2011, 61: 1254–1260. 10.1016/j.camwa.2011.01.004MathSciNetView Article - Cho YJ, Shah MH, Hussain N: Coupled fixed points of weakly
*F*-contractive mappings in topological spaces.*Appl Math Lett*2011, 24: 1185–1190. 10.1016/j.aml.2011.02.004MathSciNetView Article - Ciric LJ, Cakic N, Rajovic M, Ume JS: Monotone generalized nonlinear contractions in partially ordered metric spaces.
*Fixed Point Theory Appl*2008., 2008(11): (ID 131294) - Gordji ME, Cho YJ, Baghani H: Coupled fixed point theorems for contractions in intuitionistic fuzzy normed spaces.
*Math Comput Model*2011, 54: 1897–1906. 10.1016/j.mcm.2011.04.014View Article - Graily E, Vaezpour SM, Saadati R, Cho YJ: Generalization of fixed point theorems in ordered metric spaces concerning generalized distance.
*Fixed Point Theory Appl*2011, 2011: 30. 10.1186/1687-1812-2011-30MathSciNetView Article - Karapinar E: Couple fixed point theorems for nonlinear contractions in cone metric spaces.
*Comput Math Appl*2010. - Sabetghadam F, Masiha HP, Sanatpour AH: Some coupled fixed point theorems in cone metric spaces.
*Fixed point Theory Appl*2009, 2009: 8. (ID 125426)MathSciNetView Article - Samet B: Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces.
*Nonlinear Anal*2010, 72: 4508–4517. 10.1016/j.na.2010.02.026MathSciNetView Article - Samet B, Vetro C: Coupled fixed point,
*F*-invariant set and fixed point of*N*-order.*Ann Funct Anal*2010, 1(2):46–56.MathSciNetView Article - Samet B, Yazidi H: Coupled fixed point theorems in partially ordered
*ε*-chainable metric spaces.*J Math Comput Sci*2010, 1: 142–151. - Sintunavarat W, Cho YJ, Kumam P: Common fixed point theorems for
*c*-distance in ordered cone metric spaces.*Comput Math Appl*2011, 62: 1969–1978. 10.1016/j.camwa.2011.06.040MathSciNetView Article - Sintunavarat W, Cho YJ, Kumam P: Coupled coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces.
*Fixed Point Theory Appl*2011, 2011: 81. 10.1186/1687-1812-2011-81MathSciNetView Article - Zhu XH, Xiao JZ: Note on "Coupled fixed point theorems for contractions in fuzzy metric spaces".
*Nonlinear Anal*2011, 72: 5475–5479.MathSciNetView Article - Shatanawi W: Partially ordered cone metric spaces and coupled fixed point results.
*Comput Math Appl*2010, 60: 2508–2515. 10.1016/j.camwa.2010.08.074MathSciNetView Article - Mustafa Z, Sims B: A new approach to generalized metric spaces.
*J Nonlinear Convex Anal*2006, 7: 289–297.MathSciNet - Abbas M, Rhoades BE: Common fixed point results for non-commuting mappings without continuity in generalized metric spaces.
*Appl Math Comput*2009, 215: 262–269. 10.1016/j.amc.2009.04.085MathSciNetView Article - Chugh R, Kadian T, Rani A, Rhoades BE: Property
*p*in*G*-metric spaces.*Fixed Point Theory Appl*2010, 2010: 12. (ID 401684)MathSciNetView Article - Mustafa Z, Sims B: Some remarks concerning
*D*-metric spaces. In*Proc Int Conference on Fixed Point Theory and Applications*. Valencia, Spain; 2003:189–198. - Mustafa Z, Obiedat H, Awawdehand F: Some fixed point theorem for mapping on complete
*G*-metric spaces.*Fixed Point Theory Appl*2008, 2008: 12. (ID 189870)View Article - Mustafa Z, Sims B: Fixed point theorems for contractive mapping in complete
*G-*metric spaces.*Fixed Point Theory Appl*2009, 2009: 10. (ID 917175)MathSciNetView Article - Mustafa Z, Shatanawi W, Bataineh M: Existence of fixed point results in
*G*-metric spaces.*Int J Math Anal*2009, 2009: 10. (ID 283028) - Shatanawi W: Fixed point theory for contractive mappings satisfying Φ-maps in
*G*-metric spaces.*Fixed Point Theory Appl*2010, 2010: 9. (ID 181650)MathSciNetView Article - Abbas M, Khan AR, Nazir T: Coupled common fixed point results in two generalized metric spaces.
*Appl Math Comput*2011. - Shatanawi W: Coupled fixed point theorems in generalized metric spaces.
*Hacet J Math Stat*2011, 40(3):441–447.MathSciNet - Saadati R, Vaezpour SM, Vetro P, Rhoades BE: Fixed point theorems in generalized partially ordered
*G*-metric spaces.*Math Comput Model*2010, 52: 797–801. 10.1016/j.mcm.2010.05.009MathSciNetView Article - Choudhury BS, Maity P: coupled fixed point results in generalized metric spaces.
*Math Comput Model*2011, 54: 73–79. 10.1016/j.mcm.2011.01.036MathSciNetView Article - Khan MS, Swaleh M, Sessa S: Fixed point theorems by altering distancces between the points.
*Bull Aust Math Soc*1984, 30: 1–9. 10.1017/S0004972700001659MathSciNetView Article

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.