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Abstract
We study the Stokes problem for the incompressible fluid with mixed nonlinear
boundary conditions of subdifferential type. The latter involve a unilateral boundary
condition, the Navier slip condition, a nonmonotone version of the nonlinear
Navier–Fujita slip condition, and the threshold slip and leak condition of frictional
type. The weak form of the problem leads to a new class of
variational–hemivariational inequalities on convex sets for the velocity field. Solution
existence and the weak compactness of the solution set to the inequality problem are
established based on the Schauder fixed point theorem.
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1 Introduction
In this paper we study the Stokes problem for the incompressible fluid with mixed bound-
ary conditions in a bounded domain of dimension two and three. The problem is formu-
lated as a variational-hemivariational inequality of elliptic type involving both convex and
locally Lipschitz, generally nonconvex, superpotentials. The main results concern the ex-
istence and compactness of the solution set.

We are motivated by the Stokes system with a frictional type boundary condition with
the slip bound threshold value depending on the solution. Such a system has been treated
in [10, 11] by the mixed variational formulation with the Lagrange multipliers and then
applied to deal with optimum design problems. As mentioned in these papers, it was ex-
perimentally observed that the slip bound may depend on the solution itself, e.g., on values
of the tangential component of the velocity. This situation may appear in several practical
models of flows of polymer melts, blood flow in a vein, fluids on hydrophobic surfaces,
problems with multiple interfaces, etc. The simplest threshold slip condition can be de-
scribed by the Tresca-like condition when the threshold bound is given a priori and it is
modeled by a convex potential, see [7, 9]. Note that when the slip bound depends on the
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solution, the model is more complicated, see [11, 14, 15, 17] and the non-stationary case
in [8].

The main novelties of the paper are the following. First, we consider a generalization of
slip and leak boundary condition of frictional type on diverse parts of the wall of the do-
main. For the slip condition we study the Clarke subgradient multivalued condition which,
in contrast to [17], depends on the tangential velocity. The leak boundary condition can be
governed by any convex and lower semicontinuous potential involving the normal veloc-
ity. Second, we have supplemented the model with an outflow unilateral boundary condi-
tion introduced just recently in [31]. This makes the Stokes problem more involved since
the resulting variational-hemivariational inequality has an additional set of unilateral con-
straints. Third, in comparison with [10, 11], our approach and the proof is different and
combines a recent result from the theory of variational–hemivariational inequalities and
the Schauder fixed point theorem. In the proof of existence of solution, our main goal is
to explore under which conditions concerning coefficients in slip and leak boundary con-
ditions solutions to the Stokes system depend continuously on variations of parameters.

The important feature of the model is the nonlinearity of the form k∂j. In such a case
we cannot deal with a purely hemivariational inequality since there is not, in general, a
potential G with G = k∂j. This type of nonlinearity appears in the model twice: in the non-
monotone slip boundary condition which is described by the Clarke generalized gradient,
and in the generalized leak boundary condition of frictional type governed by the subdif-
ferential of the convex function. The slip bound function k depends on the (norm of the)
solution, while the potential j : Rd →R is a locally Lipschitz function and ∂j stands for its
generalized subgradient. We mention that it is an interesting open problem to generalize
the results of this paper to non-Newtonian fluids with various nonlinear constitutive law.

We note that the variational and hemivariational inequalities have been used to solve the
fluid flow problems in [18, 19, 22] for the stationary models and in [6] for the evolutionary
problems.

The paper is organized as follows. In Sect. 2 we shortly recall our notation and prelim-
inary results. Section 3 contains the classical and variational formulations of the Stokes
problem and the statement of the existence theorem. Its proof is delivered in Sect. 4. Fi-
nally, in Sect. 5 we demonstrate the weak compactness of the solution set.

2 Preliminary material
In this section we recall the standard notation and definitions from [1, 3, 4, 20, 21].

Throughout the paper, given a Banach space X, we denote by X∗ its dual space, by ‖ · ‖X

a norm in X, and by 〈·, ·〉X∗×X the duality brackets between X∗ and X. For simplicity of
notation, when no confusion arises, we often skip the subscripts. We use the notation
xn → x and xn ⇀ x, respectively, to denote the strong convergence and weak convergence
in various spaces. By L(X1, X2) we denote the space of linear and bounded operators from
a normed space X1 to a normed space X2 endowed with the operator norm ‖ · ‖L(X1,X2).
Given a set D ⊂ X, we set ‖D‖X = sup{‖x‖X | x ∈ D}.

A single-valued operator A : X → X∗ is pseudomonotone if it is bounded (it maps
bounded subsets of X into bounded subsets of X∗), and if un ⇀ u in X and lim sup〈Aun, un –
u〉 ≤ 0 imply 〈Au, u – v〉 ≤ lim inf〈Aun, un – v〉 for all v ∈ X. Equivalently, a single-valued
operator A is pseudomonotone if and only if it is bounded, and un ⇀ u in X together with
lim sup〈Aun, un – u〉 ≤ 0 yields lim〈Aun, un – u〉 = 0 and Aun ⇀ Au in X∗.
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Let ϕ : X → R ∪ {+∞} be a proper, convex, and lower semicontinuous function. The
mapping ∂ϕ : X → 2X∗ defined by

∂ϕ(x) =
{

x∗ ∈ X∗ | 〈x∗, v – x
〉 ≤ ϕ(v) – ϕ(x) for all v ∈ X

}

is called the convex subdifferential of ϕ. An element x∗ ∈ ∂ϕ(x) is called a subgradient of
ϕ in x. Let h : X →R be a locally Lipschitz function on a Banach space X. The generalized
(Clarke) directional derivative of h at x ∈ X in the direction v ∈ X is defined by

h0(x; v) = lim sup
y→x,λ↓0

h(y + λv) – h(y)
λ

.

The generalized (Clarke) gradient of h at x, denoted by ∂h(x), is a subset of the dual space
X∗ given by

∂h(x) =
{
ζ ∈ X∗ | h0(x; v) ≥ 〈ζ , v〉 for all v ∈ X

}
.

Finally, we recall an existence and uniqueness result for a class of abstract variatio-
nal–hemivariational inequalities. Let X be a reflexive Banach space. Given an operator
A : X → X∗, functions ϕ : K × K →R, j : X →R, and a set K ⊂ X, we consider the follow-
ing problem.

Problem 1 Find an element u ∈ K such that

〈Au – f , v – u〉 + �(v) – �(u) + J0(u; v – u) ≥ 0 for all v ∈ K .

For this problem, we need the following hypotheses on the data.
H(A): A : X → X∗ is a function such that
(i) it is pseudomonotone,

(ii) it is strongly monotone, i.e., there exists mA > 0 such that

〈Av1 – Av2, v1 – v2〉 ≥ mA‖v1 – v2‖2
X for all v1, v2 ∈ X.

H(�): � : X →R is convex and lower semicontinuous.
H(J): J : X →R is a function such that

(i) J is locally Lipschitz,
(ii) ‖∂J(v)‖X∗ ≤ c0 + c1‖v‖X for all v ∈ X with c0, c1 ≥ 0,

(iii) there exists αJ ≥ 0 such that J0(v1; v2 – v1) + J0(v2; v1 – v2) ≤ αJ‖v1 – v2‖2
X for all v1,

v2 ∈ X .
H(K): K is nonempty, closed and convex subset of X.
H(f ): f ∈ X∗.
Recall the existence and uniqueness result for Problem 1.

Theorem 2 Assume H(A), H(�), H(J), H(K), H(f ) and the smallness condition

αJ < mA. (1)

Then Problem 1 has a unique solution u ∈ K .
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Theorem 2 represents a particular case of a result proved in [21], where the function �

depends additionally on the solution. Further, in [21, Theorem 18], the authors required
additionally that A is coercive. However, this assumption is redundant, since if A is strongly
monotone, then A is coercive in the following sense:

〈Av, v〉 = 〈Av – A0, v〉 + 〈A0, v〉 ≥ mA‖v‖2
X + ‖A0‖X∗‖v‖X (2)

for all v ∈ X. Condition H(J)(iii) has been extensively used in the literature for hemivaria-
tional inequalities, see [20, 29], and it is equivalent to the relaxed monotone condition

〈z1 – z2, v1 – v2〉 ≥ –αJ‖v1 – v2‖2
X (3)

for all zi ∈ ∂J(vi), zi ∈ X∗, vi ∈ X, i = 1, 2. Further, if J is a convex function, then H(J)(iii) or
equivalently (3) holds with αJ = 0 and means that the (convex) subdifferential is a mono-
tone map. In this case the smallness condition (1) holds trivially.

3 Formulation of the Stokes problem
Let 	 ⊂ R

d , d = 2, 3, be a connected Lipschitz bounded domain occupied by the incom-
pressible fluid. The boundary 
 = ∂	 consists of smooth parts 
0, 
1, 
2, and 
3 such
that meas(
0) > 0, while the parts 
1, 
2, and 
3 can be empty. The unit outward normal
vector exists a.e. on the boundary and is denoted by ν . Moreover, Md denotes the class of
symmetric d × d matrices.

The classical formulation of the Stokes problem with mixed boundary conditions stud-
ied in this paper reads as follows.

Problem 3 Find a flow velocity u : 	 →R
d , and a pressure p : 	 →R such that

– Div(2μ̃Du) + ∇p = f in 	, (4)

div u = 0 in 	, (5)

u = 0 on 
0, (6)
⎧
⎨

⎩
uν = 0,

–τ τ (u) ∈ k(‖uτ‖)∂j(uτ ),
on 
1, (7)

⎧
⎪⎪⎨

⎪⎪⎩

uν + g ≥ 0, τν(u, p) + h(uν) ≥ 0,

(uν + g)(τν(u, p) + h(uν)) = 0,

τ τ (u) = 0,

on 
2, (8)

⎧
⎨

⎩
–τν(u, p) ∈ l(uν)∂φ(uν),

uτ = 0,
on 
3. (9)

We give a short description of the Stokes system in Problem 3. The extra stress ten-
sor S is defined by the linear constitutive law S(Du) = 2μ̃Du in 	, where μ̃ represents
the dynamic viscosity, f is the volume force, and the deformation-rate tensor is given by
Du = 1

2 (∇u +∇u�). To simplify presentation, we shall suppose in what follows that 2μ̃ = μ.
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The divergence free condition (5) models an incompressible fluid. The divergence opera-
tors for tensor and vector-valued functions are defined by DivS = (Sij,j) and div u = (ui,i),
where the index that follows a comma represents the partial derivative with respect to
the corresponding component of x. The homogeneous Dirichlet boundary condition (6)
means that the fluid adheres to the wall, see, e.g., [7, 8, 14, 17, 27]. For convenience in
notation, in boundary conditions (7)–(9), the traction vector is defined by

τ (u, p) = σ (u, p)ν on 
,

where the total stress is denoted by

σ (u,π ) = –pI + S(Du) in 	,

and I is the identity d × d matrix. Hence

τν(u, p) = τ (u, p) · ν and τ τ (u) = τ (u, p) – τν(u, p)ν

represent normal and tangential components of the traction vector, respectively. Note that
τ and τν do depend on the pressure p, and τ τ is independent of p.

The nonlinear boundary condition (7) describes a generalization, in several directions,
of the Navier–Fujita slip condition. The following example of (7) has been studied by Le
Roux and Tani in [14, 15]:

uν = 0 on 
1, (10)
⎧
⎨

⎩
‖τ τ (u)‖

Rd ≤ α + β(‖uτ – wτ‖Rd ),

τ τ (u) · (uτ – wτ ) = –(α + β(‖uτ – wτ‖Rd ))‖uτ – wτ‖Rd ,
on 
1, (11)

where α : 
1 → (0,∞) and β : 
1 × [0,∞) → [0,∞) are prescribed functions such that for
a.e. x ∈ 
1, β(x, r) = 0 if and only if r = 0, while wτ denotes the tangential velocity of the
wall surface at 
1. Conditions (10) and (11) in the aforementioned papers are motivated
by models of flows of polymer melts during extraction, flows of Newtonian fluids with
a moving contact line, and flows of yield-stress fluids, etc. Condition (10) is called the
impermeability (no leak) boundary condition, and (11) represents a nonlinear Navier–
Fujita slip condition. Physically, condition (11) signifies that for the wall slip to occur the
magnitude of the tangential traction has to exceed a prescribed “slip threshold”, denoted
by α, independent of the normal stress, and if the slip occurs, the tangential traction equals
to a given, nonlinear function of the slip velocity. Condition (11) has been considered as a
generalization of three slip boundary conditions: the Navier slip condition in [23] (stating
that the tangential velocity uτ is proportional to the shear stress σ τ ), the nonlinear Navier-
type slip condition in [14], and the threshold slip condition of “frictional type” studied in
a series of papers by Fujita et al. [7–9, 25, 26]. Note that the nonlinear Navier–Fujita slip
condition (11) is a particular case of condition (7) in Problem 3 with functions k(x, ξ ) =
α(x) +β(x,‖ξ‖

Rd ) and j(x, ξ ) = ‖ξ‖
Rd for a.e. x ∈ 
1, all ξ ∈R

d . The function j satisfies H(j)
below with c0(x) = 1, c1 = 0 since it is convex in the second variable. Further, condition (7)
is much more general than (11) since it involves models with nonmonotone slip boundary
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condition of frictional type governed by nonconvex locally Lipschitz superpotentials j; for
concrete examples, see [17, Example (60)] and the references therein.

Condition (8) has been recently suggested and studied in [31] to model a new outflow
unilateral boundary condition for blood flow simulations. It has an advantage over the
popular do-nothing boundary condition. In (8), g is a given positive constant and h is a
prescribed nonnegative function. It is a counterpart of the Signorini-type condition which
models the unilateral contact in the theory of elasticity [13, 28]. Moreover, condition (8)
has been studied for the Stokes problem in [27] with h(x; r) = h(x), and recently in [17].
The boundary condition (9) is called the generalized leak boundary condition of frictional
type. It describes the lack of slip on the boundary 
3 and a possible leakage of the fluid
through this part of the boundary with a prescribed convex function φ. For the choice
φ(r) = |r| for r ∈ R and further discussion, we refer to [17]. The generalized gradient for j
and the convex subdifferential of φ are always taken with respect to the last variable of a
given function.

In a particular case, Problem 3 has been studied in [10, 11] under the hypotheses

2 = 
3 = ∅ and the convex potential j(ξ ) = ‖ξ‖

Rd for ξ ∈R
d . There, a weak form of Prob-

lem 3 was treated as a mixed variational formulation which couples a nonlinear variational
inequality and an equation for the multiplier. This formulation is quite different to the one
we study in the present paper. Due to the presence of both convex and nonconvex poten-
tials, the weak formulation of Problem 3 leads to a variational–hemivariational inequality
of elliptic type for the velocity field.

Next, we introduce the following spaces needed for the weak formulation.

Ṽ =
{

v ∈ C∞(
	;Rd) | div v = 0 in 	, v = 0 on 
0, vν = 0 on 
1, vτ = 0 on 
3

}
,

V = closure of Ṽ in H1(	;Rd). (12)

The space V is endowed with the standard norm ‖v‖ = ‖v‖H1(	;Rd), and we also consider
the norm given by ‖v‖V = ‖Dv‖L2(	;Md) for v ∈ V . Using the Korn inequality

cK‖v‖H1(	;Rd) ≤ ‖Dv‖L2(	;Md) for v ∈ V with cK > 0, (13)

see [5, Theorem 8], it is known that ‖ · ‖H1(	;Rd) and ‖ · ‖V are the equivalent norms on V .
The set of unilateral constraints for Problem 3 is given by

K = {v ∈ V | vν + g ≥ 0 on 
2} with g > 0. (14)

We recall that, for a bounded Lipschitz domain with boundary 
, there exists a unique
trace operator γ0 : H1(	;Rd) → H1/2(
;Rd) which is linear, bounded, surjective, and such
that γ0(v) = v|
 for all v ∈ C∞(	;Rd), see, e.g., [24, Chap. 2, Theorems 5.5 and 5.7]. There
are various definitions of H1/2(
;Rd) which are equivalent for Lipschitz boundaries, for
details, see, e.g., [30, Chap. II.1.2, p. 47], [2, Chap. 3.2]. It follows from [16, p. 93] that
the injection map i : H1/2(
;Rd) → L2(
;Rd) is compact. We use also the trace operator
γ = i ◦ γ0 : V ⊂ H1(	;Rd) → L2(
;Rd) which is linear, bounded, compact, and its norm
in the space L(V , L2(
;Rd)) is denoted by ‖γ ‖. It is clear that the (tangential and normal)
trace operator

H1(	;Rd) � w �→ (wτ , wν) ∈ H1/2(
;Rd) × H1/2(
) (15)
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is linear and bounded, where for a vector-valued function w on 
, we denote by wν and wτ

its normal and tangential components defined by wν = w ·ν and wτ = w –wνν , respectively.
Further, instead of γ v, for simplicity, we retain the notation v.

We now introduce hypotheses on the dynamic viscosity μ, the nonconvex superpoten-
tial j, the convex potential φ, the functions h, k, and l, and the external body force density
f in Problem 3.

H(μ): μ ∈ L∞(	) and 0 < μ0 ≤ μ(x) for a.e. x ∈ 	.
H(h): h : 
2 ×R →R is a function such that

(i) h(·, r) is measurable for all r ∈R,
(ii) h(x, ·) is continuous and nondecreasing for a.e. x ∈ 
2,

(iii) 0 ≤ h(x, r) ≤ h0 for all r ∈ R and a.e. x ∈ 
2,
(iv) h(x, 0) = 0 for a.e. x ∈ 
2.
H(j): j : 
1 ×R

d →R is a function such that
(i) j(·, ξ ) is measurable on 
1 for all ξ ∈R

d and there is e ∈ L2(
1;Rd) such that
j(·, e(·)) ∈ L1(
1),

(ii) j(x, ·) is locally Lipschitz for a.e. x ∈ 
1,
(iii) ‖∂j(x, ξ )‖

Rd ≤ c0(x) + c1‖ξ‖
Rd for all ξ ∈R

d , a.e. x ∈ 
1 with c0 ∈ L2(
1), c0, c1 ≥ 0,
(iv) there exists αj ≥ 0 such that j0(ξ 1; ξ 2 – ξ 1) + j0(ξ 2; ξ 1 – ξ 2) ≤ αj‖ξ 1 – ξ 2‖2

Rd for all
ξ 1, ξ 2 ∈R

d .
H(k): k : 
1 ×R →R is a function such that

(i) k(·, r) is measurable on 
1 for all r ∈R,
(ii) k(x, ·) is continuous on R for a.e. x ∈ 
1,

(iii) 0 < k0 ≤ k(x, r) ≤ k1 for all r ∈R, a.e. x ∈ 
1.
H(l): l : 
3 ×R →R is a function such that

(i) l(·, r) is measurable on 
3 for all r ∈R,
(ii) l(x, ·) is continuous on R for a.e. x ∈ 
3,

(iii) 0 < l0 ≤ l(x, r) ≤ l1 for all r ∈ R, a.e. x ∈ 
1.
H(φ): φ : R →R is convex and lower semicontinuous.
H(f ) : f ∈ V ∗.
(H0): αjk1‖γ ‖2 < μ0.
The condition (H0) means that a “small” decrease (with respect to the lower bound μ0 for

the viscosity) of the graph of the subdifferential of j is permissible. As mentioned before,
when j(x, ·) is a convex potential, then (H0) holds trivially with αj = 0.

We now derive the variational formulation of Problem 3. We assume now that u and p
are sufficiently smooth functions which satisfy (4)–(9). Let v ∈ K . We multiply equation
(4) by v – u and integrate over 	 to find that

∫

	

(
– DivS(Du)

) · (v – u) dx +
∫

	

∇p · (v – u) dx =
∫

	

f · (v – u) dx. (16)

By using a second Green-type formula, see [20, Theorem 2.25], the fact that functions in
V are divergence free, v = u = 0 on 
0 and vν = uν = 0 on 
1, we obtain

∫

	

∇p · (v – u) dx = –
∫

	

(
div(v – u)

)
p dx +

∫


0

(vν – uν)p d


+
∫


1

(vν – uν)p d
 +
∫


2

(vν – uν)p d
 +
∫


3

(vν – uν)p d
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=
∫


2

(vν – uν)p d
 +
∫


3

(vν – uν)p d
. (17)

By the Green formula in [20, Theorems 2.24], we get

∫

	

(
– DivS(Du)

) · (v – u) dx

=
∫

	

S(Du) : D(v – u) dx –
∫

∂	

(
S(Du)ν

) · (v – u) d
.

Further, we employ the decomposition formula, see [20, relation (6.33)], condition u = v =
0 on 
0, and

Sν(u) = τν(u, p) + p, Sτ (u) = τ τ (u) on 
,

to obtain
∫

∂	

(Sν) · (v – u) d


=
∫


1

Sν(u)(vν – uν) + Sτ (u) · (vτ – uτ ) d
 +
∫


2

Sν(u)(vν – uν)

+ Sτ (u) · (vτ – uτ ) d
 +
∫


3

Sν(u)(vν – uν) + Sτ (u) · (vτ – uτ ) d


=
∫


1

τ τ (u) · (vτ – uτ ) d
 +
∫


2

(
τν(u, p) + p

)
(vν – uν) d


+
∫


3

(
τν(u, p) + p

)
(vν – uν) d
 =

∫


1

τ τ (u) · (vτ – uτ ) d


+
∫


2

(
τν(u, p) + h(uν)

)
(vν + g) –

(
τν(u, p) + h(uν)

)
(g + uν)

– h(uν)(vν – uν) + p(vν – uν) d
 +
∫


3

(
τν(u, p) + p

)
(vν – uν) d
.

Now, taking into account the relations

(
τν(u, p) + h(uν)

)
(vν + g) ≥ 0,

(
τν(u, p) + h(uν)

)
(uν + g) = 0 on 
2,

we deduce
∫

∂	

(Sν) · (v – u) d
 (18)

≥
∫


1

τ τ (u) · (vτ – uτ ) d


+
∫


2

p(vν – uν) – h(uν)(vν – uν) d
 +
∫


3

(
τν(u, p) + p

)
(vν – uν) d
.

Therefore, combining (16), (17), and (18), we have

∫

	

S(Du) : D(v – u) dx +
∫


2

(vν – uν)p d
 +
∫


3

(vν – uν)p d
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≥
∫

	

f · (v – u) dx +
∫


1

τ τ (u) · (vτ – uτ ) d


+
∫


2

p(vν – uν) – h(uν)(vν – uν) d
 +
∫


3

(
τν(u, p) + p

)
(vν – uν) d
,

and finally

∫

	

S(Du) : D(v – u) dx

≥
∫

	

f · (v – u) dx +
∫


1

τ τ (u) · (vτ – uτ ) d


–
∫


2

h(uν)(vν – uν) d
 +
∫


3

τν(u, p)(vν – uν) d
.

We utilize the subgradient boundary conditions (7) and (9) to obtain the following varia-
tional formulation of Problem 3.

Problem 4 Find a velocity u ∈ K such that

∫

	

μDu : D(v – u) dx +
∫


2

h(uν)(vν – uν) d
 +
∫


1

k
(‖uτ‖

)
j0(uτ ; vτ – uτ ) d


+
∫


3

l(uν)
(
φ(vν) – φ(uν)

)
d


≥
∫

	

f · (v – u) dx for all v ∈ K .

Problem 4 is called a variational–hemivariational inequality on a convex set. The main
existence result on Problem 4 is stated below, and its proof will be given in Sect. 4.

Theorem 5 Under hypotheses H(μ), H(h), H(j), H(k), H(l), H(φ), H(f ), and (H0), Prob-
lem 4 has a solution.

4 Proof of Theorem 5
The proof is based on an application of Theorem 2 and a fixed point argument. We divide
the proof into four steps.

Step 1. Let Y1 = H1/2(
1;Rd) and Y2 = H1/2(
3). Let (η, ξ ) ∈ Y1 × Y2 be fixed. Consider
the auxiliary problem

P(η, ξ )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

find u ∈ K such that
∫
	

μDu : D(v – u) dx +
∫

2

h(uν)(vν – uν) d


+
∫

1

k(‖η‖
Rd )j0(uτ ; vτ – uτ ) d
 +

∫

3

l(ξ )(φ(vν) – φ(uν)) d


≥ ∫
	

f · (v – u) dx for all v ∈ K .

We shall prove that problem P(η, ξ ) has a unique solution. With this problem, we associate
the following inequality: find u ∈ K such that

〈Au – f , v – u〉 + �(v) – �(u) + J0(u; v – u) ≥ 0 for all v ∈ K , (19)
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where A : V → V ∗ and �, J : V →R are defined by

〈Au, v〉 =
∫

	

μDu : Dv dx +
∫


2

h(uν)vν d
, u, v ∈ V , (20)

J(v) =
∫


1

k
(‖η‖

Rd
)
j(vτ ) d
, v ∈ V , (21)

�(v) =
∫


3

l(ξ )φ(vν) d
, v ∈ V . (22)

We shall verify conditions H(A), H(J), H(�), H(K), H(f ), and (H0) of Theorem 2. The
operator A1 : V → V ∗ defined by

〈A1u, v〉 =
∫

	

μDu : Dv dx, u, v ∈ V ,

is linear, bounded, strongly monotone with constant mA = μ0 > 0, and so also coercive.
In particular, the function V � v �→ 〈A1v, v〉 ∈ R for v ∈ V is strictly convex and lower
semicontinuous, see, e.g., [28, Proposition 1.30]. Hence, it is weakly lower semicontinuous
on V which implies

lim sup
〈
A1un, v – un〉 ≤ 〈A1u, v – u〉 for all un ⇀ u in V , v ∈ V . (23)

Next, we note that the nonlinear operator

〈A2u, v〉 =
∫


2

h(uν)vν d
, u, v ∈ V ,

is bounded, continuous (we use the compactness of the normal trace operator V �→
L2(
2)), and monotone (by hypothesis H(h)(ii)). Further, by H(h)(ii) and the Hölder in-
equality, we get

lim
〈
A2un, v – un〉 = 〈A2u, v – u〉 for all un ⇀ u in V , v ∈ V . (24)

In conclusion, the operator A given by (20) is bounded, continuous, and strongly mono-
tone with constant mA = μ0, so by [20, Theorem 3.69], it is pseudomonotone. Condition
H(A) is verified.

Hypothesis H(j)(i)–(ii) guarantees that the function J , given by (21), is well defined, and
conditions H(J)(i) and (ii) follow from H(j)(i)–(iii), respectively, see [20, Theorem 3.47].
Condition H(J)(iii) is a consequence of the inequality

J0(u; v) ≤
∫


1

k
(‖η‖

Rd
)
j0(uτ ; vτ ) d
 for u, v ∈ V (25)

combined with hypothesis H(j)(iv). We obtain that H(J)(iii) holds with αJ = αjk1‖γ ‖2.
Furthermore, taking into account hypothesis H(φ), we deduce H(�). The convexity of

� is obvious. Let {vn} ⊂ V be such that vn → v in V . We use the continuity of the nor-
mal trace operator V � v �→ vν ∈ L2(
3) to get vn

ν → vν in L2(
3), and next, at least for a
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subsequence, we have vn
ν (x) → vν(x) for a.e. x ∈ 
3. From H(l)(iii) and H(φ), we obtain

l
(
ξ (x)

)
φ
(
vν(x)

) ≤ lim inf l
(
ξ (x)

)
φ
(
vn
ν (x)

)
a.e. x ∈ 
3. (26)

It is clear from [3, Proposition 5.2.25] that there are a, b ∈ R such that φ(r) ≥ ar + b
for all r ∈ R. Hence l(ξ (x))φ(vν(x)) ≥ �1(x) for a.e. x ∈ 
3 and all v ∈ V with �1(x) :=
–l1(|a||vν(x)| + |b|) a.e. x ∈ 
3. By a direct calculation, we get

∫

3

�1 d
 ≥ –m1‖v‖V – m2

for v ∈ V with m1, m2 ≥ 0. Therefore �1 ∈ L1(
3). Using the latter and integrating both
sides of (26), by Fatou’s lemma, it yields

∫


3

l(ξ )φ(vν) d
 ≤
∫


3

lim inf l(ξ )φ
(
vn
ν

)
d
 ≤ lim inf

∫


3

l(ξ )φ
(
vn
ν

)
d
,

which shows that � is a lower semicontinuous function on V . Thus, H(�) is proved.
Subsequently, it is easy to see that the set of unilateral constraints (14) is closed and

convex in V with 0 ∈ K and, thus, condition H(K) is satisfied. Finally, the hypothesis (H0)
assures that the smallness condition (1) holds. Having verified the hypotheses of Theo-
rem 2, we deduce that there exists a unique solution u = uξη ∈ K to problem (19). Using
inequality (25), we know that u = uξη ∈ K is also the solution to problem P(η, ξ ).

By the direct computation, we can show that the solution to problem P(η, ξ ) is unique.
Indeed, let u1, u2 ∈ V be solutions to problem P(η, ξ ). Choosing the test function v = u2 ∈
K in the inequality satisfied by u1, and v = u1 ∈ K in the inequality satisfied by u2, and then
adding the two resulting inequalities, we obtain

〈Au1 – Au2, u1 – u2〉 ≤
∫


1

k
(‖η‖

Rd
)(

j0(u1τ ; u2τ – u1τ ) + j0(u2τ ; u1τ – u2τ )
)

d
.

Taking into account the strong monotonicity of the operator A and hypotheses H(j)(iv),
H(k)(iii) as well as the continuity of the trace operator γ , we have

μ0‖u1 – u2‖2
V ≤ k1αj‖u1τ – u2τ‖2

L2(
1;Rd) ≤ αjk1‖γ ‖2‖u1 – u2‖2
V .

Finally, due to hypothesis (H0), we deduce u1 = u2. In conclusion, problem P(η, ξ ) has a
unique solution.

Step 2. We shall show the estimate on the unique solution u = uξη ∈ K to P(η, ξ ). We
choose v = 0 ∈ K in the inequality P(η, ξ ) to get

〈Au, u〉 ≤ �(0) – �(u) +
∣∣∣∣

∫


1

k
(‖η‖

Rd
)
j0(uτ ; –uτ ) d


∣∣∣∣ +
∣∣〈f , u〉∣∣. (27)

From (2), H(l), and H(φ), it is clear that

〈Au, u〉 ≥ μ0‖u‖2
V + ‖A0‖V∗‖u‖V ≥ μ0‖u‖2

V and �(0) ≤ l1
∣∣φ(0)

∣∣. (28)

By [3, Proposition 5.2.25], it follows that � is bounded from below by an affine function,
i.e., there are q ∈ V ∗ and β ∈R such that �(v) ≥ 〈q, v〉 + β for all v ∈ V . Hence

–�(u) ≤ ‖q‖V∗‖u‖V + |β|. (29)
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Subsequently, from H(j)(iii), (iv) and the inequality ‖uτ‖Rd ≤ ‖u‖
Rd , we deduce

∣∣j0(uτ ; –uτ )
∣∣ ≤ αj‖uτ‖2

Rd +
∣∣j0(0; uτ )

∣∣ ≤ αj‖u‖2
Rd + c0(x)‖u‖

Rd .

Due to H(k), the continuity of the trace operator V �→ L2(
1;Rd), and the Hölder inequal-
ity, we have

∣∣∣∣

∫


1

k
(‖η‖

Rd
)
j0(uτ ; –uη) d


∣∣∣∣ (30)

≤
∫


1

∣∣k
(‖η‖

Rd
)∣∣∣∣j0(uτ ; –uτ )

∣∣d


≤
∫


1

k1
(
αj‖u‖2 + c0(x)‖u‖)d
 ≤ αjk1‖u‖2

L2(
1;Rd) + k1‖c0‖L2(
1)|
1|1/2‖u‖L2(
1;Rd)

≤ αjk1‖γ ‖2‖u‖2
V + k1‖c0‖L2(
1)|
1|1/2‖γ ‖‖u‖V .

Combining (28)–(30) with (27), we obtain

(
μ0 – αjk1‖γ ‖2)‖u‖2

V ≤ (‖q‖V∗ + ‖f‖V∗ + k1‖c0‖L2(
1)|
1|1/2‖γ ‖)‖u‖V (31)

+ l1
∣∣φ(0)

∣∣ + |β|.

We use the relation

x2 ≤ ax + b �⇒ x2 ≤ a2 + 2b, for all a, b, x ≥ 0

to conclude that

‖u‖V ≤ M, (32)

where the constant M > 0 is such that

M2 =
(‖q‖V∗ + ‖f‖V∗ + k1‖c0‖L2(
1)|
1|1/2‖γ ‖

μ0 – αjk1‖γ ‖2

)2

+ 2
l1|φ(0)| + |β|
μ0 – αjk1‖γ ‖2 .

Step 3. Let � : Y1 × Y2 → Y1 × Y2 be defined by

�(η, ξ ) = (uηξτ , uηξν) for (η, ξ ) ∈ Y1 × Y2,

where u = uηξ ∈ K is the unique solution to problem P(η, ξ ). Note that � is well defined,
and by (32), the continuity of the trace operator (15), and the elementary inequalities
‖uτ‖Rd ≤ ‖u‖

Rd and uν ≤ |uν | ≤ ‖u‖
Rd , we have

∥∥�(η, ξ )
∥∥

Y1×Y2
= ‖uηξτ‖Y1 + ‖uηξν‖Y2 ≤ 2‖γ ‖‖uηξ‖V ≤ 2M‖γ ‖. (33)

In other words, due to the uniform bounds for k and l, the image of the whole space Y1 ×Y2

remains in a closed ball in Y1 × Y2, that is,

�(Y1 × Y2) ⊂ B
(
0, 2M‖γ ‖). (34)
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Next, we shall show that � is a weakly-weakly continuous map. Let (ηn, ξn), (η, ξ ) ∈ Y1 ×
Y2 such that

ηn ⇀ η in Y1 and ξn ⇀ ξ in Y2. (35)

Using the compactness of the embedding H1/2(
;Rd) into L2(
;Rd), (35) implies

ηn → η in L2(
1;Rd) and ξn → ξ in L2(
3), (36)

and therefore we can assume that

ηn → η a.e. on 
1 and ξn → ξ a.e. on 
3. (37)

Let un
ηnξn ∈ K , n ∈ N, be the unique solution to problem P(ηn, ξn) corresponding to

(ηn, ξn). For simplicity, we write un = un
ηnξn and we have

〈
Aun – f , v – un〉 +

∫


1

k
(‖ηn‖Rd

)
j0(un

τ ; vτ – un
τ

)
d


+
∫


3

l(ξn)
(
φ(vν) – φ

(
un

ν

))
d
 ≥ 0 for all v ∈ K , (38)

where A is the operator defined by (20). By estimate (32) in Step 2, we know that {un}
remains uniformly bounded in V . Thus, by the reflexivity of V , there is a subsequence of
{un}, denoted in the same way, and u ∈ V such that

un ⇀ u in V . (39)

Since {un} ⊂ K and K is weakly closed in V (being closed and convex), we have u ∈ K .
From the compactness of the trace operator γ and the converse Lebesgue dominated con-
vergence theorem [20, Theorem 2.39], we may suppose that un → u in L2(
;Rd) and

un(x) → u(x) a.e. x ∈ 
,
∥∥un(x)

∥∥
Rd ≤ ρ(x) a.e. x ∈ 
 (40)

with ρ ∈ L2(
). Next, let v ∈ K . We use H(j)(iii), H(k)(iii), and [20, Proposition 3.23 (iii)]
to obtain

k
(‖ηn‖Rd

)
j0(un

τ ; vτ – un
τ

)

≤ k1
∥∥∂j

(
un

τ

)∥∥
Rd

∥∥vτ – un
τ

∥∥
Rd

≤ k1
(
c0(x) + c1

∥∥un
τ

∥∥
Rd

)(∥∥v(x)
∥∥
Rd +

∥∥un
τ

∥∥
Rd

)

≤ k1
(
c0(x) + c1ρ(x)

)(∥∥v(x)
∥∥
Rd + ρ(x)

)
=: �(x),

where � ∈ L1(
1). In view of the latter, by Fatou’s lemma, we have

lim sup
∫


1

k
(‖ηn‖Rd

)
j0(un

τ ; vτ – un
τ

)
d
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≤
∫


1

lim sup k
(‖ηn‖Rd

)
j0(un

τ ; vτ – un
τ

)
d


≤
∫


1

lim sup
(
k
(‖ηn‖Rd

)
– k

(‖η‖
Rd

))
� d


+
∫


1

k
(‖η‖

Rd
)

lim sup j0(un
τ ; vτ – un

τ

)
d
. (41)

On the other hand, we employ (40), the upper semicontinuity of the function j0(·; ·), see [20,
Proposition 3.23(ii)], and get

∫


1

k
(‖η‖

Rd
)

lim sup j0(un
τ ; vτ – un

τ

)
d
 ≤

∫


1

k
(‖η‖

Rd
)
j0(uτ ; vτ – uτ ) d
. (42)

Combining (35), (41), and (42), it follows

lim sup
∫


1

k
(‖ηn‖Rd

)
j0(un

τ ; vτ – un
τ

)
d
 ≤

∫


1

k
(‖η‖

Rd
)
j0(uτ ; vτ – uτ ) d
 (43)

for all v ∈ V . In a similar way to (43), we can use (35), H(l), H(φ), and Fatou’s lemma to
obtain

lim sup
∫


3

l(ξn)
(
φ(vν) – φ

(
un

ν

))
d
 ≤

∫


3

l(ξ )
(
φ(vν) – φ(uν)

)
d
 (44)

for all v ∈ V .
We are now in a position to pass to the limit in (38), as n → ∞. To this end, we use

convergences (23), (24), (39), (43), and (44) to deduce

〈Au – f , v – u〉 +
∫


1

k
(‖η‖

Rd
)
j0(uτ ; vτ – uτ ) d
 +

∫


3

l(ξ )
(
φ(vν) – φ(uν)

)
d
 ≥ 0

for all v ∈ K . This means that u ∈ K is the solution to problem P(η, ξ ) corresponding to
(η, ξ ). Since the problem admits a unique solution, the whole sequence {un} converges
weakly in V to u. Since the (tangential and normal) trace operator (15) is linear and con-
tinuous, we have

un
τ ⇀ uτ in Y1 and un

ν ⇀ uν in Y2

and �(ηn, ξn) ⇀ �(η, ξ ) in Y1 ×Y2. This proves the weak-to-weak continuity of the map �.
Step 4. We apply the Schauder fixed point theorem in its weak variant, see, e.g., [12,

p. 185].

Theorem 6 Let X be a separable reflexive Banach space and C ⊂ X be nonempty, convex,
and weakly compact in X. Let S : C → C be weak-to-weak continuous. Then S has a fixed
point.

From Step 2, we know that the map � is continuous in the weak topology and it satisfies
(34). By the reflexivity of Y1 × Y2, it is clear that the closed ball is weakly compact and
obviously convex. Thus � has a fixed point (η∗, ξ ∗) ∈ Y1 × Y2, that is,

η∗ = uη∗ξ∗τ , ξ ∗ = uη∗ξ∗ν ,
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where uη∗ξ∗ ∈ K solves problem P(η∗, ξ ∗). We conclude that uη∗ξ∗ ∈ K is a solution to
Problem 4. The proof is complete. �

5 Compactness and uniqueness results
We conclude the paper with the following compactness and uniqueness results for Prob-
lem 4.

Theorem 7 Under the hypotheses of Theorem 5, the set of solutions to Problem 4 is weakly
compact in V .

Proof Let S be the solution set to Problem 4. It is a nonempty subset of V by Theorem 5.
Let {un} ⊂ S, so un ∈ K and

∫

	

μDun : D
(

v – un)dx +
∫


2

h
(
un

ν

)(
vν – un

ν

)
d
 +

∫


1

k
(∥∥un

τ

∥∥)
j0(un

τ ; vτ – un
τ

)
d


+
∫


3

l
(
un

ν

)(
φ(vν) – φ

(
un

ν

))
d
 ≥

∫

	

f · (v – un)dx for all v ∈ K .

Next, we follow the arguments used in Steps 2 and 3 of Theorem 5 to demonstrate that
{un} is uniformly bounded in V and, at least for a subsequence, un → u0 weakly in V ,
where u0 ∈ K solves Problem 4. Hence u0 ∈ S. This completes the proof. �

The uniqueness of a solution to Problem 4 under the general hypotheses of Theorem 5
is an open problem. However, it can be obtained, for instance, under the additional as-
sumptions stated below.

Theorem 8 Assume the hypotheses of Theorem 5 and the following conditions:

⎧
⎨

⎩
the functions j(x, ·), k(x, ·), l(x, ·) and φ are Lipschitz continuous

for a.e. x with constants Lj, Lk , Ll, Lφ > 0, respectively, and

(αjk1 + LjLk + LlLφ)‖γ ‖2 < μ0. (45)

Then Problem 4 has a unique solution.

Proof Let u1, u2 ∈ K be solutions to Problem 4. We take the test function v = u2 in the
inequality satisfied by u1, and v = u1 in the inequality satisfied by u2. Next, we add the
resulting inequalities to get

〈Au1 – Au2, u2 – u1〉

+
∫


1

(
k
(‖u1τ‖Rd

)
j0(u1τ ; u2τ – u1τ ) + k

(‖u2τ‖Rd
)
j0(u2τ ; u1τ – u2τ )

)
d


+
∫


3

(
l(u1ν)

(
φ(u2ν) – φ(u1ν)

)
+ l(u2ν)

(
φ(u1ν) – φ(u2ν)

))
d
 ≥ 0,

where the operator A is defined by (20). Hence, we have

〈Au1 – Au2, u1 – u2〉 ≤ I1 + I2 (46)
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with

I1 :=
∫


1

(
k
(‖u1τ‖Rd

)
– k

(‖u2τ‖Rd
))

j0(u1τ ; u2τ – u1τ )

+ k
(‖u2τ‖Rd

)(
j0(u1τ ; u2τ – u1τ ) + j0(u2τ ; u1τ – u2τ )

)
d
,

I2 :=
∫


3

(
l(u1ν) – l(u2ν)

)(
φ(u2ν) – φ(u1ν)

)
d
.

Note that j(x, ·) is Lipschitz with constant Lj > 0 for a.e. x ∈ 
1 if and only if ‖∂j(ξ )‖
Rd ≤ Lj

for all ξ ∈R
d . Under the hypotheses, we use the continuity of the trace operator γ , and by

a direct calculation, we deduce

|I1| ≤ αjk1‖γ ‖2‖u1 – u2‖2
V + LjLk‖γ ‖2‖u1 – u2‖2

V ,

|I2| ≤ LlLφ‖γ ‖2‖u1 – u2‖2
V .

Combining these inequalities with (46) and the strong monotonicity of the operator A
imply

(
μ0 – (αjk1 + LjLk + LlLφ)‖γ ‖2)‖u1 – u2‖2

V ≤ 0.

Finally, from (45), we deduce u1 = u2. The proof is complete. �

Example 9 We provide examples of functions j and φ. Let j : Rd →R be defined by

j(ξ ) = (a – 1)e–‖ξ‖
Rd + a‖ξ‖

Rd for ξ ∈R
d

with a constant a ∈ [0, 1). Then the generalized gradient has the form

∂j(ξ ) =

⎧
⎨

⎩

B(0, 1) if ξ = 0,

((1 – a)e–‖ξ‖
Rd + a) ξ

‖ξ‖
Rd

if ξ �= 0
for ξ ∈R

d.

The function j is nonconvex and ‖∂j(ξ )‖
Rd ≤ 1 for all ξ ∈R

d . Further, it satisfies H(j) with
c0 = 1, c1 = 0 and αj = 1, and j is Lipschitz continuous with Lj = 1. Let φ : R→R be defined
by

φ(r) =

⎧
⎨

⎩
|r| if |r| ≤ 2,

2|r| – 2 if |r| > 2
for r ∈R.
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Then the function φ is convex, continuous, and

∂φ(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–2 if r ≤ –2,

[–2, –1] if r = –2,

–1 if r ∈ (–2, 0),

[–1, 1] if r = 0,

1 if r ∈ (0, 2),

[1, 2] if r = 2,

2 if r ≥ 2

for r ∈ R.

So it satisfies H(φ), |∂φ(r)| ≤ 2 for all r ∈R, and it is Lipschitz with Lφ = 2.

Finally, we observe that any smooth solution to Problem 4 is a solution to Problem 3. In
fact, we are able to recover the pressure from the weak formulation. For the proof, see [17,
Proposition 17].

Proposition 10 If u ∈ K is a solution to Problem 4 given by Theorem 5 which is smooth
u ∈ H2(	;Rd), then u satisfies the conditions of Problem 3. In particular, there exists a
unique p ∈ L2(	) such that

∫
	

p dx = 0 which satisfies (4)–(9).
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