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Abstract
In this paper, we introduce a new iterative forward-backward splitting method with
an error for solving the variational inclusion problem of the sum of two monotone
operators in real Hilbert spaces. We suggest and analyze this method under some
mild appropriate conditions imposed on the parameters such that another strong
convergence theorem for these problem is obtained. We also apply our main result to
improve the fast iterative shrinkage thresholding algorithm (IFISTA) with an error for
solving the image deblurring problem. Finally, we provide numerical experiments to
illustrate the convergence behavior and show the effectiveness of the sequence
constructed by the inertial technique to the fast processing with high performance
and the fast convergence with good performance of IFISTA.
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1 Introduction
Let C be a nonempty closed convex subset of a real Hilbert space H . The variational in-
clusion problem is a fundamental problem in optimization theory, it can be applied in
many areas of science and applied science, engineering, economics, and medicine [1–9],
in image processing, machine learning, modeling intensity modulated radiation theory
treatment planning [10–15]. It is to find x∗ ∈ H such that

0 ∈ Ax∗ + Bx∗, (1.1)

where A : H → H is an operator and B : D(B) ⊂ H → 2H is a set-valued operator.
To solve the variational inclusion problem (1.1) via fixed point theory, we define the

mapping JA,B
r : H → D(B) as follows:

JA,B
r = (I + rB)–1(I – rA) = JB

r (I – rA),
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where JB
r = (I + rB)–1 is the resolvent operator of B for r > 0. For x ∈ H , we see that

JA,B
r (x) = x ⇔ x = (I + rB)–1(x – rAx)

⇔ x – rAx ∈ x + rBx

⇔ 0 ∈ Ax + Bx,

which shows that the fixed point set of JA,B
r coincides with the solutions set of (A + B)–1(0).

This suggests the following iteration process: x1 ∈ C and

xn+1 = (I + rnB)–1
︸ ︷︷ ︸

backward step

(I – rnA)
︸ ︷︷ ︸

forward step

xn = JA,B
rn (xn), ∀n ∈N,

where {rn} ⊂ (0,∞) and D(B) ⊂ C. This method is called a forward-backward splitting
algorithm [16, 17].

In applications, we always let A = ∇F and B = ∂G such that F : H → R is a convex and
differentiable function and G : H → R ∪ {+∞} is a convex and lower semi-continuous
function, where ∇F is the gradient of F with L-Lipschitz continuous and ∂G is the subd-
ifferential of G which defined by

∂G(x) =
{

z ∈ H : 〈y – x, z〉 + G(x) ≤ G(y),∀y ∈ H
}

.

Then problem (1.1) is reduced to the following convex minimization problem:

F
(

x∗) + G
(

x∗) = min
x∈H

{

F(x) + G(x)
} ⇔ 0 ∈ ∇F

(

x∗) + ∂G
(

x∗). (1.2)

Recall that the proximity operator proxG of G is defined for all x ∈ H as follows:

proxG(x) = Argmin
y∈H

{

G(y) +
1
2
‖y – x‖2

2

}

.

For x ∈ H and r > 0, we see that

z = proxrG(x) ⇔ 0 ∈ r∂G(z) + z – x

⇔ x ∈ (I + r∂G)(z)

⇔ z = (I + r∂G)–1(x) = J∂G
r (x).

Therefore,

x∗ ∈ Argmin
x∈H

{

F(x) + G(x)
} ⇔ 0 ∈ ∇F

(

x∗) + ∂G
(

x∗)

⇔ x∗ = J∇F ,∂G
r

(

x∗)

⇔ x∗ = J∂G
r (I – r∇F)x∗ = proxrG(I – r∇F)x∗.

Many researchers have proposed and analyzed the iterative shrinkage thresholding algo-
rithms for solving the convex minimization problem (1.2) under a few specific conditions
as follows.
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In the weak convergence theorems, Lions and Mercier [16] first introduced forward-
backward splitting (FBS) algorithm:

xn+1 = proxλnG
(

xn – λn∇F(xn)
)

, ∀n ∈N,

where x1 ∈ H and {λn} ⊂ (0, 2/L). Later, Moudafi and Oliny [18] introduced the iterative
forward-backward splitting (IFBS) algorithm:

⎧

⎨

⎩

yn = xn + θn(xn – xn–1),

xn+1 = proxλnG(yn – λn∇F(xn)), ∀n ∈ N,

where x0, x1 ∈ H , {θn} ⊂ [0, a] ⊂ [0, 1), {λn} ⊂ [b, c] ⊂ (0, 2/L) such that
∑∞

n=1 θn‖xn –
xn–1‖2 < ∞. In our research, we focus attention on the inertial parameter θn which controls
the momentum of xn – xn–1 in the fast iterative shrinkage thresholding algorithm (FISTA)
of Beck and Teboulle [19] as follows:

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

xn = prox 1
L G(yn – 1

L∇F(yn)),

tn+1 = 1+
√

1+4t2
n

2 , θn = tn–1
tn+1

,

yn+1 = xn + θn(xn – xn–1), ∀n ∈N,

where y1 = x0 ∈ H and t1 = 1. In FISTA, we observe that yn is known before xn, where
the sequence {xn} converges weakly to the solution of the convex minimization problem
(1.2). Recently, Hanjing and Suantai [20] introduced the forward-backward modified W-
algorithm (FBMWA) as follows:

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

wn = xn + θn(xn – xn–1),

zn = (1 – γn)wn + γnproxλnG(wn – λn∇F(wn)),

yn = (1 – βn)proxλnG(wn – λn∇F(wn)) + βnproxλnG(zn – λn∇F(zn)),

xn+1 = (1 – αn)proxλnG(zn – λn∇F(zn)) + αnproxλnG(yn – λn∇F(yn)),

for all n ∈ N, where x0, x1 ∈ H and {αn} ⊂ [0, a] ⊂ [0, 1), {βn} ⊂ [0, 1], {γn} ⊂ [b, c] ⊂ (0, 1),
and {θn} ⊂ [0,∞) such that

∑∞
n=1 θn < ∞, and {λn} ⊂ (0, 2/L) such that λn → λ ∈ (0, 2/L) as

n → ∞. In the same way, Padcharoen and Kuman [21] introduced the forward-backward
modified MM-algorithm (FBMMMA) as follows:

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

wn = xn + θn(xn – xn–1),

zn = (1 – γn)wn + γnproxλnG(wn – λn∇F(wn)),

yn = (1 – αn – βn)zn + αnproxλnG(zn – λn∇F(zn))

+ βnproxλnG(wn – λn∇F(wn)),

xn+1 = proxλnG(yn – λn∇F(yn)), ∀n ∈N,

where x0, x1 ∈ H and {αn}, {βn}, {γn} ⊂ [0, 1] such that αn +βn ∈ [0, 1] and {θn} ⊂ (0, 1) such
that

∑∞
n=1 θn < ∞, and {λn} ⊂ (0, 2/L) such that λn → λ ∈ (0, 2/L) as n → ∞. Other weak

convergence theorems of all those algorithms are obtained.
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In the strong convergence theorems, Verma and Shukla [22] introduced a new acceler-
ated proximal gradient algorithm (NAGA) as follows:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

zn = xn + θn(xn – xn–1),

yn = (1 – αn)zn + αnproxλnG(zn – λn∇F(zn)),

xn+1 = proxλnG(yn – λn∇F(yn)), ∀n ∈N,

where x0, x1 ∈ H , {αn}, {θn} ⊂ (0, 1], and {λn} ⊂ (0, 2/L). They proved that the sequence
{xn} of NAGA converges strongly under the condition ‖xn–xn–1‖

θn
→ 0 as n → ∞. How to

choose the parameter θn? We leave it for the reader to verify. In their proof, we observe
that NAGA still holds under conditions αn → 0 and θn

αn
‖xn – xn–1‖ → 0 as n → ∞, and the

parameter θn can be chosen as

θn =

⎧

⎨

⎩

min{ ωn
‖xn–xn–1‖ ,αn} if xn �= xn–1,

αn otherwise,

where {ωn} is a positive sequence such that ωn = o(αn). Cholamjiak et al. [23] introduced
the strong convergence theorem for the inclusion problem (SCTIP) by letting S = I , A =
∇F , and B = ∂G as follows:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

zn = xn + θn(xn – xn–1),

yn = αnf (xn) + (1 – αn)proxλnG(zn – λn∇F(zn)),

xn+1 = βnxn + (1 – βn)yn, ∀n ∈N,

where x0, x1 ∈ C and f is a contraction of C into itself, and {αn}, {βn} ⊂ (0, 1), {λn} ⊂
(0, 2/L), and {θn} ⊂ [0, θ ] such that θ ∈ [0, 1). They proved that the sequence {xn} of SCTIP
converges strongly under the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(C2) lim infn→∞ βn(1 – βn) > 0,
(C3) 0 < lim infn→∞ λn ≤ lim supn→∞ λn < 2/L,
(C4) limn→∞ θn

αn
‖xn – xn–1‖ = 0.

Moreover, many researchers have proposed and analyzed the iterative forward-back-
ward scheme with a variable step size, which does not depend on the Lipschitz constant
of the operator A = ∇F (see also [24, 25]).

In our research, we consider the forward-backward splitting method with an error as
follows: x1 ∈ C and

xn+1 = (I + λnB)–1
︸ ︷︷ ︸

backward step

(

(I – λnA)xn + en
)

︸ ︷︷ ︸

forward step with an error

= JB
λn

(

(I – λnA)xn + en
)

, ∀n ∈N,

where {λn} ⊂ (0,∞), {en} ⊂ H , D(B) ⊂ C, and JB
λn = (I + λnB)–1. We introduce a new itera-

tive forward-backward splitting method with an error for solving the variational inclusion
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problem (1.1) as follows:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

zn = xn + θn(xn – xn–1),

yn = αnf (zn) + (1 – αn)JB
λn (zn – λnAzn + en),

xn+1 = JB
λn (yn – λnAyn + en), ∀n ∈N,

where x0, x1 ∈ C and f is a contraction of C into itself, and {αn} ⊂ (0, 1), {λn} ⊂ (0, 2/L),
{en} ⊂ H , and {θn} ⊂ [0, θ ] such that θ ∈ [0, 1). Moreover, it can be applied to improve
the fast iterative shrinkage thresholding algorithm (IFISTA) with an error for solving the
convex minimization problem (1.2) by letting A = ∇F and B = ∂G as follows:

⎧

⎪
⎪
⎨

⎪
⎪
⎩

zn = xn + θn(xn – xn–1),

yn = αnf (zn) + (1 – αn)proxλnG(zn – λn∇F(zn) + en),

xn+1 = proxλnG(yn – λn∇F(yn) + en), ∀n ∈ N

which obtains a self-adaptive scheme with fast convergence properties under some mild
conditions when compared to the existing algorithms in the literature. The outline of our
research is as follows: in Sect. 2, we give some well-known definitions and lemmas which
are used in Sect. 3 to prove the strong convergence theorem of IFISTA for solving the
variational inclusion problem (1.1), and we also apply its result in Sect. 4 for solving the
image deblurring problem, which is a special case of convex minimization problem (1.2);
and in Sect. 5, we provide numerical experiments to illustrate the fast processing with high
performance and the fast convergence with good performance of IFISTA by the inertial
technique.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H . We will use the
notation: → to denote the strong convergence, ⇀ to denote the weak convergence,

ωw(xn) =
{

x : ∃{xnk } ⊂ {xn} such that xnk ⇀ x
}

to denote the weak limit set of {xn}, and Fix(T) = {x : x = Tx} to denote the fixed point set
of the mapping T .

Recall that the metric projection PC : H → C is defined as follows: for each x ∈ H , PCx
is the unique point in C satisfying

‖x – PCx‖ = inf
{‖x – y‖ : y ∈ C

}

.

The operator T : H → H is called:
(i) monotone if

〈x – y, Tx – Ty〉 ≥ 0, ∀x, y ∈ H ,

(ii) L-Lipschitzian with L > 0 if

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H ,
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(iii) k-contraction if it is k-Lipschitzian with k ∈ (0, 1),
(iv) nonexpansive if it is 1-Lipschitzian,
(v) firmly nonexpansive if

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
∥

∥(I – T)x – (I – T)y
∥

∥
2, ∀x, y ∈ H ,

(vi) α-strongly monotone with α > 0 if

〈Tx – Ty, x – y〉 ≥ α‖x – y‖2, ∀x, y ∈ H ,

(vii) α-inverse strongly monotone with α > 0 if

〈Tx – Ty, x – y〉 ≥ α‖Tx – Ty‖2, ∀x, y ∈ H .

Let B be a mapping of H into 2H . The domain and the range of B are denoted by D(B) =
{x ∈ H : Bx �= ∅} and R(B) =

⋃{Bx : x ∈ D(B)}, respectively. The inverse of B, denoted by
B–1, is defined by x ∈ B–1y if and only if y ∈ Bx. A multi-valued mapping B is said to be
a monotone operator on H if 〈x – y, u – v〉 ≥ 0 for all x, y ∈ D(B), u ∈ Bx, and v ∈ By. A
monotone operator B on H is said to be maximal if its graph is not strictly contained in
the graph of any other monotone operator on H . For a maximal monotone operator B on H
and r > 0, we define the single-valued resolvent operator JB

r : H → D(B) by JB
r = (I + rB)–1.

It is well known that JB
r is firmly nonexpansive and Fix(JB

r ) = B–1(0).
We collect together some known lemmas which are the main tools in proving our result.

Lemma 2.1 ([26]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Then:

(i) ‖x ± y‖2 = ‖x‖2 ± 2〈x, y〉 + ‖y‖2, ∀x, y ∈ H ,
(ii) ‖λx + (1 – λ)y‖2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2, ∀x, y ∈ H , λ ∈R,

(iii) z = PCx ⇔ 〈x – z, z – y〉 ≥ 0, ∀x ∈ H , y ∈ C,
(iv) z = PCx ⇔ ‖x – z‖2 ≤ ‖x – y‖2 – ‖y – z‖2, ∀x ∈ H , y ∈ C,
(v) ‖PCx – PCy‖2 ≤ 〈x – y, PCx – PCy〉, ∀x, y ∈ H .

Lemma 2.2 ([27]) Let H and K be two real Hilbert spaces, and let T : K → K be a firmly
nonexpansive mapping such that ‖(I – T)x‖ is a convex function from K to R = [–∞, +∞].
Let A : H → K be a bounded linear operator and f (x) = 1

2‖(I – T)Ax‖2 for all x ∈ H . Then:
(i) f is convex and differential,

(ii) ∇f (x) = A∗(I – T)Ax for all x ∈ H such that A∗ denotes the adjoint of A,
(iii) f is weakly lower semi-continuous on H ,
(iv) ∇f is ‖A‖2-Lipschitzian.

Lemma 2.3 ([27]) Let H be a real Hilbert space and T : H → H be an operator. The fol-
lowing statements are equivalent:

(i) T is firmly nonexpansive,
(ii) ‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉, ∀x, y ∈ H ,

(iii) I – T is firmly nonexpansive.
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Lemma 2.4 ([28]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
the mapping A : C → H be α-inverse strongly monotone and r > 0 be a constant. Then we
have

∥

∥(I – rA)x – (I – rA)y
∥

∥
2 ≤ ‖x – y‖2 – r(2α – r)‖Ax – Ay‖2

for all x, y ∈ C. In particular, if 0 < r ≤ 2α, then I – rA is nonexpansive.

Lemma 2.5 ([29] (Demiclosedness principle)) Let C be a nonempty closed convex subset
of a real Hilbert space H , and let S : C → C be a nonexpansive mapping with Fix(S) �= ∅. If
the sequence {xn} ⊂ C converges weakly to x and the sequence {(I – S)xn} converges strongly
to y, then (I – S)x = y; in particular, if y = 0, then x ∈ Fix(S).

Lemma 2.6 ([30]) Let {an} and {cn} be sequences of nonnegative real numbers such that

an+1 ≤ (1 – δn)an + bn + cn, ∀n = 0, 1, 2, . . . ,

where {δn} is a sequence in (0, 1) and {bn} is a real sequence. Assume that
∑∞

n=0 cn < ∞.
Then the following results hold:

(i) if bn ≤ δnM for some M ≥ 0, then {an} is a bounded sequence,
(ii) if

∑∞
n=0 δn = ∞ and lim supn→∞ bn/δn ≤ 0, then limn→∞ an = 0.

Lemma 2.7 ([31]) Assume that {sn} is a sequence of nonnegative real numbers such that

sn+1 ≤ (1 – γn)sn + γnδn, ∀n = 0, 1, 2, . . .

and

sn+1 ≤ sn – ηn + ρn, ∀n = 0, 1, 2, . . . ,

where {γn} is a sequence in (0, 1), {ηn} is a sequence of nonnegative real numbers, and {δn},
{ρn} are real sequences such that

(i)
∑∞

n=0 γn = ∞,
(ii) limn→∞ ρn = 0,

(iii) if limk→∞ ηnk = 0, then lim supk→∞ δnk ≤ 0 for any subsequence {nk} of {n}.
Then limn→∞ sn = 0.

3 Main result
Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H . Let A
be an α-inverse strongly monotone mapping of H into itself and B be a maximal monotone
operator on H such that the domain of B is included in C, and assume that (A + B)–1(0)
is nonempty. Let JB

λ = (I + λB)–1 be the resolvent of B for λ > 0 and f be a k-contraction
mapping of C into itself. Let x0, x1 ∈ C and {xn} ⊂ C be a sequence generated by

⎧

⎪
⎪
⎨

⎪
⎪
⎩

zn = xn + θn(xn – xn–1),

yn = αnf (zn) + (1 – αn)JB
λn (zn – λnAzn + en),

xn+1 = JB
λn (yn – λnAyn + en),
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for all n ∈ N, where {αn} ⊂ (0, 1), {λn} ⊂ (0, 2α), {en} ⊂ H , and {θn} ⊂ [0, θ ] such that θ ∈
[0, 1) satisfy the following conditions:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(C2) 0 < a ≤ λn ≤ b < 2α for some a, b > 0,
(C3) limn→∞ ‖en‖

αn
= 0,

(C4)
∑∞

n=1 ‖en‖ < ∞ and limn→∞ θn
αn

‖xn – xn–1‖ = 0.
Then the sequence {xn} converges strongly to a point x∗ ∈ (A + B)–1(0) where x∗ =
P(A+B)–1(0)f (x∗).

Proof Picking z ∈ (A + B)–1(0) and fixing n ∈N, it follows that z = JB
λn (z – λnAz). Firstly, we

will show that {xn}, {yn}, and {zn} are bounded. Since

‖zn – z‖ ≤ ‖xn – z‖ + θn‖xn – xn–1‖,

therefore, by nonexpansiveness of JB
λn and I – λnA, we have

‖yn – z‖ =
∥

∥αn
(

f (zn) – z
)

+ (1 – αn)
(

JB
λn (zn – λnAzn + en) – z

)∥

∥

≤ αn
(∥

∥f (zn) – f (z)
∥

∥ +
∥

∥f (z) – z
∥

∥

)

+ (1 – αn)
∥

∥(zn – λnAzn + en) – (z – λnAz)
∥

∥

≤ αn
(

k‖zn – z‖ +
∥

∥f (z) – z
∥

∥

)

+ (1 – αn)
(‖zn – z‖ + ‖en‖

)

≤ (

1 – αn(1 – k)
)‖zn – z‖ + αn

∥

∥f (z) – z
∥

∥ + ‖en‖
≤ (

1 – αn(1 – k)
)‖xn – z‖ + θn‖xn – xn–1‖ + αn

∥

∥f (z) – z
∥

∥ + ‖en‖.

It follows by the same arguments again that

‖xn+1 – z‖ =
∥

∥JB
λn (yn – λnAyn + en) – JB

λn (z – λnAz)
∥

∥

≤ ∥

∥(yn – λnAyn + en) – (z – λnAz)
∥

∥

≤ ‖yn – z‖ + ‖en‖
≤ (

1 – αn(1 – k)
)‖xn – z‖

+ αn(1 – k)
(

1
1 – k

θn

αn
‖xn – xn–1‖ +

‖f (z) – z‖
1 – k

)

+ 2‖en‖.

So, by condition (C4) and putting M = 1
1–k (‖f (z) – z‖ + supn∈N

θn
αn

‖xn – xn–1‖) ≥ 0 in
Lemma 2.6 (i), we conclude that the sequence {‖xn – z‖} is bounded. That is the sequence
{xn} is bounded, and so is {zn}. Moreover, by condition (C4),

∑∞
n=1 ‖en‖ < ∞ implies

limn→∞ ‖en‖ = 0, that is, limn→∞ en = 0, it follows that the sequence {yn} is also bounded.
Since P(A+B)–1(0)f is k-contraction on C, by Banach’s contraction principle there exists a

unique element x∗ ∈ C such that x∗ = P(A+B)–1(0)f (x∗), that is, x∗ ∈ (A + B)–1(0), it follows
that x∗ = JB

λn (x∗ – λnAx∗). Now, we will show that xn → x∗ as n → ∞. On the other hand,
we have

∥

∥zn – x∗∥
∥

2 =
〈

zn – x∗, zn – x∗〉

=
〈

xn + θn(xn – xn–1) – x∗, zn – x∗〉
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=
〈

xn – x∗, zn – x∗〉 + θn
〈

xn – xn–1, zn – x∗〉

≤ ∥

∥xn – x∗∥
∥

∥

∥zn – x∗∥
∥ + θn‖xn – xn–1‖

∥

∥zn – x∗∥
∥

≤ 1
2
(∥

∥xn – x∗∥
∥

2 +
∥

∥zn – x∗∥
∥

2) + θn‖xn – xn–1‖
∥

∥zn – x∗∥
∥.

This implies that

∥

∥zn – x∗∥
∥

2 ≤ ∥

∥xn – x∗∥
∥

2 + 2θn‖xn – xn–1‖
∥

∥zn – x∗∥
∥. (3.1)

It follows by (3.1), Lemma 2.4, and the firm nonexpansiveness of JB
λn that

∥

∥JB
λn (zn – λnAzn + en) – x∗∥

∥
2

=
∥

∥JB
λn (zn – λnAzn + en) – JB

λn

(

x∗ – λnAx∗)∥
∥

2

≤ ∥

∥(zn – λnAzn + en) –
(

x∗ – λnAx∗)∥
∥

2

–
∥

∥

(

I – JB
λn

)

(zn – λnAzn + en) –
(

I – JB
λn

)(

x∗ – λnAx∗)∥
∥

2

≤ (∥

∥(zn – λnAzn) –
(

x∗ – λnAx∗)∥
∥ + ‖en‖

)2

–
∥

∥

(

I – JB
λn

)

(zn – λnAzn + en) –
(

I – JB
λn

)(

x∗ – λnAx∗)∥
∥

2

=
∥

∥(I – λnA)zn – (I – λnA)x∗∥
∥

2 + 2
∥

∥(zn – λnAzn) –
(

x∗ – λnAx∗)∥
∥‖en‖

+ ‖en‖2 –
∥

∥

(

I – JB
λn

)

(zn – λnAzn + en) –
(

I – JB
λn

)(

x∗ – λnAx∗)∥
∥

2

≤ ∥

∥zn – x∗∥
∥

2 – λn(2α – λn)
∥

∥Azn – Ax∗∥
∥

2

+ 2
∥

∥(zn – λnAzn) –
(

x∗ – λnAx∗)∥
∥‖en‖ + ‖en‖2

–
∥

∥

(

I – JB
λn

)

(zn – λnAzn + en) –
(

I – JB
λn

)(

x∗ – λnAx∗)∥
∥

2

≤ ∥

∥xn – x∗∥
∥

2 + 2θn‖xn – xn–1‖
∥

∥zn – x∗∥
∥ – λn(2α – λn)

∥

∥Azn – Ax∗∥
∥

2

+ 2
∥

∥(zn – λnAzn) –
(

x∗ – λnAx∗)∥
∥‖en‖ + ‖en‖2

–
∥

∥

(

I – JB
λn

)

(zn – λnAzn + en) –
(

I – JB
λn

)(

x∗ – λnAx∗)∥
∥

2. (3.2)

We also have

∥

∥yn – x∗∥
∥

2 =
〈

yn – x∗, yn – x∗〉

=
〈

αnf (zn) + (1 – αn)JB
λn (zn – λnAzn + en) – x∗, yn – x∗〉

=
〈

αn
(

f (zn) – x∗) + (1 – αn)
(

JB
λn (zn – λnAzn + en) – x∗), yn – x∗〉

= αn
〈

f (zn) – f
(

x∗), yn – x∗〉 + αn
〈

f
(

x∗) – x∗, yn – x∗〉

+ (1 – αn)
〈

JB
λn (zn – λnAzn + en) – x∗, yn – x∗〉

≤ αnk
∥

∥zn – x∗∥
∥

∥

∥yn – x∗∥
∥ + αn

〈

f
(

x∗) – x∗, yn – x∗〉

+ (1 – αn)
∥

∥JB
λn (zn – λnAzn + en) – x∗∥

∥

∥

∥yn – x∗∥
∥

≤ 1
2
αnk

(∥

∥zn – x∗∥
∥

2 +
∥

∥yn – x∗∥
∥

2) + αn
〈

f
(

x∗) – x∗, yn – x∗〉
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+
1
2

(1 – αn)
(∥

∥JB
λn (zn – λnAzn + en) – x∗∥

∥
2 +

∥

∥yn – x∗∥
∥

2).

This implies that

∥

∥yn – x∗∥
∥

2 ≤ αnk
1 + αn(1 – k)

∥

∥zn – x∗∥
∥

2 +
2αn

1 + αn(1 – k)
〈

f
(

x∗) – x∗, yn – x∗〉

+
1 – αn

1 + αn(1 – k)
∥

∥JB
λn (zn – λnAzn + en) – x∗∥

∥
2. (3.3)

Hence, by (3.1), (3.2), (3.3), the nonexpansiveness of JB
λn , and I – λnA, we obtain

∥

∥xn+1 – x∗∥
∥

2 =
∥

∥JB
λn (yn – λnAyn + en) – JB

λn

(

x∗ – λnAx∗)∥
∥

2

≤ ∥

∥(yn – λnAyn + en) –
(

x∗ – λnAx∗)∥
∥

2

≤ (∥

∥yn – x∗∥
∥ + ‖en‖

)2

=
∥

∥yn – x∗∥
∥

2 + 2
∥

∥yn – x∗∥
∥‖en‖ + ‖en‖2

≤ αnk
1 + αn(1 – k)

(∥

∥xn – x∗∥
∥

2 + 2θn‖xn – xn–1‖
∥

∥zn – x∗∥
∥

)

+ 2
∥

∥yn – x∗∥
∥‖en‖ + ‖en‖2 +

2αn

1 + αn(1 – k)
〈

f
(

x∗) – x∗, yn – x∗〉

+
1 – αn

1 + αn(1 – k)
(∥

∥xn – x∗∥
∥

2 + 2θn‖xn – xn–1‖
∥

∥zn – x∗∥
∥

– λn(2α – λn)
∥

∥Azn – Ax∗∥
∥

2 + 2
∥

∥(zn – λnAzn) –
(

x∗ – λnAx∗)∥
∥‖en‖

+ ‖en‖2 –
∥

∥

(

I – JB
λn

)

(zn – λnAzn + en) –
(

I – JB
λn

)(

x∗ – λnAx∗)∥
∥

2).

It follows that

∥

∥xn+1 – x∗∥
∥

2 ≤
(

1 –
αn(1 – k)

1 + αn(1 – k)

)

∥

∥xn – x∗∥
∥

2

+
αn(1 – k)

1 + αn(1 – k)

(

2
1 – k

θn

αn
‖xn – xn–1‖

∥

∥zn – x∗∥
∥

+
4

1 – k
‖en‖
αn

∥

∥yn – x∗∥
∥ +

2
1 – k

‖en‖
αn

‖en‖ +
2

1 – k
〈

f
(

x∗) – x∗, yn – x∗〉

+
2

1 – k
‖en‖
αn

∥

∥(zn – λnAzn) –
(

x∗ – λnAx∗)∥
∥

)

and

∥

∥xn+1 – x∗∥
∥

2 ≤ ∥

∥xn – x∗∥
∥

2 –
(

λn(2α – λn)
∥

∥Azn – Ax∗∥
∥

2

+
∥

∥

(

I – JB
λn

)

(zn – λnAzn + en) –
(

I – JB
λn

)(

x∗ – λnAx∗)∥
∥

2)

+
(

2αn
θn

αn
‖xn – xn–1‖

∥

∥zn – x∗∥
∥ + 2αn

‖en‖
αn

∥

∥yn – x∗∥
∥ + 2‖en‖2

+ 2αn
∥

∥f
(

x∗) – x∗∥
∥

∥

∥yn – x∗∥
∥ + 2

∥

∥(zn – λnAzn) –
(

x∗ – λnAx∗)∥
∥‖en‖

)

,
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which are of the forms

sn+1 ≤ (1 – γn)sn + γnδn

and

sn+1 ≤ sn – ηn + ρn,

respectively, where sn = ‖xn – x∗‖2, γn = αn(1–k)
1+αn(1–k) , δn = 2

1–k
θn
αn

‖xn – xn–1‖‖zn – x∗‖ +
4

1–k
‖en‖
αn

‖yn – x∗‖ + 2
1–k

‖en‖
αn

‖en‖ + 2
1–k 〈f (x∗) – x∗, yn – x∗〉 + 2

1–k
‖en‖
αn

‖(zn – λnAzn) – (x∗ –
λnAx∗)‖, ηn = λn(2α – λn)‖Azn – Ax∗‖2 + ‖(I – JB

λn )(zn – λnAzn + en) – (I – JB
λn )(x∗ – λnAx∗)‖2

and ρn = 2αn
θn
αn

‖xn – xn–1‖‖zn – x∗‖+ 2αn
‖en‖
αn

‖yn – x∗‖+ 2‖en‖2 + 2αn‖f (x∗) – x∗‖‖yn – x∗‖+
2‖(zn – λnAzn) – (x∗ – λnAx∗)‖‖en‖. Therefore, using conditions (C1), (C3), and (C4), we
can check that all those sequences satisfy conditions (i) and (ii) in Lemma 2.7. To complete
the proof, we verify that condition (iii) in Lemma 2.7 is satisfied. Let limi→∞ ηni = 0. Then,
by condition (C2), we have

lim
i→∞

∥

∥Azni – Ax∗∥
∥ = 0 (3.4)

and

lim
i→∞

∥

∥

(

I – JB
λni

)

(zni – λni Azni + eni ) –
(

I – JB
λni

)(

x∗ – λni Ax∗)∥
∥ = 0.

It follows by conditions (C2), (C4) and (3.4) that

lim
i→∞

∥

∥(zni – λni Azni + eni ) – JB
λni

(zni – λni Azni + eni )

–
((

x∗ – λni Ax∗) – JB
λni

(

x∗ – λni Ax∗))∥
∥ = 0,

lim
i→∞

∥

∥zni – JB
λni

(zni – λni Azni )
∥

∥ = 0. (3.5)

Consider a subsequence {xni} of {xn}. As {xn} is bounded, so is {xni}, there exists a subse-
quence {xnij

} of {xni} which converges weakly to x ∈ C. Without loss of generality, we can
assume that xni ⇀ x as i → ∞. On the other hand, by conditions (C1) and (C4), we have

lim
i→∞‖zni – xni‖ = lim

i→∞αni
θni

αni

‖xni – xni–1‖ = 0.

It follows that zni ⇀ x as i → ∞. Hence, by (3.5) and the demiclosedness at zero in Lemma
2.5, we obtain x ∈ Fix(JB

λni
(I – λni A)), that is, x ∈ (A + B)–1(0). Since

‖yni – zni‖ ≤ αni

∥

∥f (zni ) – zni

∥

∥ + (1 – αni )
∥

∥JB
λni

(zni – λni Azni + eni ) – zni

∥

∥,

then, by (3.5) and conditions (C1) and (C4), we obtain

lim
i→∞‖yni – zni‖ = 0.
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It implies that yni ⇀ x as i → ∞. Therefore, by Lemma 2.1(iii), we obtain

lim sup
i→∞

〈

f
(

x∗) – x∗, yni – x∗〉 =
〈

f
(

x∗) – x∗, x – x∗〉 ≤ 0.

It follows by conditions (C1), (C3), and (C4) that lim supi→∞ δni ≤ 0. So, by Lemma 2.7, we
conclude that xn → x∗ as n → ∞. This completes the proof. �

Remark 3.2 Indeed, the parameter θn can be chosen as follows:

θn =

⎧

⎨

⎩

min{ ωn
‖xn–xn–1‖ ,αn} if xn �= xn–1,

αn otherwise,
∀n ∈ N

or

θn =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⎧

⎪
⎪
⎨

⎪
⎪
⎩

σn ∈ [0, 1) such that σn → 0 as n → ∞ or

σn ∈ [0, 1) such that σn → 1 as n → ∞ or

σn ∈ [0, 1) to be chosen arbitrarily

if n ≤ N ,

⎧

⎨

⎩

min{ ωn
‖xn–xn–1‖ ,αn} if xn �= xn–1,

αn otherwise,
otherwise,

∀n ∈N,

where N ∈N and {ωn} is a positive sequence such that ωn = o(αn).

4 IFISTA
Let F : H →R be a convex and differentiable function and G : H →R∪{+∞} be a convex
and lower semi-continuous function such that the gradient ∇F is L-Lipschitz continuous
and ∂G is the subdifferential of G. It is well known that if ∇F is L-Lipschitz continuous,
then it is 1

L -inverse strongly monotone [32]. Moreover, ∂G is maximal monotone [33].
Putting A = ∇F , B = ∂G, and α = 1

L into Theorem 3.1, we obtain the following result.

Theorem 4.1 Let H be a real Hilbert space. Let F : H →R be a convex and differentiable
function with L-Lipschitz continuous gradient ∇F and G : H → R be a convex and lower
semi-continuous function. Let f be a k-contraction mapping of H into itself, and assume
that (∇F + ∂G)–1(0) is nonempty. Let x0, x1 ∈ H and {xn} ⊂ H be a sequence generated by

⎧

⎪
⎪
⎨

⎪
⎪
⎩

zn = xn + θn(xn – xn–1),

yn = αnf (zn) + (1 – αn)proxλnG(zn – λn∇F(zn) + en),

xn+1 = proxλnG(yn – λn∇F(yn) + en),

for all n ∈ N, where {αn} ⊂ (0, 1), {λn} ⊂ (0, 2
L ), {en} ⊂ H , and {θn} ⊂ [0, θ ] such that θ ∈

[0, 1) satisfy the following conditions:
(C1) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(C2) 0 < a ≤ λn ≤ b < 2
L for some a, b > 0,

(C3) limn→∞ ‖en‖
αn

= 0,
(C4)

∑∞
n=1 ‖en‖ < ∞ and limn→∞ θn

αn
‖xn – xn–1‖ = 0,
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then the sequence {xn} converges strongly to a point x∗ ∈ (∇F + ∂G)–1(0), where x∗ =
P(∇F+∂G)–1(0)f (x∗).

We focus on the image restoration using the fixed point optimization algorithm in The-
orem 4.1. The image deblurring problem is in the form

Ax = b + ε, (4.1)

where A ∈ R
m×n represents a known blurring operator (which is called the point spread

function: PSF), b ∈ R
m is a known observed blurred (and additive noisy) image, ε ∈ R

m

is an unknown additive white Gaussian noise, and x ∈ R
n is an unknown signal/image to

be restored (estimated). Both b and x are formed by stacking the columns of their corre-
sponding two-dimensional images.

In order to solve problem (4.1), we introduce the least absolute shrinkage and selection
operator (LASSO) of Tibshirani [34] for solving the following minimization problem:

min
x∈Rn

{‖Ax – b‖2
2 + λ‖Wx‖1

}

, (4.2)

where λ > 0 is a regularization parameter and W : Rn → R
n represents the orthogonal or

tight frame wavelet synthesis, which is a special case of the convex minimization problem
(1.2) when F(x) = ‖Ax – b‖2

2 and G(x) = λ‖Wx‖1 such that ‖x‖1 =
∑n

i=1 |xi| and ‖x‖2 =
√

∑n
i=1 |xi|2 for all x = (x1, x2, . . . , xn)T ∈ R

n. It is well known from Lemma 2.2 by putting
T(Ax) = PRm Ax = b that ∇F(x) = 2AT (Ax – b) and ∇F is L-Lipschitzian with L = 2‖A‖2

such that AT stands the transpose of A, and ‖A‖ is the largest singular value of A (i.e., the
square root of the largest eigenvalue of the matrix AT A) or the spectral norm ‖A‖2.

In this image deblurring case using Theorem 4.1, if the blurring operator A is smaller
than the observed blurred image b and the restored image x, then it is changed by padPSF
in MATLAB to embed its array to the matrix Abig ∈ R

m×n, and followed by a transfor-
mation to the signal matrix Asig ∈ R

m×n for calculating the matrix Aeig = (aeig
ij ) ∈ R

m×n of
eigenvalues of the signal matrix Asig using the discrete fast Fourier transformation (FFT)
or the discrete cosine transformation (DCT). That is,

L = 2‖Aeig‖2
max = 2

(

max
ij

∣

∣aeig
ij

∣

∣

)2
.

We set m = n and the process of gradient ∇F always maps the signal x to 2 times of the
signal AT (Ax – b), where x, AT , A, and b are in the form of the signal transformation FFT
or DCT. That is,

∇F(x) := ∇F(xsig) = 2AT
eig(Aeigxsig – bsig) := 2 AT (Ax – b)

︸ ︷︷ ︸

signal form in Rm

,

where AT
eig = A–1

eig such that AT
eig and A–1

eig stand for the transpose and the inverse signal
transform of the eigenvalues matrix Aeig, respectively.

By [35] and the reference therein, for all u = (u1, u2, . . . , um)T ∈ R
m and for each n ∈ N,

we have

proxλnG(u) = proxλnλ‖Wu‖1 (u) = v
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Algorithm 1 Improved fast iterative shrinkage thresholding algorithm (IFISTA).
procedure IFISTA

Choose the initials x0, x1 ∈R
m arbitrarily.

Set M is the maximum loops to stop and tol is a prescribed tolerance value.
Set the operator A and the mapping f in backing tracks.
n ← 0
repeat

n ← n + 1
Update the parameters αn, λn, and θn, and the error data en ∈R

m.

zn ← xn + θn(xn – xn–1),

yn ← αnf (zn) + (1 – αn)W –1(proxλnλ‖W (·)‖1

(

zn – 2λn AT (Azn – b)
︸ ︷︷ ︸

signal form in Rm

+en
))

,

xn+1 ← W –1(proxλnλ‖W (·)‖1

(

yn – 2λn AT (Ayn – b)
︸ ︷︷ ︸

signal form in Rm

+en
))

until (n = M or ‖xn+1–xn‖2
‖xn‖2

≤ tol)
return xn+1

end procedure

such that v = (v1, v2, . . . , vm)T ∈ R
m, where vi = sign((Wu)i) max{|(Wu)i| – λnλ, 0} for all i =

1, 2, . . . , m. When the process of proxλnG has been finished, it returns to W –1(proxλnG(u)),
where W –1 stands for the inverse wavelet synthesis such that W –1(·) = W T (·) before con-
tinuing other processes. That is,

proxλnG
(

zn – λn∇F(zn) + en
)

= W –1(proxλnλ‖W (·)‖1

(

zn – 2λn AT (Azn – b)
︸ ︷︷ ︸

signal form in Rm

+en
))

and

proxλnG
(

yn – λn∇F(yn) + en
)

= W –1(proxλnλ‖W (·)‖1

(

yn – 2λn AT (Ayn – b)
︸ ︷︷ ︸

signal form in Rm

+en
))

for all n ∈N.
In the next section, we present IFISTA in Algorithm 1 to the improved fast iterative

shrinkage thresholding algorithm [19] in the same programming techniques [36].

5 Applications and numerical examples
In this section, we illustrate the performance of IFISTA compared with IFBS, FISTA,
FBMWA, FBMMMA, NAGA, and SCTIP for solving the image deblurring problem (4.1)
through LASSO problem (4.2) with λ = 10–4. We implemented them in MATLAB R2019a
to solve and run on personal laptop Intel(R) Core(TM) i5-8250U CPU @1.80 GHz 8 GB
RAM. We use the quality measures (it is better if it is larger value) of the image restoration
as follows.

Let x, xn ∈R
M×N represent the original image and the estimated image at nth iteration(s),

respectively.
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Figure 1 Original images and their 2D three-stage Haar wavelet transform

(1) For looking at how strong the signal is and how strong the noise is, the measure is
the signal-to-noise ratio (SNR) of the images x and xn, which is defined (measured in
decibels: dB) by

SNR(x, xn) = 10 log10
‖xn‖2

2
‖x – xn‖2

2
.

(2) For looking at how signal peak is, the measure is the peak signal-to-noise ratio
(PSNR) of the images x and xn, which is defined (measured in decibels: dB) by

PSNR(x, xn) = 10 log10
MAX2

MSE(x, xn)
= 10 log10

MAX2

1
cMN ‖x – xn‖2

2

where MAX is the maximum possible pixel value of the m-unit class (m-bit) image
such that MAX = 2m – 1 (for instance, MAX = 255 for 8-bits image and MAX =
65535 for 16-bits image), and MSE(x, xn) is the mean squared error (MSE) of the
images x and xn, which is defined by MSE(x, xn) = 1

cMN ‖x – xn‖2
2 such that the images

x and xn are c-multichannel image (for instance, c = 1 for gray or monochrome image,
c = 3 for RGB color image, and c = 4 for CMYK color image).

Similarly, this measure is the improvement in signal-to-noise ratio (ISNR) of the
images x, xn, and b where the image b ∈R

M×N represents the observed blurred (and
additive noisy) c-multichannel image, which is defined (measured in decibels: dB) by

ISNR(x, xn, b) = PSNR(x, xn) – PSNR(x, b)

= 10 log10
MAX2

1
cMN ‖x – xn‖2

2
– 10 log10

MAX2

1
cMN ‖x – b‖2

2

= 10 log10
‖x – b‖2

2
‖x – xn‖2

2
.

For comparison, we consider the standard test images downloaded from [37] for Cam-
eraman, Woman, Pirate, and Living room, with each monochrome images consisting of
512×512 pixels, which represent the original images x ∈R

512×512, and we converted them
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Figure 2 Observed blurred and noisy images

Table 1 The best choice types of testing the parameter λn for the fast convergence

Type A1 A2 A3 A4 A5 B1 B2 C1 C2

λn
M
10 M – M

10 M M + M
10 2M – M

10
Mn
n+1

M(n+2)
n+1 M + (–1)nM

n+1 M + (–1)n+1M
n+1

to the double class type by im2double(imread(‘image_name’)) in MATLAB, and also its 2D
three-stage Haar wavelet transform Wx ∈R

512×512 as in Fig. 1.
The original images went through a Gaussian blur of size 9 × 9 and standard deviation

4 as a point spread function (PSF) which represents the blurring operator A by fspecial
or psfGauss in MATLAB, and went through imfilter in MATLAB (computed by mirror-
reflecting as the array across-the array border or symmetric) and followed by an addi-
tive zero-mean white Gaussian noise with standard deviation 10–3, which represents the
observed blurred and noisy image b ∈ R

512×512 as in Fig. 2. The PSF A was changed by
padPSF in MATLAB to embed its array to the matrix Abig ∈ R

512×512, and it transformed
to a signal matrix Asig ∈R

512×512 for calculating the matrix Aeig = (aeig
ij ) ∈R

512×512 of eigen-
values of the signal matrix Asig using the discrete cosine transformation (DCT). That is,
L = 2‖Aeig‖2

max = 2(maxij |aeig
ij |)2.

In compared algorithms, all parameters have been set to their high performance. For
each n ∈N, we set

αn =

⎧

⎨

⎩

10–6

n+1 for FBMWA, NAGA, SCTIP, IFISTA,
1
2 (1 – 10–6

n+1 ) for FBMMMA,

βn =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

2n
5n+1 for SCTIP,
10–6

n+1 for FBMWA,
1
2 (1 – 10–6

n+1 ) for FBMMMA,

γn =

⎧

⎨

⎩

1 – 10–6 – 10–6

n+1 for FBMWA,

1 – 10–6

n+1 for FBMMMA,

and by [35], we introduced the best choice types of testing the parameter λn for the fast
convergence as in Table 1 (see also, Tables 1–4 of Examples 4.3, 4.5, 4.8, and 4.10 in [35],
respectively) such that M = 1

L of 1
M -Lipschitzian continuous gradient ∇F , it follows the

setting to its high performance that

λn =

⎧

⎨

⎩

2M – M
10 for IFBS, FBMWA, FBMMMA, SCTIP, IFISTA (A5 type),

M(n+2)
n+1 for NAGA (B2 type),
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Table 2 The maximum of SNR and ISNR values in first 1st to 100th iteration(s) for image deblurring

Algorithm n SNR ISNR CPU (s) n SNR ISNR CPU (s)

Cameraman Woman

IFBS 80 27.8726 8.4019 7.62 81 24.9248 4.6721 7.71
FISTA 100 27.8425 8.3726 9.44 100 24.9091 4.6573 9.40
FBMWA 56 27.8789 8.4082 14.56 56 24.9239 4.6713 14.58
FBMMMA 49 27.8802 8.4096 11.55 50 24.9239 4.6712 11.72
NAGA 100 27.8549 8.3850 15.44 100 24.9142 4.6623 15.44
SCTIP 71 25.1638 5.6916 8.62 73 23.4103 3.1676 8.72
IFISTA 56 27.8959 8.4252 8.63 56 24.9251 4.6725 8.72

Processing mean 74 27.4841 8.0134 10.84 74 24.7045 4.4535 10.90

Algorithm n SNR ISNR CPU (s) n SNR ISNR CPU (s)

Pirate Living room

IFBS 77 23.7652 5.0117 7.40 80 24.7236 6.7632 7.63
FISTA 100 23.7587 5.0060 9.50 100 24.7026 6.7432 9.30
FBMWA 54 23.7636 5.0101 14.02 55 24.7209 6.7606 14.14
FBMMMA 47 23.7637 5.0104 11.15 49 24.7206 6.7603 11.65
NAGA 100 23.7620 5.0091 15.34 100 24.7097 6.7502 15.35
SCTIP 71 22.1920 3.4440 8.51 75 22.3615 4.4151 8.94
IFISTA 54 23.7607 5.0073 8.34 56 24.7130 6.7526 8.79

Processing mean 72 23.5380 4.7855 10.61 74 24.3788 6.4207 10.83

θn =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

σn = tn–1
tn+1

such that t1 = 1 and tn+1 = 1+
√

1+4t2
n

2 if n ≤ 100,

(except FISTA, for all n ∈N)
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

1
2n for FBMWA, FBMMMA,
⎧

⎨

⎩

min{ 1/(n+1)2

‖xn–xn–1‖2
2

, 0.5} if xn �= xn–1,

0 otherwise,
for IFBS

⎧

⎨

⎩

min{ 1/(n+1)3

‖xn–xn–1‖2
,αn} if xn �= xn–1,

αn otherwise,
otherwise,

otherwise,

and the error sequence {en} ⊂R
512×512 such that

en =

⎧

⎨

⎩

b
nn if n ≤ 100,

b
(n+1)3 otherwise.

We also set f (x) = x
5 for all x ∈ R

512×512 and choose the initials x0 = x1 = b for all algo-
rithms (except for FISTA, y1 = x0 = b). Quoting from [38], we can use max-norm regular-
ization, this constrains the norm of the vector of incoming weights at each hidden unit to
be bound by a constant c. Max-norm regularization was used for weights in both convolu-
tional and fully connected layers. Since L = 2‖Aeig‖2

max, so we can use SNR and ISNR that
both are two quality measures of the image restoration (it is better if it is larger value) to
find each hidden estimated image before its convergence in first 1st to 100th iteration(s) to
show high performance of each compared algorithm. That is, we find the hidden estimated
images x∗ and y∗ such that

SNR
(

x, x∗) = max
1≤n≤100

SNR(x, xn) and ISNR
(

x, y∗, b
)

= max
1≤n≤100

ISNR(x, xn, b),
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Table 3 The SNR and ISNR values at first 1000th iterations for image deblurring

Algorithm SNR ISNR CPU (s) tol SNR ISNR CPU (s) tol

Cameraman Woman

IFBS 27.3690 7.8949 94.08 7.52× 10–6 24.7271 4.4717 93.94 6.70× 10–6

FISTA 25.1667 5.6856 90.29 1.60× 10–5 23.7183 3.4576 90.52 1.52× 10–5

FBMWA 26.8948 7.4189 247.48 6.65× 10–6 24.5520 4.2953 250.39 5.81× 10–6

FBMMMA 26.6595 7.1828 227.37 6.47× 10–6 24.4583 4.2011 227.31 5.60× 10–6

NAGA 27.8742 8.4032 151.89 7.20× 10–6 24.9137 4.6609 151.08 6.49× 10–6

SCTIP 26.3036 6.8349 118.22 1.64× 10–5 23.9936 3.7433 118.25 1.39× 10–5

IFISTA 26.8945 7.4186 151.80 6.66× 10–6 24.5520 4.2953 152.43 5.83× 10–6

Processing mean 26.7375 7.2633 154.45 9.56× 10–6 24.4164 4.1607 154.85 8.50× 10–6

Algorithm SNR ISNR CPU (s) tol SNR ISNR CPU (s) tol

Pirate Living room

IFBS 23.4923 4.7342 93.61 8.29× 10–6 24.3377 6.3731 94.02 8.43× 10–6

FISTA 22.4952 3.7298 89.79 1.58× 10–5 22.5101 4.5352 90.06 2.01× 10–5

FBMWA 23.2622 4.5020 250.55 7.14× 10–6 23.9751 6.0082 247.41 7.90× 10–6

FBMMMA 23.1511 4.3900 225.98 6.83× 10–6 23.7977 5.8298 226.78 7.76× 10–6

NAGA 23.7434 4.9891 150.45 8.10× 10–6 24.6826 6.7220 151.47 8.19× 10–6

SCTIP 22.6546 3.9038 117.91 1.71× 10–5 23.3893 5.4341 116.67 1.76× 10–5

IFISTA 23.2625 4.5022 151.51 7.17× 10–6 23.9766 6.0097 152.14 7.94× 10–6

Processing mean 23.1516 4.3930 154.26 1.01× 10–5 23.8099 5.8446 154.08 1.11× 10–5

Table 4 The effectiveness comparison of image deblurring

Algorithm CPU SNR ISNR n

In the fast processing with high performance in first
1st to 100th iteration(s) for image deblurring.

IFBS
√ √ √ ×

FISTA
√ √ √ ×

FBMWA × √ √ √
FBMMMA × √ √ √
NAGA × √ √ ×
SCTIP

√ × × √
IFISTA

√ √ √ √

Algorithm CPU SNR ISNR n tol

In the fast convergence with good performance at first
1000th iterations for image deblurring.

IFBS
√ √ √ √ √

FISTA
√ × × √ ×

FBMWA × √ √ √ √
FBMMMA × × × √ √
NAGA

√ √ √ √ √
SCTIP

√ × × √ ×
IFISTA

√ √ √ √ √

√
: satisfy and ×: unsatisfy (compared with processing mean) (Evaluation order: CPU, SNR, ISNR, n, tol.)

it is better if x∗ = y∗ (which means that both hidden estimated images are in the process of
the same iteration), which is shown in Table 2. Moreover, we also show the relative error
which is defined by

‖xn+1 – xn‖2

‖xn‖2
≤ tol,

where tol denotes a prescribed tolerance value of each compared algorithm at first 1000th

iterations by the constants SNR and ISNR as in Table 3, and their convergence behavior
are shown in Fig. 3 and Fig. 4.

In evaluation of each algorithm, we use the image processing mean to assess them such
that n, SNR, ISNR, CPU, and tol are the compared image processing arithmetic mean of
n, SNR, ISNR, CPU times, and tol, respectively.

On the results of each algorithms in first 1st to 100th iteration(s) as in Table 2, we see
that IFBS, FISTA, and IFISTA have the quantities of SNR and ISNR near to others (except
for SCTIP) and their quantities of n and CPU times are vastly different from others. We
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Figure 3 The SNR convergence behavior of image deblurring

Figure 4 The ISNR convergence behavior of image deblurring

give an evaluation order for those algorithms as in Table 4 as follows: CPU ≤ CPU, SNR ≥
SNR, ISNR ≥ ISNR, and n ≤ n, respectively. We see that all evaluations of IFISTA are
satisfied, while only CPU times, SNR, and ISNR evaluations of both IFBS and FISTA are
satisfied, where SNR and ISNR of IFBS are greater than FISTA, and then, we conclude that
IFISTA, IFBS, and FISTA are in the 1st, 2nd, and 3rd place, respectively, of the top three fast
processing with high performance for compared image deblurring as Fig. 5, Fig. 6, Fig. 7,
and Fig. 8.

From results of each algorithms at first 1000th iterations as in Table 3, we see that the
quantities of SNR and ISNR of all algorithms are vastly different. We give an evaluation or-
der for those algorithms as in Table 4 as follows: CPU ≤ CPU, SNR ≥ SNR, ISNR ≥ ISNR,
n ≤ n, and tol ≤ tol, respectively. We see that all evaluations of IFBS, NAGA, and IFISTA
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Figure 5 Top three fast processing with high performance for deblurring of Cameraman

Figure 6 Top three fast processing with high performance for deblurring of Woman

are satisfied, where SNR and ISNR of NAGA are greater than both IFBS and IFISTA, and
also which of IFBS are greater than IFISTA, and then, we conclude that NAGA, IFBS, and
IFISTA are in the 1st, 2nd, and 3rd place, respectively, of the top three fast convergence with
good performance for compared image deblurring as Fig. 9, Fig. 10, Fig. 11, and Fig. 12.
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Figure 7 Top three fast processing with high performance for deblurring of Pirate

Figure 8 Top three fast processing with high performance for deblurring of Living room

6 Conclusion
A new iterative forward-backward splitting method with an error is obtained in our main
result. It can be applied to improve the fast iterative shrinkage thresholding algorithm
(IFISTA) with an error for solving the image deblurring problem. Under the same pro-
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Figure 9 Top three fast convergence with good performance for deblurring of Cameraman

Figure 10 Top three fast convergence with good performance for deblurring of Woman

gramming techniques [36] and setting all parameters to their high performance, we obtain
the following results.
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Figure 11 Top three fast convergence with good performance for deblurring of Pirate

Figure 12 Top three fast convergence with good performance for deblurring of Living room

1. For looking at the fast processing with high performance for compared image
deblurring, IFISTA, IFBS, and FISTA are in the 1st, 2nd, and 3rd place, respectively, and
all are better than FBMWA, FBMMMA, NAGA, and SCTIP.
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2. For looking at the fast convergence with good performance for compared image
deblurring, NAGA, IFBS, and IFISTA are in the 1st, 2nd, and 3rd place, respectively,
and all are better than FISTA, FBMWA, FBMMMA, and SCTIP.

Acknowledgements
The author would like to thank the Faculty of Science, Maejo University for its financial support.

Funding
This research was supported by Faculty of Science, Maejo University.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The author declares that he has no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 August 2021 Accepted: 28 September 2021

References
1. Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space.

J. Math. Anal. Appl. 202, 150–159 (1996)
2. Chidume, C.E., Bashir, A.: Convergence of path and iterative method for families of nonexpansive mappings. Appl.

Anal. 67, 117–129 (2008)
3. Halpern, B.: Fixed points of nonexpansive maps. Bull. Am. Math. Soc. 73, 957–961 (1967)
4. Ishikawa, S.: Fixed points by a new iteration method. Proc. Am. Math. Soc. 44, 147–150 (1974)
5. Klen, R., Manojlovic, V., Simic, S., Vuorinen, M.: Bernoulli inequality and hypergeometric functions. Proc. Am. Math. Soc.

142, 559–573 (2014)
6. Kunze, H., La Torre, D., Mendivil, F., Vrscay, E.R.: Generalized fractal n transforms and self-similar objects in cone metric

spaces. Comput. Math. Appl. 64, 1761–1769 (2012)
7. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)
8. Radenovic, S., Rhoades, B.E.: Fixed point theorem for two non-self mappings in cone metric spaces. Comput. Math.

Appl. 57, 1701–1707 (2009)
9. Todorcevic, V.: Harmonic Quasiconformal Mappings and Hyperbolic Type Metrics. Springer, Basel (2019)
10. Byrne, C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18,

441–453 (2002)
11. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse

Probl. 20, 103–120 (2004)
12. Combettes, P.L., Wajs, V.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4,

1168–1200 (2005)
13. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated

radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)
14. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple set split feasibility problem and its applications. Inverse Probl.

21, 2071–2084 (2005)
15. Censor, Y., Motova, A., Segal, A.: Perturbed projections and subgradient projections for the multiple-sets feasibility

problem. J. Math. Anal. 327, 1244–1256 (2007)
16. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979

(1979)
17. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. 72,

383–390 (1979)
18. Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl.

Math. 155, 447–454 (2003)
19. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging

Sci. 2(1), 183–202 (2009)
20. Hanjing, A., Suantai, S.: A fast image restoration algorithm based on a fixed point and optimization method.

Mathematics 8, 378 (2020)
21. Padcharoen, A., Kumam, P.: Fixed point optimization method for image restoration. Thai J. Math. 18(3), 1581–1596

(2020)
22. Verma, M., Shukla, K.K.: A new accelerated proximal gradient technique for regularized multitask learning framework.

Pattern Recognit. Lett. 95, 98–103 (2017)



Tianchai Fixed Point Theory Algorithms Sci Eng         (2021) 2021:18 Page 25 of 25

23. Cholamjiak, P., Kesornprom, S., Pholasa, N.: Weak and strong convergence theorems for the inclusion problem and
the fixed-point problem of nonexpansive mappings. Mathematics 7, 167 (2019)

24. Abubakar, J., Kumam, P., Ibrahim, A.H., Padcharoen, A.: Relaxed inertial Tseng’s type method for solving the inclusion
problem with application to image restoration. Mathematics 8, 818 (2020)

25. Luo, Y.: An inertial splitting algorithm for solving inclusion problems and its applications to compressed sensing.
J. Appl. Numer. Optim. 2(3), 279–295 (2020)

26. Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)
27. Tang, J.F., Chang, S.S., Yuan, F.: A strong convergence theorem for equilibrium problems and split feasibility problems

in Hilbert spaces. Fixed Point Theory Appl. 2014, 36 (2014)
28. Nadezhkina, N., Takahashi, W.: Weak convergence theorem by an extragradient method for nonexpansive mappings

and monotone mappings. J. Optim. Theory Appl. 128, 191–201 (2006)
29. Geobel, K., Kirk, W.A.: Topic in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28.

Cambridge University Press, Cambridge (1990)
30. Takahashi, W., Xu, H.-K.: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240–256 (2002)
31. He, S., Yang, C.: Solving the variational inequality problem defined on intersection of finite level sets. Abstr. Appl. Anal.

2013, Article ID 942315 (2013)
32. Baillon, J.B., Haddad, G.: Quelques proprietes des operateurs angle-bornes et cycliquement monotones. Isr. J. Math.

26, 137–150 (1977)
33. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)
34. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc., Ser. B, Stat. Methodol. 58, 267–288 (1996)
35. Tianchai, P.: The zeros of monotone operators for the variational inclusion problem in Hilbert spaces. J. Inequal. Appl.

2021, 126 (2021)
36. Guide to the MATLAB code for wavelet-based deblurring with FISTA, Available online:

https://docplayer.net/128436542-Guide-to-the-matlab-code-for-wavelet-based-deblurring-with-fista.html
(accessed on 1 June 2021)

37. Image Databases, Available online: http://www.imageprocessingplace.com/downloads_V3/root_downloads/
image_databases/standard_test_images.zip (accessed on 1 June 2021)

38. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

https://docplayer.net/128436542-Guide-to-the-matlab-code-for-wavelet-based-deblurring-with-fista.html
http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/standard_test_images.zip
http://www.imageprocessingplace.com/downloads_V3/root_downloads/image_databases/standard_test_images.zip

	An improved fast iterative shrinkage thresholding algorithm with an error for image deblurring problem
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main result
	IFISTA
	Applications and numerical examples
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


