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Abstract
Splitting algorithms for finding a zero of sum of operators often involve multiple steps
which are referred to as forward or backward steps. Forward steps are the explicit use
of the operators and backward steps involve the operators implicitly via their
resolvents. In this paper, we study an adaptive splitting algorithm for finding a zero of
the sum of three operators. We assume that two of the operators are generalized
monotone and their resolvents are computable, while the other operator is
cocoercive but its resolvent is missing or costly to compute. Our splitting algorithm
adapts new parameters to the generalized monotonicity of the operators and, at the
same time, combines appropriate forward and backward steps to guarantee
convergence to a solution of the problem.
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1 Introduction
Operator splitting algorithms are developed for structured optimization problems based
on the idea of performing the computation separately on individual operators. At each it-
eration, they require multiple steps which are known as either forward or backward steps.
The forward steps are almost always easy as they use the operator directly. The backward
steps, on the other hand, are often more complicated as they use the resolvents of the op-
erators. While there are many operators whose resolvents are readily computable, there
exist operators whose resolvents may not be computable in closed form, thus, it is neces-
sary to use the forward steps in certain situations. Notable examples of splitting algorithms
include the forward-backward algorithm [15], the Douglas–Rachford algorithm [14, 15],
and many others.

In this paper, we study an adaptive splitting algorithm for the inclusion problem

find x ∈ X such that 0 ∈ Ax + Bx + Cx, (1)
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where X is a real Hilbert space, A, B : X ⇒ X are generalized monotone operators, and
C : X → X is a cocoercive operator. It is worth mentioning that the problem of finding a
zero of the sum of finitely many maximally monotone operators and a cocoercive operator
can be written as a special instance of (1), where A is a maximally monotone operator and
B is the normal cone of a closed subspace [16, 17]. This was in turn solved by the so-called
forward-Douglas–Rachford splitting algorithm [8, 16]. In [13], a three-operator splitting
algorithm was proposed to address (1) assuming A and B to be only maximally monotone.
In [11], an adaptive Douglas–Rachford splitting algorithm was introduced for the case
when A and B are strongly and weakly monotone operators, and C = 0. Therein, adaptive
parameters were used to accommodate the corresponding monotonicity properties. This
approach was later studied in [4] by means of conical averagedness.

Motivated by the two approaches in [11] and [13], this paper is devoted to develop an
adaptive splitting algorithm for solving (1) when A and B are strongly and weakly mono-
tone operators and C is a cocoercive operator. We utilize new parameters so that the gener-
ated sequence converges weakly to a fixed point, while the corresponding image sequence
via the resolvent (the shadow sequence) converges weakly to a solution of the original prob-
lem. If the strong monotonicity outweighs the weak monotonicity, the convergence of the
shadow sequence is strong. In addition, we recover some contemporary results for the
Douglas–Rachford algorithm, forward-backward algorithm, and also backward-forward
algorithm which has recently been studied in [1]. On the one hand, our new algorithm en-
hances the framework of [13] to allow for handling generalized monotone operators. On
the other hand, it extends the adaptive approach in [11] to incorporate the third operator
that is cocoercive and whose resolvent might not be explicitly computable. An application
to minimizing the sum of three functions is also included.

On another note, it is well known that the alternating direction method of multipliers
(ADMM) can be written as the Douglas–Rachford algorithm in dual settings. Recently,
this important relation has been extended in [3] for the adaptive framework, namely, a
new adaptive ADMM can be written as the adaptive Douglas–Rachford algorithm in dual
settings. We refer interested readers to [3] for a rather comprehensive discussion on the
ADMM.

The remainder of the paper is organized as follows. In Sect. 2, we present our adaptive
splitting algorithm and recall some preliminary materials. Section 3 provides an abstract
convergence result, which will be used to derive the main results in Sect. 4. In Sect. 5, we
revisit some convergence results for the case of two operators based on the newly devel-
oped framework. Finally, Sect. 6 presents an immediate application of the main results to
minimizing the sum of three functions.

2 The algorithm
Throughout, X is a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
The set of nonnegative integers is denoted by N and the set of real numbers is denoted
by R. We denote the set of nonnegative real numbers by R+ := {x ∈R | x ≥ 0} and the set
of the positive real numbers by R++ := {x ∈ R | x > 0}. The notation A : X ⇒ X is to indicate
that A is a set-valued operator on X and the notation A : X → X is to indicate that A is a
single-valued operator on X.

Let A : X ⇒ X be an operator on X. Then its domain is dom A := {x ∈ X | Ax �= ∅}, its set
of zeros is zer A := {x ∈ X | 0 ∈ Ax}, and its set of fixed points is Fix A := {x ∈ X | x ∈ Ax}.
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The graph of A is the set gra A := {(x, u) ∈ X × X | u ∈ Ax} and the inverse of A, denoted
by A–1, is the operator with graph gra A–1 := {(u, x) ∈ X × X | u ∈ Ax}. The resolvent of A
is defined by

JA := (Id + A)–1, (2)

where Id is the identity operator.
Now, let η,γ , δ ∈R++ and set λ := 1 + δ

γ
. In order to address problem (1), we employ the

operator

TA,B,C := Id – ηJγ A + ηJδB
(
(1 – λ)Id + λJγ A – δCJγ A

)
. (3)

We will also refer to γ and δ as the resolvent parameters as they are used to scale the
operators A, B in their respective resolvents. In fact, we adapt γ and δ to the generalized
monotonicity of A and B in order to guarantee the convergence of TA,B,C . Intuitively, in the
case A and B are maximally monotone, one would expect the use of equal resolvent pa-
rameters γ = δ, and in other cases, γ and δ are no longer the same. This phenomenon was
initially observed in [11, 12]. Although the imbalance of monotonicity can be resolved by
shifting the identity between the operators as in [11, Remark 4.15], our plan is to conduct
the convergence analysis of the algorithm applied to the original operators.

To motivate the use of (3), the following result shows the relationship between the fixed
point set of TA,B,C and the solution set of (1).

Proposition 2.1 (fixed points of TA,B,C) Let TA,B,C be defined by (3). Then Fix TA,B,C �= ∅ if
and only if zer(A + B + C) �= ∅. Moreover, if Jγ A is single-valued, then

Jγ A(Fix TA,B,C) = zer(A + B + C). (4)

Proof Let x ∈ dom TA,B,C . We have

TA,B,Cx =
{

x – ηa + ηJ(λ–1)γ B
(
(1 – λ)x + λa – (λ – 1)γ Ca

) | a ∈ Jγ Ax
}

. (5)

Therefore,

x ∈ Fix TA,B,C ⇐⇒ ∃a ∈ Jγ Ax, a ∈ J(λ–1)γ B
(
(1 – λ)x + λa – (λ – 1)γ Ca

)
(6a)

⇐⇒ ∃a ∈ Jγ Ax, (1 – λ)x + λa – (λ – 1)γ Ca – a ∈ (λ – 1)γ Ba
(6b)

⇐⇒ ∃a ∈ X, x – a ∈ γ Aa and a – x ∈ Ba + Ca (6c)

⇐⇒ ∃a ∈ Jγ Ax ∩ zer(A + B + C), (6d)

which completes the proof. �

In the rest of this section, we recall some preliminary concepts and results. Let T : X →
X be a single-valued operator on X. Then T is nonexpansive if it is Lipschitz continuous
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with constant 1 on its domain, i.e.,

∀x, y ∈ dom T , ‖Tx – Ty‖ ≤ ‖x – y‖. (7)

The operator T is said to be conically averaged with constant θ ∈ R++ (see [4, 7]) if there
exists a nonexpansive operator N : X → X such that

T = (1 – θ )Id + θN . (8)

Given a conically θ -averaged operator, it is θ -averaged when θ ∈ ]0, 1[ and nonexpan-
sive when θ = 1. Further properties are discussed in the following result from [4, Proposi-
tion 2.2].

Proposition 2.2 Let T : X → X, θ ∈R++, and λ ∈R++. Then the following are equivalent:
(i) T is conically θ -averaged.

(ii) (1 – λ)Id + λT is conically λθ -averaged.
(iii) For all x, y ∈ dom T ,

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
(

1
θ

– 1
)∥∥(Id – T)x – (Id – T)y

∥∥2. (9)

Recall from [11] that an operator A : X ⇒ X is α-monotone for some α ∈R if

∀(x, u), (y, v) ∈ gra A, 〈x – y, u – v〉 ≥ α‖x – y‖2. (10)

We say that A is monotone if α = 0, strongly monotone if α > 0, and weakly monotone if
α < 0. The operator A is said to be maximally α-monotone if it is α-monotone and there
is no α-monotone operator B : X ⇒ X such that gra B properly contains gra A.

We say that A is σ -cocoercive if σ ∈R++ and

∀(x, u), (y, v) ∈ gra A, 〈x – y, u – v〉 ≥ σ‖u – v‖2. (11)

Clearly, if A is σ -cocoercive, then A is single-valued and monotone. In fact, σ -cocoercivity
was extended to σ -comonotonicity to allow for negative parameter σ , see [4, 7] for more
details. Next, we recall a result from [11, Lemma 3.3 and Proposition 3.4].

Proposition 2.3 (single-valued and full domain) Let A : X ⇒ X be α-monotone and let
γ ∈R++ such that 1 + γα > 0. Then the following hold:

(i) Jγ A is single-valued and (1 + γα)-cocoercive.
(ii) dom Jγ A = X if and only if A is maximally α-monotone.

Finally, we recall the demiclosedness principle for cocoercive operators developed in
[2]. A fundamental result in the theory of nonexpansive mapping is Browder’s celebrated
demiclosedness principle [9]. It was extended for finitely many firmly nonexpansive map-
pings in [5] and was later generalized in [2] for a finite family of conically averaged map-
pings or for a finite family of cocoercive mappings. An instant application of the demi-
closedness principle is to provide a simple proof for the weak convergence of the shadow
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sequence of the Douglas–Rachford algorithm [5] and of the adaptive Douglas–Rachford
algorithm [2]. For our analysis, we recall only the result for two operators.

Proposition 2.4 (demiclosedness principle for balanced cocoercive operators) Let T1 :
X → X and T2 : X → X be respectively σ1- and σ2-cocoercive, let (xn)n∈N and (zn)n∈N be
sequences in X, and let ρ1,ρ2 ∈R++ be such that

ρ1σ1 + ρ2σ2

ρ1 + ρ2
≥ 1. (12)

Suppose that as n → +∞,

xn ⇀ x∗, zn ⇀ z∗, (13a)

T1xn ⇀ y∗, T2zn ⇀ y∗, (13b)

ρ1(xn – T1xn) + ρ2(zn – T2zn) → ρ1
(
x∗ – y∗) + ρ2

(
z∗ – y∗), (13c)

T1xn – T2zn → 0. (13d)

Then y∗ = T1x∗ = T2z∗.

Proof Apply [2, Theorem 3.2] for two operators. �

3 An abstract convergence result
In order to study TA,B,C , it is reasonable to consider the general operator

T := Id – ηT1 + ηT2(–νId + λT1 – δT3T1), (14)

where T1, T2, T3 : X → X and η,ν,λ, δ ∈ R++. In this section, we establish a convergence
result for the operator T under the cocoercivity of T1, T2, T3. We begin with a useful
technical lemma.

Lemma 3.1 Let a, b, c, d be in X and let η, ν , λ, δ be in R++. Set e := –νa + λb – δc and
f := a – ηb + ηd. Then, for all σ ∈R++,

‖f ‖2 = ‖a‖2 –
(

λ

ην
–

δ

2ηνσ
– 1

)
‖a – f ‖2 –

δ

2ηνσ
‖a – f – 2ησ c‖2

+
λη

ν
‖b‖2 +

λη

ν
‖d‖2 – 2η〈a, b〉 – 2

η

ν
〈e, d〉 –

2δη

ν

(〈c, b〉 – σ‖c‖2). (15)

Proof By assumption, a – f = η(b – d) and λb = νa + δc + e, which imply that

λ

η2 ‖a – f ‖2 = λ‖b – d‖2 (16a)

= λ‖b‖2 + λ‖d‖2 – 2λ〈b, d〉 (16b)

= λ‖b‖2 + λ‖d‖2 – 2〈νa + δc + e, d〉 (16c)

= λ‖b‖2 + λ‖d‖2 – 2ν〈a, d〉 – 2δ〈c, d〉 – 2〈e, d〉. (16d)
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Writing d = b – 1
η

(a – f ), we have that

–2ν〈a, d〉 = –2ν〈a, b〉 +
2ν

η
〈a, a – f 〉 = –2ν〈a, b〉 +

ν

η

(‖a‖2 + ‖a – f ‖2 – ‖f ‖2) (17)

and that

–2δ〈c, d〉 = –2δ〈c, b〉 +
2δ

η
〈c, a – f 〉 (18a)

= –2δ
(〈c, b〉 – σ‖c‖2) – 2δσ‖c‖2 +

2δ

η
〈c, a – f 〉 (18b)

= –2δ
(〈c, b〉 – σ‖c‖2) –

δ

2η2σ
‖a – f – 2ησ c‖2 +

δ

2η2σ
‖a – f ‖2. (18c)

Substituting (17) and (18a)–(18c) into (16d) yields

ν

η
‖f ‖2 =

ν

η
‖a‖2 –

(
λ

η2 –
δ

2η2σ
–

ν

η

)
‖a – f ‖2 –

δ

2η2σ
‖a – f – 2ησ c‖2

+ λ‖b‖2 + λ‖d‖2 – 2ν〈a, b〉 – 2〈e, d〉 – 2δ
(〈c, b〉 – σ‖c‖2), (19)

which implies the conclusion. �

The following proposition is inspired by [13, Proposition 2.1].

Proposition 3.2 Let T1, T2, and T3 be respectively σ1-, σ2-, and σ3-cocoercive. Let
η,ν,λ, δ ∈R++ and define

T := Id – ηT1 + ηT2(–νId + λT1 – δT3T1). (20)

Then the following hold:
(i) If λ = 2νσ1 = 2σ2 and

η∗ :=
1
ν

(
λ –

δ

2σ3

)
> 0, (21)

then, for all x, y ∈ dom T ,

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
(

η∗

η
– 1

)∥
∥(Id – T)x – (Id – T)y

∥
∥2

–
δ

2ηνσ3

∥∥(Id – T)x – (Id – T)y – 2ησ3(T3T1x – T3T1y)
∥∥2. (22)

(ii) If λ < νσ1 + σ2 and

η∗ :=
1
ν

(
(2νσ1 – λ)(2σ2 – λ)

2(νσ1 + σ2 – λ)
+ λ –

δ

2σ3

)
> 0, (23)

then, for all x, y ∈ dom T ,

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
(

η∗

η
– 1

)∥
∥(Id – T)x – (Id – T)y

∥
∥2
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–
δ

2ηνσ3

∥∥(Id – T)x – (Id – T)y – 2ησ3(T3T1x – T3T1y)
∥∥2

–
η

2ν(νσ1 + σ2 – λ)

× ∥
∥(2νσ1 – λ)(T1x – T1y) + (2σ2 – λ)(T2Sx – T2Sy)

∥
∥2, (24)

where S := –νId + λT1 – δT3T1.
In both cases, T is conically η

η∗ -averaged.

Proof Let x, y ∈ X be arbitrary and set S := –νId + λT1 – δT3T1. Then T = Id – ηT1 + ηT2S.
Define

a := x – y, b := T1x – T1y, (25a)

c := T3T1x – T3T1y, d := T2Sx – T2Sy, (25b)

e := Sx – Sy, f := Tx – Ty. (25c)

Then e = –νa + λb – δc and f = a – ηb + ηd. By applying Lemma 3.1 (with σ = σ3),

‖f ‖2 = ‖a‖2 –
(

λ

ην
–

δ

2ηνσ3
– 1

)
‖a – f ‖2 –

δ

2ηνσ3
‖a – f – 2ησ c‖2

+
λη

ν
‖b‖2 +

λη

ν
‖d‖2 – 2η〈a, b〉 – 2

η

ν
〈e, d〉 –

2δη

ν

(〈c, b〉 – σ3‖c‖2). (26)

On the other hand, the cocoercivity of T1, T2, and T3 yields

〈a, b〉 ≥ σ1‖b‖2, 〈e, d〉 ≥ σ2‖d‖2, 〈b, c〉 ≥ σ3‖c‖2. (27)

Combining this with (26), we obtain that

‖f ‖2 ≤ ‖a‖2 –
(

λ

ην
–

δ

2ηνσ3
– 1

)
‖a – f ‖2 –

δ

2ηνσ3
‖a – f – 2σ3c‖2

–
η

ν
(2νσ1 – λ)‖b‖2 –

η

ν
(2σ2 – λ)‖d‖2. (28)

(i): Since λ = 2νσ1 = 2σ2, (28) reduces to

‖f ‖2 ≤ ‖a‖2 –
(

η∗

η
– 1

)
‖a – f ‖2 –

δ

2ηνσ3
‖a – f – 2σ3c‖2, (29)

which gives (22).
(ii): Set κ := 2νσ1 – λ and μ := 2σ2 – λ. Then κ + μ = 2(νσ1 + σ2 – λ) > 0 and

(2νσ1 – λ)‖b‖2 + (2σ2 – λ)‖d‖2

= κ‖b‖2 + μ‖d‖2 (30a)

=
1

κ + μ
‖κb + μd‖2 +

κμ

κ + μ
‖b – d‖2 (30b)
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=
1

2(νσ1 + σ2 – λ)
∥∥(2νσ1 – λ)b + (2σ2 – λ)d

∥∥2

+
(2νσ1 – λ)(2σ2 – λ)
2η2(νσ1 + σ2 – λ)

‖a – f ‖2, (30c)

where the last equality is due to the fact that b – d = 1
η

(a – f ). Substituting into (28), we get

‖f ‖2 ≤ ‖a‖2 –
(

(2νσ1 – λ)(2σ2 – λ)
2ην(νσ1 + σ2 – λ)

+
λ

ην
–

δ

2ηνσ3
– 1

)
‖a – f ‖2

–
δ

2ηνσ3
‖a – f – 2ησ3c‖2

–
η

2ν(νσ1 + σ2 – λ)
∥
∥(2νσ1 – λ)b + (2σ2 – λ)d

∥
∥2, (31)

which proves (24).
Finally, in both cases (i) and (ii), we have that

‖Tx – Ty‖2 ≤ ‖x – y‖2 –
(

η∗

η
– 1

)∥∥(Id – T)x – (Id – T)y
∥∥2, (32)

which implies that T is conically η

η∗ -averaged due to Proposition 2.2(i) and (iii). �

In what follows, we say that (xn)n∈N is a sequence generated by T if, for all n ∈ N, xn+1 ∈
Txn.

Theorem 3.3 (abstract convergence) Let T1, T2, and T3 be respectively σ1-, σ2-, and σ3-
cocoercive. Let η,ν,λ, δ ∈R++ and define

T := Id – ηT1 + ηT2(–νId + λT1 – δT3T1). (33)

Suppose that Fix T �= ∅ and that either
(a) λ = 2νσ1 = 2σ2 and η < η∗ := 1

ν
(λ – δ

2σ3
); or

(b) λ < νσ1 + σ2 and η < η∗ := 1
ν

( (2νσ1–λ)(2σ2–λ)
2(νσ1+σ2–λ) + λ – δ

2σ3
).

Let (xn)n∈N ⊂ dom T be a sequence generated by T and set S := –νId + λT1 – δT3T1. Then
the following hold:

(i) T is η

η∗ -averaged. Consequently, (xn)n∈N converges weakly to a point x∗ ∈ Fix T and
the rate of asymptotic regularity of T is o(1/

√
n), i.e., ‖xn – Txn‖ = o(1/

√
n).

(ii) (T3T1xn)n∈N converges strongly to T3T1x∗ and T3T1(Fix T) = {T3T1x∗}.
(iii) If (a) holds and ν = λ – 1, then (T1xn)n∈N and (T2Sxn)n∈N converge weakly to

T1x∗ = T2Sx∗.
(iv) If (b) holds, then (T1xn)n∈N and (T2Sxn)n∈N converge strongly to T1x∗ = T2Sx∗ and

T1(Fix T) = T2S(Fix T) = {T1x∗}.

Proof Set ω1 := η∗
η

– 1, ω2 := δ
2ηνσ3

, and

ω3 :=

⎧
⎨

⎩
0 if λ = 2νσ1 = 2σ2,

η

2ν(νσ1+σ2–λ) if λ < νσ1 + σ2.
(34)
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Then ω1 > 0, ω2 > 0, and ω3 ≥ 0. We derive from Proposition 3.2 that, for all x, y ∈ dom T ,

‖Tx – Ty‖2 ≤ ‖x – y‖2 – ω1
∥
∥(Id – T)x – (Id – T)y

∥
∥2

– ω2
∥
∥(Id – T)x – (Id – T)y – 2ησ3(T3T1x – T3T1y)

∥
∥2

– ω3
∥
∥(2νσ1 – λ)(T1x – T1y) + (2σ2 – λ)(T2Sx – T2Sy)

∥
∥2 (35)

and T is conically η

η∗ -averaged.
(i): Since η < η∗, T is η

η∗ -averaged. By [4, Corollary 2.10], (xn)n∈N converges weakly to a
point x∗ ∈ Fix T and the rate of asymptotic regularity of T is o(1/

√
n).

(ii): Let y ∈ Fix T . It follows from (35) that, for all n ∈N,

‖xn+1 – y‖2 ≤ ‖xn – y‖2 – ω1
∥
∥(Id – T)xn

∥
∥2

– ω2
∥
∥(Id – T)xn – 2ησ3(T3T1xn – T3T1y)

∥
∥2

– ω3
∥∥(2νσ1 – λ)(T1xn – T1y) + (2σ2 – λ)(T2Sxn – T2Sy)

∥∥2. (36)

Telescoping this inequality yields

ω1

∞∑

n=0

∥∥(Id – T)xn
∥∥2 + ω2

∞∑

n=0

∥∥(Id – T)xn – 2ησ3(T3T1xn – T3T1y)
∥∥2

+ ω3

∞∑

n=0

∥∥(2νσ1 – λ)(T1xn – T1y) + (2σ2 – λ)(T2Sxn – T2Sy)
∥∥2

≤ ‖x0 – y‖2 < +∞. (37)

Since ω1,ω2 > 0 and ω3 ≥ 0, we deduce that, as n → +∞,

(Id – T)xn → 0 and (Id – T)xn – 2ησ3(T3T1xn – T3T1y) → 0, (38)

which imply that

T3T1xn → T3T1y. (39)

As y is arbitrary in Fix T and the limit of T3T1xn is unique, we must have that T3T1 is a
constant on Fix T . It follows that T3T1(Fix T) = {T3T1x∗}.

(iii): We will apply the demiclosedness principle in Proposition 2.4 to prove that
(T1xn)n∈N converges weakly to T1x∗. First, recall from (i) that

xn ⇀ x∗ ∈ Fix T . (40)

As a result, (xn)n∈N is bounded, and so is (T1xn)n∈N. Let y∗ be a weak cluster point of
(T1xn)n∈N. Then there exists a subsequence (xkn )n∈N such that

T1xkn ⇀ y∗. (41)
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Define zn := Sxn = (1 – λ)xn + λT1xn – δT3T1xn. Since T3T1xn → T3T1x∗ by (ii), it follows
that

zkn ⇀ (1 – λ)x∗ + λy∗ – δT3T1x∗ =: z∗. (42)

Next, we have from (i) that

T1xkn – T2zkn = (T1 – T2S)xkn =
1
η

(Id – T)xkn → 0, (43)

which, due to (41), implies that

T2zkn ⇀ y∗. (44)

Set ρ1 := λ – 1 = ν > 0 and ρ2 := 1. Then

ρ1σ1 + ρ2σ2

ρ1 + ρ2
=

(λ – 1) λ
2ν

+ 1 · λ
2

λ
= 1 (45)

and it follows from (42) that

ρ1
(
x∗ – y∗) + ρ2

(
z∗ – y∗) = –δT3T1x∗. (46)

Using the definition of zn and then (43), we obtain

ρ1(xkn – T1xkn ) + ρ2(zkn – T2zkn )

= (λ – 1)(xkn – T1xkn ) + (1 – λ)xkn + λT1xkn – δT3T1xkn – T2zkn

= T1xkn – T2zkn – δT3T1xkn

→ –δT3T1x∗ = ρ1
(
x∗ – y∗) + ρ2

(
z∗ – T2z∗). (47)

Now, in view of (40), (41), (42), (43), (44), (45), and (47), we apply Proposition 2.4 to derive
that

y∗ = T1x∗ = T2z∗, (48)

which is the unique weak cluster point of (T1xn)n∈N. Thus, T1xn ⇀ T1x∗. Since T1xn –
T2Sxn = 1

η
(Id – T)xn → 0 and x∗ ∈ Fix T , we derive that T2Sxn ⇀ T1x∗ = T2Sx∗.

(iv): In this case, ω3 > 0. So (37) implies that, as n → +∞,

(2νσ1 – λ)(T1xn – T1y) + (2σ2 – λ)(T2Sxn – T2Sy) → 0. (49)

On the other hand,

(T1xn – T1y) – (T2Sxn – T2Sy) =
1
η

(Id – T)xn –
1
η

(Id – T)y =
1
η

(Id – T)xn → 0, (50)
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which together with (49) yields

T1xn → T1y and T2Sxn → T2Sy. (51)

Since y is arbitrary in Fix T and x∗ ∈ Fix T , it also follows that T1y = T1x∗ and T2Sy =
T2Sx∗ = T1x∗. Hence, T1(Fix T) = T2S(Fix T) = {T1x∗}. The proof is complete. �

4 Zeros of the sum of three operators
In this section, we apply the result to the problem of finding a zero of the sum of three
operators. We assume that the operator A is maximally α-monotone, the operator B is
maximally β-monotone, and the operator C is σ -cocoercive. We will consider two cases:
α + β = 0 and α + β > 0.

Theorem 4.1 (convergence in the case α + β = 0) Suppose that A and B are respectively
maximally α- and β-monotone with α + β = 0, and C is σ -cocoercive. Let η ∈ R++ and let
γ ∈R++ be such that

1 + 2γα > 0 and η∗ := 2 + 2γα –
γ

2σ
> 0. (52)

Set δ = γ

1+2γ α
, λ = 1 + δ

γ
, and let (xn)n∈N be a sequence generated by TA,B,C in (3). Then the

following hold:
(i) TA,B,C is single-valued and has full domain.

(ii) For all x, y ∈ X ,

‖TA,B,Cx – TA,B,Cy‖2

≤ ‖x – y‖2 –
(

η∗

η
– 1

)∥
∥(Id – TA,B,C)x – (Id – TA,B,C)y

∥
∥2

–
γ

2ησ

∥∥(Id – TA,B,C)x – (Id – TA,B,C)y – 2ησ (CJγ Ax – CJγ Ay)
∥∥2. (53)

In particular, TA,B,C is conically η

η∗ -averaged.
(iii) If zer(A + B + C) �= ∅ and η < η∗, then the rate of asymptotic regularity of TA,B,C is

o(1/
√

n) and (xn)n∈N converges weakly to a point x∗ ∈ Fix T , while (Jγ Axn)n∈N and
(JδBSxn)n∈N converge weakly to Jγ Ax∗ = JδBSx∗ ∈ zer(A + B + C) where
S := (1 – λ)Id + λJγ A – δCJγ A, (CJγ Axn)n∈N converges strongly to CJγ Ax∗, and
C(zer(A + B + C)) = {CJγ Ax∗}.

Proof First, we can check that there always exists γ ∈ R++ such that (52) holds (indeed,
by choosing γ > 0 satisfying 1/γ > max{–2α, –α + 1/(4σ )}). Next, we have that 1 + γα =
1/2 + (1 + 2γα)/2 > 0. Since α + β = 0, we also have

1 + δβ = 1 – δα = 1 –
γα

1 + 2γα
=

1 + γα

1 + 2γα
> 0. (54)

By Proposition 2.3, Jγ A, JδB, and hence TA,B,C are single-valued and have full domain. This
proves (i).
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Next, Proposition 2.3 also implies that Jγ A and JδB are respectively (1 +γα)- and (1 +δβ)-
cocoercive. Set σ1 := 1 + γα > 0, σ2 := 1 + δβ > 0, σ3 := σ > 0, and ν := λ – 1 > 0. Then
2νσ1 = 2(λ – 1)(1 + γα) = 2(1 + γα)/(1 + 2γα) = λ and, by (54), 2σ2 = 2(1 + δβ) = 2(1 +
γα)/(1 + 2γα) = λ. Also,

1
ν

(
λ –

δ

2σ3

)
=

1
λ – 1

(
λ –

(λ – 1)γ
2σ

)
= 1 +

γ

δ
–

γ

2σ
= η∗ > 0. (55)

Applying Proposition 3.2(i), we get (ii).
Now, by Proposition 2.1, Jγ A(Fix TA,B,C) = zer(A + B + C). We then apply Theorem 3.3(i)–

(iii) to complete the proof. �

Using Theorem 4.1, we recover the results in [13, Theorem 2.1(1)], which partly spurred
our interest in the topic.

Corollary 4.2 Suppose that A and B are respectively maximally monotone, that C is σ -
cocoercive. Let γ ∈ ]0, 4σ [, η ∈ ]0, 2 – γ

2σ
[, and define

TA,B,C := Id – ηJγ A + ηJγ B(2Jγ A – Id – γ CJγ A). (56)

Then the following hold:
(i) TA,B,C is 2ησ

4σ–γ
-averaged.

(ii) If zer(A + B + C) �= ∅, then the rate of asymptotic regularity of TA,B,C is o(1/
√

n) and
(xn)n∈N converges weakly to a point x∗ ∈ Fix T , while (Jγ Axn)n∈N and
(Jγ B(2Jγ A – Id – γ CJγ A)xn)n∈N converge weakly to
Jγ Ax∗ = Jγ B(2Jγ A – Id – γ CJγ A)x∗ ∈ zer(A + B + C), (CJγ Axn)n∈N converges strongly to
CJγ Ax∗, and C(zer(A + B + C)) = {CJγ Ax∗}.

Proof Apply Theorem 4.1 with α = β = 0, δ = γ , and η∗ = 2 – γ

2σ
. �

Remark 4.3 (range of parameter γ ) We note that while Corollary 4.2(i) is straightforward
from [13, Proposition 2.1], Corollary 4.2(ii) improves upon [13, Theorem 2.1(1)] by only
requiring the parameter γ ∈ ]0, 4σ [ instead of γ ∈ ]0, 2σε[ with ε ∈ ]0, 1[.

Next, we consider the case α + β > 0. This case indeed allows for some flexibility in
choosing the resolvent parameters γ , δ. In particular, let us recall the case α + β = 0 in
Theorem 4.1, the resolvent parameters γ , δ must be directly related by

δ =
γ

1 + 2γα
, or equivalently,

1
δ

=
1
γ

+ 2α. (57)

In the case α + β > 0, the above exact relation is no longer necessary; instead, for given γ ,
one can choose δ within a range such that

max

{
0,

1
γ

+ 2α – 2
√

�

}
<

1
δ

<
1
γ

+ 2α + 2
√

� (58)

for some positive � that depends on α, β , and γ . In the next results, we will show that
such choices for (γ , δ) always exist and will guarantee convergence of the algorithm.
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Lemma 4.4 (existence of resolvent parameters) Let α,β ∈ R be such that α + β > 0, let
σ ∈R++, and let γ , δ ∈R++. Set

γ0 :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if α ≥ 1
4σ

,

–α + 1
4σ

if – 1
4σ

≤ α < 1
4σ

,

2β – 2
√

(α + β)(β – 1
4σ

) if α < – 1
4σ

.

(59)

Then γ0 ≥ max{0, –α + 1
4σ

} and the following statements are equivalent:
(i) 4γ δ(1+γ α)(1+δβ)–(γ +δ)2

2γ δ2(α+β) – γ

2σ
> 0.

(ii) 1
γ

> γ0 and max{0, 1
γ

+ 2α – 2
√

�} < 1
δ

< 1
γ

+ 2α + 2
√

�, where
� := (α + β)( 1

γ
+ α – 1

4σ
).

Consequently, there always exist γ , δ ∈R++ that satisfy both (i) and (ii).

Proof If α ≥ – 1
4σ

, then γ0 = max{0, –α + 1
4σ

} by definition. If α < – 1
4σ

< 0, then β – 1
4σ

>
β + α > 0 and

γ0 = 2β – 2

√

(α + β)
(

β –
1

4σ

)
=

(√

β –
1

4σ
–

√
α + β

)2

– α +
1

4σ
(60a)

≥ –α +
1

4σ
= max

{
0, –α +

1
4σ

}
. (60b)

Next, we have that

4γ δ(1 + γα)(1 + δβ) – (γ + δ)2

2γ δ2(α + β)
–

γ

2σ
> 0 (61a)

⇐⇒ (γ + δ)2 < 4γ δ(1 + γα)(1 + δβ) –
γ 2δ2(α + β)

σ
(61b)

⇐⇒
(

1 – 4γβ – 4γ 2αβ +
γ 2(α + β)

σ

)
δ2 – 2γ (1 + 2γα)δ + γ 2 < 0 (61c)

⇐⇒
(

1
γ 2 – 4β

1
γ

– 4αβ +
α + β

σ

)
– 2

(
1
γ

+ 2α

)
1
δ

+
1
δ2 < 0 (61d)

⇐⇒ � = (α + β)
(

1
γ

+ α –
1

4σ

)
> 0 and

1
γ

+ 2α – 2
√

� <
1
δ

<
1
γ

+ 2α + 2
√

� (61e)

⇐⇒ 1
γ

> –α +
1

4σ
and

1
γ

+ 2α – 2
√

� <
1
δ

<
1
γ

+ 2α + 2
√

�. (61f)

Suppose (ii) holds, then 1
γ

> γ0 ≥ max{0, –α + 1
4σ

}. So (61f) holds. It follows that (61a)
holds, which is (i).

Now, suppose that (i) holds. Then (61f) holds, and so 1
γ

> max{0, –α + 1
4σ

} and 1
γ

+ 2α +
2
√

� > 0. To obtain (ii), it suffices to show that 1
γ

> γ0. If α ≥ – 1
4σ

, then γ0 = max{0, –α +
1

4σ
}, and we readily have 1

γ
> γ0. Let us consider the case when α < – 1

4σ
. Then β – 1

4σ
>
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β + α > 0 and

1
γ

+ 2α + 2
√

� > 0 ⇐⇒
(√

α + β +

√
1
γ

+ α –
1

4σ

)2

> β –
1

4σ
(62a)

⇐⇒
√

1
γ

+ α –
1

4σ
>

√

β –
1

4σ
–

√
α + β (62b)

⇐⇒ 1
γ

+ α –
1

4σ
>

(√

β –
1

4σ
–

√
α + β

)2

(62c)

⇐⇒ 1
γ

> 2β – 2

√

(α + β)
(

β –
1

4σ

)
= γ0, (62d)

which finish our claim.
To see the existence of γ and δ, we choose γ > 0 such that 1

γ
> γ0 and then choose δ > 0

that satisfies the second condition in (ii). �

We are now ready to prove the convergence of the algorithm for the case α + β > 0.

Theorem 4.5 (convergence in the case α + β > 0) Suppose that A and B are respectively
maximally α- and β-monotone with α + β > 0, that C is σ -cocoercive, and that γ , δ ∈R++

satisfy

η∗ :=
4γ δ(1 + γα)(1 + δβ) – (γ + δ)2

2γ δ2(α + β)
–

γ

2σ
> 0. (63)

Set λ = 1 + δ
γ

and let η ∈ R++. Let (xn)n∈N be a sequence generated by TA,B,C in (3) and set
S := (1 – λ)Id + λJγ A – δCJγ A. Then the following hold:

(i) TA,B,C is single-valued and has full domain.
(ii) For all x, y ∈ X ,

‖TA,B,Cx – TA,B,Cy‖2

≤ ‖x – y‖2 –
(

η∗

η
– 1

)∥
∥(Id – TA,B,C)x – (Id – TA,B,C)y

∥
∥2

–
γ

2ησ

∥
∥(Id – TA,B,C)x – (Id – TA,B,C)y – 2ησ (CJγ Ax – CJγ Ay)

∥
∥2

–
γ η

2δ2(α + β)

× ∥
∥(λ – 2 + 2δα)(T1x – T1y) + (2 – λ + 2δβ)(T2Sx – T2Sy)

∥
∥2. (64)

In particular, TA,B,C is conically η

η∗ -averaged.
(iii) If zer(A + B + C) �= ∅ and η < η∗, then the rate of asymptotic regularity of TA,B,C is

o(1/
√

n) and (xn)n∈N converges weakly to a point x∗ ∈ Fix T , while (Jγ Axn)n∈N and
(JδBSxn)n∈N converge strongly to Jγ Ax∗ = JδBSx∗ ∈ zer(A + B + C), (CJγ Axn)n∈N
converges strongly to CJγ Ax∗, and zer(A + B + C) = {Jγ Ax∗}.

Proof First, Lemma 4.4 ensures the existence of γ , δ ∈R++ satisfying (63). In view of (63),
it also follows from Lemma 4.4 that 1/γ > –α + 1

4σ
, and so 1 + γα > γ /(4σ ) > 0, which
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together with (63) implies that 1 + δβ > 0. In turn, Proposition 2.3 implies that Jγ A, JδB, and
hence TA,B,C are single-valued and have full domain, and we get (i).

We also derive from Proposition 2.3 that Jγ A and JδB are (1+γα)- and (1+δβ)-cocoercive,
respectively. Now, set σ1 := 1 + γα > 0, σ2 := 1 + δβ > 0, and σ3 := σ > 0, and ν := λ – 1 > 0.
On the one hand, since α + β > 0,

νσ1 + σ2 = (λ – 1)(1 + γα) + (1 + δβ) = λ + δ(α + β) > λ. (65)

On the other hand,

1
ν

(
(2νσ1 – λ)(2σ2 – λ)

2(νσ1 + σ2 – λ)
+ λ –

δ

2σ3

)

=
1
ν

(
4νσ1σ2 – λ2

2(νσ1 + σ2 – λ)
–

δ

2σ3

)
(66a)

=
γ

δ

(
4γ δ(1 + γα)(1 + δβ) – (γ + δ)2

2γ 2δ(α + β)
–

δ

2σ

)
(66b)

=
4γ δ(1 + γα)(1 + δβ) – (γ + δ)2

2γ δ2(α + β)
–

γ

2σ
= η∗ > 0. (66c)

Therefore, we obtain (ii) due to Proposition 3.2(ii).
Finally, applying Theorem 3.3(i), (ii), and (iv) and noting that Jγ A(Fix TA,B,C) = zer(A +

B + C) due to Proposition 2.1, we complete the proof. �

5 Zeros of the sum of two operators
The new results in Theorems 4.1 and 4.5 allow us to revisit the relaxed forward-backward,
relaxed backward-forward, and adaptive Douglas–Rachford algorithms for finding a zero
of the sum of two operators.

Theorem 5.1 (relaxed forward-backward) Suppose that B is maximally β-monotone with
β ∈ R+ and that C is σ -cocoercive. Let γ ∈ ]0, 4σ [, η ∈ ]0, 2 – γ

2σ
[, and let (xn)n∈N be a

sequence generated by

TFB := (1 – η)Id + ηJγ B(Id – γ C). (67)

Then the following hold:
(i) For all x, y ∈ X ,

‖TFBx – TFBy‖2 ≤ ‖x – y‖2 –
(

4σ – γ

2ησ
– 1

)∥
∥(Id – TFB)x – (Id – TFB)y

∥
∥2

–
γ

2ησ

∥∥(Id – TFB)x – (Id – TFB)y – 2ησ (Cx – Cy)
∥∥2. (68)

In particular, TFB is 2ησ

4σ–γ
-averaged.

(ii) If zer(B + C) �= ∅, then the rate of asymptotic regularity of TFB is o(1/
√

n) and
(xn)n∈N converges weakly to a point x∗ ∈ zer(B + C), while (Cxn)n∈N converges
strongly to Cx∗, and C(zer(B + C)) = {Cx∗}. Moreover, if additionally β > 0, then
(xn)n∈N converges strongly to x∗ and zer(B + C) = {x∗}.
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Proof Apply Theorems 4.1 and 4.5 with A = 0, α = 0, λ = 2, and δ = γ . �

Theorem 5.2 (relaxed backward-forward) Suppose that A is maximally α-monotone with
α ∈ R+ and that C is σ -cocoercive. Let γ ∈ ]0, 4σ [, η ∈ ]0, 2 – γ

2σ
[, and let (xn)n∈N be a

sequence generated by

TBF := (1 – η)Id + η(Id – γ C)Jγ A. (69)

Then the following hold:
(i) For all x, y ∈ X ,

‖TBFx – TBFy‖2 ≤ ‖x – y‖2 –
(

4σ – γ

2ησ
– 1

)∥∥(Id – TBF)x – (Id – TBF)y
∥∥2

–
γ

2ησ

∥
∥(Id – TBF)x – (Id – TBF)y – 2ησ (Cx – Cy)

∥
∥2. (70)

In particular, TBF is 2ησ

4σ–γ
-averaged.

(ii) If zer(A + C) �= ∅, then the rate of asymptotic regularity of TBF is o(1/
√

n) and
(xn)n∈N converges weakly to a point x∗ ∈ Fix TBF, while (Jγ Axn)n∈N converges weakly
to Jγ Ax∗ ∈ zer(A + C), (Cxn)n∈N converges strongly to Cx∗, and
C(zer(A + C)) = {Cx∗}. Moreover, if additionally α > 0, then (Jγ Axn)n∈N converges
strongly to Jγ Ax∗ ∈ zer(A + C) and zer(A + C) = {Jγ Ax∗}.

Proof Apply Theorems 4.1 and 4.5 with B = 0, β = 0, λ = 2, and δ = γ . �

Theorem 5.3 (adaptive DR) Suppose that A and B are respectively maximally α- and β-
monotone, that either

(a) α + β = 0, 1 + 2γα > 0, δ = γ

1+2γ α
, η∗ = 2; or

(b) α + β > 0, η∗ := 4γ δ(1+γ α)(1+δβ)–(γ +δ)2

2γ δ2(α+β) > 0.
Let λ = 1 + δ

γ
, η ∈ ]0,η∗[, and let (xn)n∈N be a sequence generated by

TDR := Id – ηJγ A + ηJδB
(
(1 – λ)Id + λJγ A

)
. (71)

Set S := (1 – λ)Id + λJγ A. Then the following hold:
(i) TDR is η

η∗ -averaged and has full domain.
(ii) If zer(A + B) �= ∅, then the rate of asymptotic regularity of TDR is o(1/

√
n) and

(xn)n∈N converges weakly to a point x∗ ∈ Fix T with Jγ Ax∗ ∈ zer(A + B). Moreover,
when (a) holds, (Jγ Axn)n∈N and (JδBSxn)n∈N converge weakly to Jγ Ax∗ = JδBSx∗; when
(b) holds, (Jγ Axn)n∈N and (JδBSxn)n∈N converge strongly to Jγ Ax∗ = JδBSx∗ and
zer(A + B) = {Jγ Ax∗}.

Proof Apply Theorems 4.1 and 4.5 with C = 0 and note that the operator C is σ -cocoercive
with any σ > 0. �

Remark 5.4 In terms of the range of parameter γ , Theorems 5.1 and 5.2 only require
γ ∈ ]0, 4β[, improving the classical convergence results for the forward-backward and
backward-forward algorithms which require γ ∈ ]0, 2β[, see, e.g., [1, Corollaries 3.4 and
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3.6]. On the other hand, as TDR in (71) is actually the adaptive DR operator (see [11,
Lemma 4.1(ii)]), Theorem 5.3 unifies [11, Theorem 4.5], [4, Theorem 5.7], and [2, The-
orem 4.1].

6 Minimizing the sum of three functions
In this section, we consider the problem of minimizing the sum of three functions. Let
f : X → ] – ∞, +∞]. Then f is proper if dom f := {x ∈ X | f (x) < +∞} �= ∅, and lower semi-
continuous if ∀x ∈ X, f (x) ≤ lim infz→x f (z). Given α ∈ R, the function f is α-convex if
∀x, y ∈ dom f , ∀κ ∈ ]0, 1[,

f
(
(1 – κ)x + κy

)
+

α

2
κ(1 – κ)‖x – y‖2 ≤ (1 – κ)f (x) + κf (y). (72)

We simply say f is convex if α = 0. We also say that f is strongly convex or weakly convex,
if α > 0 or α < 0, respectively.

Next, let f : X → ] – ∞, +∞] be proper. The Fréchet subdifferential of f at x is defined
by

∂̂f (x) :=
{

u ∈ X
∣
∣∣ lim inf

z→x

f (z) – f (x) – 〈u, z – x〉
‖z – x‖ ≥ 0

}
. (73)

The proximity operator of f with parameter γ ∈ R++ is the mapping Proxγ f : X ⇒ X de-
fined by

∀x ∈ X, Proxγ f (x) := argmin
z∈X

(
f (z) +

1
2γ

‖z – x‖2
)

. (74)

We refer to [10] for a list of proximity operators of common convex functions. For an
α-convex function, the relationship between its Fréchet subdifferential and its proximity
operator is described in the following lemma.

Lemma 6.1 (proximity operators of α-convex functions) Let f : X → ] – ∞, +∞] be a
proper, lower semicontinuous and α-convex function. Let γ ∈ R++ be such that 1 + γα > 0.
Then

(i) ∂̂f is maximally α-monotone.
(ii) Proxγ f = Jγ ∂̂f is single-valued and has full domain.

Proof See [11, Lemma 5.2]. �

Now, we assume that f , g : X → ] – ∞, +∞] are proper lower semicontinuous, and re-
spectively α- and β-convex functions, and h : X → R is a differentiable convex function
with Lipschitz continuous gradient. We will solve the minimization problem

min
x∈X

f (x) + g(x) + h(x) (75)

by employing the operator

Tf ,g,h := Id – ηProxγ f + ηProxδg
(
(1 – λ)Id + λProxγ f – δ∇hProxγ f

)
(76)

with appropriately chosen parameters γ , δ,λ,η ∈R++.
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Theorem 6.2 (minimizing the sum of three functions) Let f , g : X → ] – ∞, +∞] be proper
lower semicontinuous functions, and let h : X → R be a differentiable convex function
whose gradient is Lipschitz continuous with constant 1/σ . Suppose that f and g are α-
convex and β-convex, respectively, and that either

(a) α + β = 0, 1 + 2γα > 0, δ = γ

1+2γ α
, η∗ := 2 + 2γα – γ

2σ
; or

(b) α + β > 0, η∗ := 4γ δ(1+γ α)(1+δβ)–(γ +δ)2

2γ δ2(α+β) – γ

2σ
> 0.

Set λ = 1 + δ
γ

and S := (1 – λ)Id + λProxγ f – δ∇hProxγ f . Let (xn)n∈N be a sequence generated
by Tf ,g,h in (76). Then the following hold:

(i) Tf ,g,h is conically η

η∗ -averaged and has full domain.
(ii) If zer(̂∂f + ∂̂g + ∇h) �= ∅ and η < η∗, then the rate of asymptotic regularity of Tf ,g,h is

o(1/
√

n) and (xn)n∈N converges weakly to a point x∗ ∈ Fix Tf ,g,h with

Proxγ f x∗ ∈ zer(̂∂f + ∂̂g + ∇h) ⊆ argmin(f + g + h), (77)

while (∇hProxγ f xn)n∈N converges strongly to ∇hProxγ f x∗ and
∇h(zer(̂∂f + ∂̂g + ∇h)) = {∇hProxγ f x∗}. Moreover, when (a) holds, (Proxγ f xn)n∈N
and (ProxδgSxn)n∈N converge weakly to Proxγ f x∗ = ProxδgSx∗; when (b) holds,
(Proxγ f xn)n∈N and (ProxδgSxn)n∈N converge strongly to Proxγ f x∗ = ProxδgSx∗ and
zer(̂∂f + ∂̂g + ∇h) = {Proxγ f x∗}.

Proof As in the proofs of Theorems 4.1 and 4.5, we have that 1 + γα > 0 and 1 + δβ > 0.
By Lemma 6.1, ∂̂f and ∂̂g are maximally α-monotone and β-monotone, respectively, and
Proxγ f = Jγ ∂̂f and Proxγ g = Jγ ∂̂g . By [6, Theorem 18.15(i)&(v)], ∇h is σ -cocoercive. In ad-
dition, from Proposition 2.1 and [11, Lemma 5.3], we obtain the relationship between the
fixed points of Tf ,g,h and the minimizers of (75)

Proxγ f (Fix Tf ,g,h) = zer(̂∂f + ∂̂g + ∇h) ⊆ argmin(f + g + h). (78)

The conclusion then follows by applying Theorems 4.1 and 4.5 to A = ∂̂f , B = ∂̂g , and
C = ∇h. �

Remark 6.3 (minimizing the sum of two functions) Analogous to Sect. 5, one can apply
Theorem 6.2 with f = 0, g = 0, or h = 0 to obtain corresponding algorithms for minimizing
the sum of two functions.
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