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Abstract
In this paper, we use a robust lower directional derivative and provide some sufficient
conditions to ensure the strong regularity of a given mapping at a certain point. Then,
we discuss the Hoffman estimation and achieve some results for the estimate of the
distance to the set of solutions to a system of linear equalities. The advantage of our
estimate is that it allows one to calculate the coefficient of the error bound.
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1 Introduction
Let f be a mapping acting between the normed spaces X and Y, whose norms are denoted
by the same symbol ‖ · ‖. To estimate the approximate solutions of the equation y = f (x),
we seek an error bound

dist
(
x, f –1(y)

) ≤ κ
∥
∥y – f (x)

∥
∥,

locally, for all (x, y) near (x̄, ȳ = f (x̄)), or globally, for all x and y, where κ is some positive
constant. The infimum of such κ is called the modulus of regularity of f . For instance,
when f : R → R is smooth and verifies f ′(x̄) �= 0, it is easily observed that the modulus of
regularity of f at x̄ is exactly |f ′(x̄)|–1. A first approach to the concept of regularity goes
back to a celebrated fundamental result proved in 1934 by Lyusternik [1]:

Theorem 1.1 (Lyusternik, [1]) Let f be a mapping from a Banach space X to a Banach
space Y. Suppose that f is Fréchet differentiable in a neighborhood of x̄ and that its deriva-
tive f ′(x) is continuous at x̄ and f ′(x̄) is surjective. Then, for every ε > 0, there exists r > 0
such that

dist
(
x, f –1(0)

) ≤ ε‖x – x̄‖,
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whenever

‖x – x̄‖ ≤ r and f ′(x̄)(x – x̄) = 0.

In other words, the tangent manifold to f –1(0) is equal to x̄ + Ker f ′(x̄), where Ker f ′(x̄) is the
set of those x such that f ′(x̄)(x) = 0.

We refer to Dontchev [2] for a nice overview on the Lyusternik theorem and to the fact
that the Lyusternik theorem can be easily obtained from the Graves theorem. We also refer
to the forthcoming book by Thibault [3].

Theorem 1.2 (Graves, [4]) Let X and Y be Banach spaces, x̄ ∈ X, and f : X → Y be a
C1-mapping whose derivative f ′(x̄) is onto. Then, there exist a neighborhood U of x̄ and a
constant c > 0 such that for every x ∈U and τ > 0 with B(x̄, τ ) ⊂U,

B(x̄, cτ ) ⊂ f
(
B(x̄, τ )

)
(partial openness property with linear rate).

Ioffe and Tihomirov showed in [5] that the original Lyusternik proof may lead to a
stronger result and proved that if f ′(x̄) is surjective, then there are κ > 0 and δ > 0 such
that

dist
(
x, f –1(ȳ)

) ≤ κ
∥
∥f (x) – f (x̄)

∥
∥ whenever ‖x – x̄‖ < δ. (1.1)

Ioffe’s remark leads to a standard definition:

Definition 1.1 Point x̄ ∈ X is said to be a regular point of a mapping f : X → Y if the
relation (1.1) is satisfied.

In this note, we will call x̄ a strongly regular point of f if the inequality

‖x – x̄‖ ≤ κ
∥
∥f (x) – f (x̄)

∥
∥, (1.2)

holds locally, for all x belonging to a neighborhood of x̄, where κ > 0 is a positive constant.
Next, we will provide sufficient conditions for x̄ to be a strongly regular point. Our results
allow us to estimate the constant κ in (1.2). Then, we apply our results to the Hoffman
estimate and obtain some results for the estimate of the distance to the set of solutions to a
system of linear equalities. The advantage of our estimate is that it allows one to calculate
the upper limit of the error. In particular, for a finite-dimensional space X and a linear
(continuous) mapping A : X→ X, we prove that the estimate

dist(x, Ker A) ≤ ‖A(x)‖
inf{‖A(u)‖ : u ∈X, dist(u, Ker A) = 1} ,

holds for all x ∈ X (Corollary 3.2 below). We can easily see that this estimate is sharp for
injective linear mappings, in the sense that, if A is an injective linear mapping and

inf
{∥∥A(u)

∥
∥ : u ∈X, dist(u, Ker A) = 1

}
< μ,

then there exists some x ∈ X such that ‖x‖ = dist(x, Ker A) > μ–1‖A(x)‖.



Abbasi and Théra Fixed Point Theory Algorithms Sci Eng         (2021) 2021:14 Page 3 of 13

Our work is outlined as follows. In Sect. 1, we recall the famous Lyusternik theorem
and survey briefly its relationship with the concept of metric regularity. In Sect. 2, we first
introduce the notion of homogeneous continuity of mappings. Then, using an appropriate
notion of lower directional derivative, we achieve some results ensuring in finite dimen-
sion that for a given mapping a point is strongly regular. Finally, in Sect. 3, we focus our
attention on Hoffman’s estimate of approximate solutions of finite systems of linear in-
equalities and prove some similar estimates.

2 Sufficient conditions of regularity via generalized derivative
Throughout the paper, we use standard notations. For a normed space X, we denote its
norm by ‖ · ‖ and by X

∗ its (continuous) dual. The symbol S stands for the unit sphere,
that is, the set of all points of X of norm one, while B(x, r) and B(x, r) denote, respectively,
the open and closed balls centered at x with radius r. Some other notations are introduced
as and when needed.

2.1 Homogeneous continuity
We begin with the following definition.

Definition 2.1 Let X and Y be normed spaces and E ⊂ X. The mapping f : X → Y is
said to be homogeneously continuous at x̄ ∈ X on E if for every ε > 0 there exist δ > 0 and
0 < β ≤ 1 such that

‖x – y‖ < δ 
⇒ ∥∥f (x̄ + tx) – f (x̄ + ty)
∥∥ < tε,

for all 0 < t ≤ β and all x, y ∈ E.

We are going to provide some sufficient conditions under which a mapping f is homo-
geneously continuous. Let us recall that a mapping f : X →Y is said to be locally Lipschitz
around x̄ ∈X if there exist a neighborhood O of x̄ and a real number λ > 0 such that

∥∥f (x) – f (y)
∥∥ ≤ λ‖x – y‖, (2.1)

for all x, y ∈ O.

Lemma 2.1 Suppose that X and Y are normed spaces. If f : X → Y is locally Lipschitz
around x̄ ∈X, then f is homogeneously continuous at x̄ on some closed ball B(0, r).

Proof By hypothesis, there exist a constant λ > 0 and a neighborhood O of x̄ in X such
that (2.1) holds for all x, y ∈O. Choose r > 0 such that B(x̄, r) ⊂O. It follows that

∥
∥f (x̄ + tx) – f (x̄ + ty)

∥
∥ ≤ λ

∥
∥x̄ + tx – (x̄ + ty)

∥
∥ = tλ‖x – y‖,

for all x, y ∈ B(0, r) and all 0 ≤ t ≤ 1. Now for each ε > 0 take 0 < δ < ελ–1. It follows that

‖x – y‖ < δ 
⇒ ∥
∥f (x̄ + tx) – f (x̄ + ty)

∥
∥ < tε,

for all x, y ∈ B(0, r) and all 0 < t ≤ 1. This completes the proof. �
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Proposition 2.1 LetX andY be normed spaces, f : X →Y be a mapping,E be a subset ofX
equipped with the topology induced by the norm and x̄ ∈ X. If the bifunction fE : E×(0, 1] →
Y, defined by

fE(x, t) :=
f (x̄ + tx) – f (x̄)

t
,

is uniformly continuous (E× (0, 1] equipped with the product topology with the usual linear
operations of vector addition and scalar multiplication), then f is homogeneously continu-
ous at x̄ on E.

Proof Let ε > 0. By hypothesis, there exist δ,β > 0 such that for all x, y ∈ E with ‖x – y‖ < δ

and all s, h ∈ (0, 1] with |s – h| < β we have ‖fE(x, s) – fE(y, h)‖ < ε. It follows that

∥∥∥
∥

f (x̄ + tx) – f (x̄)
t

–
f (x̄ + ty) – f (x̄)

t

∥∥∥
∥ < ε,

for all x, y ∈ E with ‖x – y‖ < δ and all 0 < t ≤ 1. Thus

∥∥f (x̄ + tx) – f (x̄ + ty)
∥∥ < tε,

for all x, y ∈ E with ‖x – y‖ < δ and all 0 < t ≤ 1. This completes the proof. �

2.2 Generalized derivatives
We recall the definitions of the Hadamard and Gateaux derivatives: The Hadamard direc-
tional derivative f ′

H (x̄)(ν) of f at x̄ in direction ν is defined as

f ′
H (x̄)(ν) := lim

t↓0,μ→ν

f (x̄ + tμ) – f (x̄)
t

= lim
n→+∞

f (x̄ + tnνn) – f (x̄)
tn

,

where (νn) and (tn) are any sequences such that νn → ν and tn → 0+.
The Gateaux directional derivative f ′

G(x̄)(ν) of f at x̄ in direction ν is defined by

f ′
G(x̄)(ν) := lim

t↓0

f (x̄ + tν) – f (x̄)
t

.

The following facts are well known:
• Hadamard differentiability is a stronger notion than Gateaux differentiability, see, e.g.,

[6]; when f is Hadamard differentiable at x̄, it is Gateaux (directional) differentiable at
x̄ and, moreover, f ′

G(x̄) is continuous;
• For locally Lipschitz mappings in normed spaces, Hadamard and Gateaux directional

derivatives coincide.
The following corollary uses Hadamard differentiability and provides another sufficient

condition for a mapping f to be homogeneously continuous.

Corollary 2.1 Let X and Y be normed spaces, f : X → Y be a continuous mapping, E
be a compact subset of X (equipped with the topology induced by the norm) and x̄ ∈ X.
If the Hadamard directional derivative of f at x̄ in every direction ν ∈ E exists, then f is
homogeneously continuous at x̄ on E.
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Proof Define the bifunction f̄E : E× [0, 1] →Y as

f̄E(ν, t) :=

⎧
⎨

⎩

f (x̄+tν)–f (x̄)
t if 0 < t ≤ 1,

f ′
H (x̄)(ν) if t = 0.

Since f is continuous and the Hadamard directional derivative of f at x̄ in every direction
ν ∈ E exists, the bifunction f̄E is continuous. Since E × [0, 1] is compact, f̄E is uniformly
continuous. It follows that the bifunction fE : E× (0, 1] →Y, defined by

fE(x, t) :=
f (x̄ + tx) – f (x̄)

t
,

is uniformly continuous. Now apply Proposition 2.1. �

The following proposition illustrates our main motivation for introducing the homoge-
neously continuous mappings.

Proposition 2.2 Let X and Y be normed vector spaces, f : X → Y be a mapping, E be a
subset of X and x̄ ∈ X. If f is homogeneously continuous at x̄ on E, then there exist δ > 0
and β > 0 such that

∥∥
∥∥

f (x̄ + tx) – f (x̄)
t

–
f (x̄ + ty) – f (x̄)

t

∥∥
∥∥ < ε,

for all x, y ∈ E with ‖x – y‖ < δ and all 0 < t ≤ β .

Proof The proof is obvious; we therefore omit it. �

For a mapping f : X → Y, we consider the following notions of lower directional deriva-
tives which are crucial to our approach:

f ′
l (x̄)(ν) := lim inf

t↓0

‖f (x̄ + tν) – f (x̄)‖
t

,

f ′
0(x̄)(ν) := lim inf

t↓0,μ→ν

‖f (x̄ + tμ) – f (x̄)‖
t

.

Note that we have

0 ≤ f ′
0(x̄)(ν) ≤ f ′

l (x̄)(ν), (2.2)

for every ν ∈X. We shall observe that if infν∈S f ′
l (x̄)(ν) > 0 and f is homogeneously contin-

uous at x̄ on S, then f satisfies the property (1.2) above.

2.3 Main results
Throughout the remaining part of the discussion, unless specified otherwise, we assume
that X is a finite-dimensional space and Y is an arbitrary normed space. We now are com-
pletely ready to state the main theorem of the paper. For a positive scalar α ∈R, let

Sα :=
{

x ∈X : ‖x‖ = α
}

= αS.
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Theorem 2.1 Let f : X →Y be homogeneously continuous at x̄ ∈ X on Sα for some positive
scalar α. If there exists some κ > 0 such that infν∈Sα f ′

l (x̄)(ν) > κ , then there exists δ > 0 such
that

‖x – x̄‖ ≤ α

κ

∥∥f (x) – f (x̄)
∥∥,

for all x ∈ B(x̄, δ). In other words, x̄ is a strongly regular point of f .

Proof Let κ < γ < infν∈Sα f ′
l (x̄)(ν) and ε := γ –κ . Hence, for all ν ∈ Sα there exists 0 < rν ≤ 1

such that

inf
0<h≤rν

‖f (x̄ + hν) – f (x̄)‖
h

> γ . (2.3)

Since f is homogeneously continuous at x̄ on Sα , there exist θ > 0 and β > 0 such that

‖ν – μ‖ < θ 
⇒
∥
∥∥
∥

f (x̄ + tν) – f (x̄)
t

–
f (x̄ + tμ) – f (x̄)

t

∥
∥∥
∥ < ε, (2.4)

for all ν,μ ∈ Sα and all 0 < t ≤ β , by Proposition 2.2. Let r̂ν := min{θ ,β , rν} for all ν ∈ Sα .
Clearly, Sα ⊂ ⋃

ν∈Sα
B(ν, r̂ν). The compactness of Sα implies that there exist ν1,ν2, . . . ,νm ∈

Sα such that Sα ⊂ ⋃m
k=1 B(νk , r̂νk ). Now let x ∈ B(x̄,αδ̂) \ {x̄} and ν := α

‖x–x̄‖ (x – x̄), where
δ̂ := min{r̂νk : 1 ≤ k ≤ m}. Then, ν ∈ Sα and therefore ν ∈ B(νs, r̂νs ) for some 1 ≤ s ≤ m. It
follows that ‖ν – νs‖ < θ and α–1‖x – x̄‖ < β . By (2.4), we deduce that

∥∥
∥∥

f (x̄ + α–1‖x – x̄‖νs) – f (x̄)
α–1‖x – x̄‖ –

f (x̄ + α–1‖x – x̄‖ν) – f (x̄)
α–1‖x – x̄‖

∥∥
∥∥ < ε.

Hence

‖f (x) – f (x̄)‖
α–1‖x – x̄‖ =

‖f (x̄ + α–1‖x – x̄‖ν) – f (x̄)‖
α–1‖x – x̄‖ >

‖f (x̄ + α–1‖x – x̄‖νs) – f (x̄)‖
α–1‖x – x̄‖ – ε

> γ – ε = κ by (2.3),

since α–1‖x – x̄‖ < rνs . It follows that

‖x – x̄‖ ≤ α

κ

∥
∥f (x) – f (x̄)

∥
∥,

for all x ∈ B(x̄,αδ̂). Letting δ := αδ̂ completes the proof. �

Corollary 2.2 Let f : X → Y be homogeneously continuous at x̄ ∈ X on S. If there exists
some κ > 0 such that infν∈S f ′

0(x̄)(ν) > κ , then there exists δ > 0 such that

‖x – x̄‖ ≤ 1
κ

∥∥f (x) – f (x̄)
∥∥, (2.5)

for all x ∈ B(x̄, δ).

Proof Apply Theorem 2.1 and (2.2). �
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Corollary 2.3 Suppose that f : X → Y is locally Lipschitz around x̄ ∈ X. If there exists
some κ > 0 such that infν∈S f ′

l (x̄)(ν) > κ , then there exists δ > 0 such that (2.5) holds for all
x ∈ B(x̄, δ).

Proof By Lemma 2.1, f is homogeneously continuous at x̄ on some closed ball B(0, r). It
follows that f is homogeneously continuous at x̄ on Sr (since Sr ⊂ B(0, r)). The condition
infν∈S f ′

l (x̄)(ν) > κ implies that infν∈Sr f ′
l (x̄)(ν) > rκ . Now apply Theorem 2.1. �

Corollary 2.4 Let f : X → Y be a continuous mapping and x̄ ∈ X. Assume that the
Hadamard directional derivative of f at x̄ in every direction ν ∈ S exists. If there exists
some κ > 0 such that infν∈S ‖f ′

H (x̄)(ν)‖ > κ , then there exists δ > 0 such that (2.5) holds for
all x ∈ B(x̄, δ).

Proof By hypothesis, f ′
H (x̄)(ν) exists for every ν ∈ S. By continuity of f and ‖ · ‖, it follows

that

∥∥f ′
H (x̄)(ν)

∥∥ =
∥∥f ′

G(x̄)(ν)
∥∥ = lim

t↓0

‖f (x̄ + tν) – f (x̄)‖
t

= f ′
l (x̄)(ν),

for every ν ∈ S. It follows that infν∈S f ′
l (x̄)(ν) > κ . Since X is finite dimensional, S is com-

pact. Hence, f is homogeneously continuous at x̄ ∈ X on S, by Corollary 2.1. Now apply
Theorem 2.1. �

The following example has been considered in [7] (Example 2.1). We shall prove that the
origin is a regular point of the involved mapping f once again by Theorem 2.1.

Example 2.1 Consider the mapping f : R→ R defined as

f (x) :=

⎧
⎨

⎩
|x|( 2

π
– x sin( 1

x )), x �= 0;

0, x = 0.

We have S = {±1} and therefore f is homogeneously continuous at 0 on S. One may easily
verify that

f ′
l (0)(±1) = lim inf

t↓0

| ± t( 2
π

– (±t) sin( 1
±t ))|

t
=

2
π

.

It follows that infs∈S f ′
l (0)(s) = 2

π
> 0. Hence, if 0 < κ < 2

π
, then there exists δ > 0 such that

|x – 0| = |x| ≤ 1
κ

∣
∣f (x) – f (0)

∣
∣ =

1
κ

∣
∣f (x)

∣
∣,

for all |x| < δ, by Theorem 2.1. Hence, 0 is a strongly regular point of f . Since f is contin-
uous, thus the subset f –1(0) is closed and therefore the distance function dist(·, f –1(0)) is
Lipschitz around 0 (see [8, p. 11]). Hence, 0 is a regular point of f .
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3 Hoffman’s estimate for the distance to the set of solutions to a system of
linear inequalities

Theorem 3.1 (Hoffman, 1952, [9, 10]) Let x∗
i , i = 1, 2, . . . , k be a finite family of linear forms

on X
∗. Set

C≤ :=
{

x ∈ X such that
〈
x∗

i , x
〉 ≤ 0, i = 1, 2, . . . , k

}
. (3.1)

Then, there exists κ > 0 such that

dist(x,C≤) ≤ κ
[
�(x)

]
+, (3.2)

where �(x) := max{〈x∗
i , x〉, i = 1, 2, . . . , k} and [�(x)]+ := max(�(x), 0).

Hoffman’s result is considered as the starting point of the theory of error bounds, theory
that has been extended over the years to different contexts. We refer to [3, 11–13] and the
references therein for the discussion of the fundamental role played by Hoffman bounds
and more generally by error bounds in mathematical programming. As described, for ex-
ample, in [14], they are used, for instance, in convergence properties of algorithms, in sen-
sitivity analysis, in designing solution methods for nonconvex quadratic problems. When
C := {x ∈X : A(x) = 0, 〈x∗

i , x〉 ≤ 0, i = 1, 2, . . . , k} where x∗
i ∈ X∗, i = 1, 2, . . . , k, are some given

functionals and A : X→ Y is a linear (continuous) mapping, we have the following result.

Theorem 3.2 (Ioffe, 1979, [15]) There exists some κ > 0 such that

dist(x,C) ≤ κ

(
∥
∥A(x)

∥
∥ +

k∑

i=1

[〈
x∗

i , x
〉]

+

)

, (3.3)

for all x ∈ X.

Now let G := Ker A ∩ (
⋂k

i=1 Ker x∗
i ). Then, Theorem 3.2 yields the following result.

Corollary 3.1 There exists some κ ′ > 0 such that

dist(x,G) ≤ κ ′
(

∥
∥A(x)

∥
∥ +

k∑

i=1

∣
∣〈x∗

i , x
〉∣∣
)

, (3.4)

for all x ∈ X.

In this section, we apply Theorem 2.1 and establish similar estimates. We prove that
there exists κ̄ > 0 such that

dist(x,G) ≤ κ̄

(
∥∥L(x)

∥∥ +
k∑

i=1

[〈
x∗

i , x
〉]

+

)

,

for all x ∈ X, where L : X → X is a linear mapping with Ker L = G. Our results also allow
us to evaluate the constant κ̄ . The details are as follows.



Abbasi and Théra Fixed Point Theory Algorithms Sci Eng         (2021) 2021:14 Page 9 of 13

Proposition 3.1 Let A : X → Y be a linear mapping and x∗
i ∈ X

∗, i = 1, 2, . . . , k be given.
Suppose that L : X →X is a linear mapping such that Ker L = G. Then

dist(x,G) ≤ 1
γ

(
∥∥L(x)

∥∥ +
k∑

i=1

[〈
x∗

i , x
〉]

+

)

, (3.5)

where γ is a positive real number given by

γ := inf

{
∥
∥L(ν)

∥
∥ +

n∑

i=1

[〈
x∗

i ,ν
〉]

+ : ν ∈ X, dist(ν,G) = 1

}

. (3.6)

Proof Let us consider the finite-dimensional quotient spaceM := X
G

, and denote by [x] the
equivalence class containing x in M, that is, [x] := x +G. We note ‖[x]‖ := inf{‖x + y‖ : y ∈
G}. Denote by SM the unit sphere of M (i.e., the elements of M of norm one). Obviously,

SM =
{

x ∈X : inf
{‖x + y‖ : y ∈G

}
= 1

}
=

{
x ∈ X : dist(x,G} = 1

}
. (3.7)

Consider the continuous linear mapping L : M → X defined as L([x]) := L(x) for all [x] ∈
M. Also for each 1 ≤ i ≤ k define 〈[xi]∗, [x]〉 := 〈x∗

i , x〉 for all [x] ∈M. Obviously, each [xi]∗

belongs to G
⊥ (the orthogonal complement of G), and hence belongs to the dual of M

(which is isometrically isomorphic to G
⊥ [16]). Set

C :=
{

[x] ∈M : L
(
[x]

)
= 0,

〈
[xi]∗, [x]

〉 ≤ 0, i = 1, 2, . . . , k
}

.

We have Ker L = Ker L = G and therefore C = {[0]}. Now define the mapping f : M → R

as

f
(
[x]

)
:=

∥
∥L

(
[x]

)∥∥ +
k∑

i=1

[〈
[xi]∗, [x]

〉]
+.

We show that the conditions of Theorem 2.1 for f at [x̄] = [0] are all satisfied. For all [ν] ∈
SM, one has

lim
t↓0,μ→ν

f ([tμ]) – f ([0])
t

=
∥
∥L

(
[ν]

)∥∥ +
k∑

i=1

[〈
[xi]∗, [ν]

〉]
+.

Hence, f is homogeneously continuous at [0] on SM, by Corollary 2.1. We also have

f ′
l
(
[0]

)(
[ν]

)
=

∥∥L
(
[ν]

)∥∥ +
k∑

i=1

[〈
[xi]∗, [ν]

〉]
+ =

∥∥L(ν)
∥∥ +

n∑

i=1

[〈
x∗

i ,ν
〉]

+.

The continuity of f implies that the mapping f |SM (the restriction of f to SM) attains its
minimum at some [ν0] ∈ SM. Then, [ν0] /∈ C (note that C = {[0]}) and therefore

∥
∥L

(
[ν0]

)∥∥ +
k∑

i=1

[〈
[xi]∗, [ν0]

〉]
+ > 0.
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It follows that inf[ν]∈SM f ′
l ([0])([ν]) > 0. Using (3.7), we obtain

inf
[ν]∈SM

f ′
l
(
[0]

)(
[ν]

)
= inf

{
∥∥L(ν)

∥∥ +
n∑

i=1

[〈
x∗

i ,ν
〉]

+ : ν ∈X, dist(ν,G) = 1

}

= γ .

Thus γ > 0. Now let 0 < κ < γ . Theorem 2.1 implies that there exists some δ > 0 such that

∥
∥[x] – [0]

∥
∥ =

∥
∥[x]

∥
∥ ≤ 1

κ

(
∥
∥L

(
[x]

)∥∥ +
k∑

i=1

[〈
[xi]∗, [x]

〉]
+

)

,

for all [x] ∈ BM([0], δ). Since f is sublinear,

∥∥[x]
∥∥ ≤ 1

κ

(
∥∥L

(
[x]

)∥∥ +
k∑

i=1

[〈
[xi]∗, [x]

〉]
+

)

,

for all [x] ∈M. It follows that

dist(x,G) ≤ 1
κ

(
∥
∥L(x)

∥
∥ +

k∑

i=1

[〈
x∗

i , x
〉]

+

)

. (3.8)

For all x ∈X. Letting κ → γ in (3.8), we obtain the desired result. �

Remark 3.1 The existence of the linear mapping L : X→ X discussed in Proposition 3.1 is
straightforward. Indeed, G is a closed subspace of X and X is separable, thus there exists
a (continuous) linear mapping L : X → X with Ker L = G (see [17]). Of course, one can
easily define L directly (without using [17]). To see this, suppose that dimX = n and let
{e1, . . . , ej} be a linearly independent basis for the vector space G. By linear algebra, we can
extend {e1, . . . , ej} to get a linearly independent basis for X (since G is a subspace of X).
Let us denote this basis by {e1, . . . , ej, ej+1, . . . , en}. Now for every x := x1e1 + · · · + xnen ∈ X,
define the mapping L : X →X as

L(x) := (0, 0, . . . , 0︸ ︷︷ ︸
j

, xj+1, . . . , xn︸ ︷︷ ︸
n–j

).

One can easily check that L is well-defined, linear, and Ker L = G.

Corollary 3.2 Let A : X →X be a linear mapping. Then

dist(x, Ker A) ≤ ‖A(x)‖
inf{‖A(ν)‖ : ν ∈X, dist(ν, Ker A) = 1} ,

for all x ∈ X.

Proof Let X = Y, and x∗
i ≡ 0 for all 1 ≤ i ≤ k. Then, G = Ker A. Letting L := A in Proposi-

tion 3.1 yields the result. �
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Corollary 3.3 Let A : X → Y and L : X → X be linear mappings with Ker L = G and x∗
i ∈

X
∗, i = 1, 2, . . . , k, be some given functionals. Then

dist(x,G) ≤ ‖L(x)‖
inf{‖L(ν)‖ +

∑n
i=1[〈x∗

i ,ν〉]+ : ν ∈X, dist(ν,G) = 1} , (3.9)

for every x ∈C≤ (see (3.1) above).

Proof Proposition 3.1 implies that

dist(x,G) ≤ 1
γ

(
∥∥L(x)

∥∥ +
k∑

i=1

[〈
x∗

i , x
〉]

+

)

,

where

γ := inf

{
∥∥L(ν)

∥∥ +
n∑

i=1

[〈
x∗

i ,ν
〉]

+ : ν ∈ X, dist(ν,G) = 1

}

.

Now let x ∈C≤. Thus 〈x∗
i , x〉 ≤ 0 for every 1 ≤ i ≤ k. Hence [〈x∗

i , x〉]+ = 0 for every 1 ≤ i ≤
k. Then, the above inequality yields

dist(x,G) ≤ ‖L(x)‖
inf{‖L(ν)‖ +

∑n
i=1[〈x∗

i ,ν〉]+ : ν ∈X, dist(ν,G) = 1} ,

for every x ∈C≤. This completes the proof. �

Finally, let us make a comparison between the two estimations (3.5) in Proposition 3.1
and (3.4) in Corollary 3.1 described above. First, note that an application of Corollary 3.1
(or a direct application of Theorem 3.2) with L (described in Proposition 3.1) in place of
A and no inequalities immediately produces the following estimate:

dist(x,G) ≤ κ0
∥∥L(x)

∥∥, (3.10)

for all x ∈ X, where κ0 is a constant. On the other hand, doing the same replacements in
Proposition 3.1 (i.e., applying Proposition 3.1 with L in place of A and L in place of itself
without the inequalities) yields

dist(x,G) ≤ 1
γ0

∥
∥L(x)

∥
∥, (3.11)

where

γ0 := inf
{∥∥L(ν)

∥∥ : ν ∈ X, dist(ν,G) = 1
}

> 0.

The question is: which of the above estimates (3.10) and (3.11) is better? To answer this
question, we need to know the relationship between the coefficients κ0 and γ0 stated above.
As long as the value of the constant κ0 in (3.10) is not known, we can’t say which of the
estimates (3.10) and (3.11) produces a better result. We can just say that the estimate (3.11)
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technically is better, since it also allows us to estimate the unknown constant κ0 in (3.10).
Indeed, κ0 ≤ 1

γ0
.

Another question which may arise is: with the simple estimate (3.11) in hand, what is the
necessity of using the estimate (3.5) in Proposition 3.1 (regarding the inequalities)? To an-
swer this question, let’s take a closer look at the estimate (3.5). Indeed, by Proposition 3.1,
we have

dist(x,G) ≤ 1
γ

(
∥
∥L(x)

∥
∥ +

k∑

i=1

[〈
x∗

i , x
〉]

+

)

, (3.12)

where

γ := inf

{
∥
∥L(ν)

∥
∥ +

n∑

i=1

[〈
x∗

i ,ν
〉]

+ : ν ∈ X, dist(ν,G) = 1

}

> 0.

We observe that, on the one hand, ‖L(x)‖ ≤ ‖L(x)‖+
∑k

i=1[〈x∗
i , x〉]+ and, on the other hand,

1
γ

≤ 1
γ0

. As a result, we cannot generally compare the right-hand sides of the estimates
(3.11) and (3.12) to determine which is better. Corollary 3.3 says that when x ∈ C≤, it
would be better to use (3.12).
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