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1 Introduction

Convex stochastic optimization problems in which the objective function is the expec-
tation of convex functions are considered important due to their occurrence in practical
applications, such as machine learning and deep learning.

The classical method for solving these problems is the stochastic approximation (SA)
method [1, (5.4.1)], [2, Algorithm 8.1], [3], which is applicable when unbiased estimates of
(sub)gradients of an objective function are available. Modified versions of the SA method,
such as the mirror descent SA method [4, Sects. 3 and 4], [5, Sect. 2.3] and the accel-
erated SA method [6, Sect. 3.1], have been reported as useful methods for solving these
problems. Meanwhile, some stochastic optimization algorithms have been proposed with
the rapid development of deep learning. For example, AdaGrad [7, Figs. 1 and 2] is an
algorithm based on the mirror descent SA method, and Adam [8, Algorithm 1], [2, Algo-
rithm 8.7] and AMSGrad [9, Algorithm 2] are well known as powerful tools for solving
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convex stochastic optimization problems in deep neural networks. These algorithms use
the inverses of diagonal positive-definite matrices at each iteration to adapt the learning
rates of all model parameters. Hence, these algorithms are called adaptive learning rate
optimization algorithms.

The above-mentioned methods commonly assume that metric projection onto a given
constraint set is computationally possible. However, although the metric projection onto
a simple convex set, such an affine subspace, half-space, or hyperslab, can be easily com-
puted, the projection onto a complicated set, such as the intersections of simple convex
sets, the set of minimizers of a convex function, or the solution set of a monotone varia-
tional inequality, cannot be easily computed. Accordingly, it is difficult to apply the above-
mentioned methods to stochastic optimization problems with complicated constraints.

In order to solve a stochastic optimization problem over a complicated constraint set,
we define a computable quasinonexpansive mapping whose fixed point set coincides with
the constraint set, which is possible for the above-mentioned complicated convex sets
(see Sect. 3.1 and Example 4.1 for examples of computable quasinonexpansive mappings).
Accordingly, the present paper deals with a convex stochastic optimization problem over
the fixed point set of a computable quasinonexpansive mapping.

Since useful fixed point algorithms have already been reported [10, Chap. 5], [11,
Chaps. 2-9], [12-16], we can find fixed points of quasinonexpansive mappings, which
are feasible points of the convex stochastic optimization problem. By combining the SA
method with an existing fixed point algorithm, we could obtain algorithms [17, Algorithms
1 and 2] for solving convex stochastic optimization problems that can be applied to clas-
sifier ensemble problems [18, 19] (Example 4.1(ii)), which arise in the field of machine
learning. However, the existing algorithms converge slowly [17] due to being stochastic
first-order methods. In this paper, we propose an algorithm (Algorithm 1) for solving a
convex stochastic optimization problem (Problem 3.1) that performs better than the al-
gorithms in [17, Algorithms 1 and 2]. The algorithm proposed herein is based on useful
adaptive learning rate optimization algorithms, such as Adam and AMSGrad, that use cer-
tain diagonal positive-definite matrices.! The first contribution of the present study is an
analysis of the convergence of the proposed algorithm (Theorem 5.1). This analysis finds
that, if sufficiently small constant step-sizes are used, then the proposed algorithm approx-
imates a solution to the problem (Theorem 5.2). Moreover, for sequences of diminishing
step-sizes, the convergence rates of the proposed algorithm can be specified (Theorem 5.3
and Corollary 5.1).

We compare the proposed algorithm with the existing adaptive learning rate optimiza-
tion algorithms for a constrained convex stochastic optimization problem in deep learn-
ing (Example 4.1(i)). Although the existing adaptive learning rate optimization algorithms
achieve low regret, they cannot solve the problem. The second contribution of the present
study is to show that, unlike the existing adaptive learning rate optimization algorithms,
the proposed algorithm can solve the problem (Corollaries 5.2 and 5.3) (see Sect. 5.2 for
details). The third contribution is that we show that the proposed algorithm can solve
classifier ensemble problems and that the learning methods based on the proposed algo-
rithm perform better numerically than the existing learning method based on the existing
algorithms in [17]. In particular, the numerical results indicate that the learning methods

ISee (6) and (9) for the definitions of Adam and AMSGrad.
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based on the proposed algorithm with constant step-sizes or step-sizes computed by the
Armijo line search algorithm can solve classifier ensemble problems faster than the exist-
ing learning method based on the algorithms in [17]. As a result, the proposed learning

methods achieve high accuracies faster than the existing learning method.

2 Mathematical preliminaries

2.1 Definitions and propositions

Let N be the set of all positive integers. Let RN be an N-dimensional Euclidean space with
the inner product (-, -) with the associated norm || - ||, and let RN := {(x;)N, e RN: x; > 0 (i =
1,2,...,N)}. Let X7 denote the transpose of matrix X, let I denote the identity matrix,
and let Id denote the identity mapping on RY. Let SN be the set of N x N symmetric
matrices, i.e., SV = {X € RN*N: X = XT}. Let SV, denote the set of symmetric positive-
definite matrices, i.e., S¥, = {X € SN: X = O}. Given H € SV, the H-inner product of RN
and the H-norm can be defined for all x,y € RN by (x,y) := (x, Hy) and [x[% := (x, Hx).
Let diag(x;) bean N x N diagonal matrix with diagonal componentsx; e R (i = 1,2,...,N),
and let DV be the set of N x N diagonal matrices, i.e., DV = {X € RN X = diag(x,),x; €
R(E=1,2,...,N)}.

Let E[X] denote the expectation of random variable X. The history of the process
&,&1,... up to time # is denoted by &p,) = (§0,&1,...,&4). Let E[X|&[,j] denote the condi-
tional expectation of X given by &, = (&,&1,...,&,). Unless stated otherwise, all relations
between random variables are supported to hold almost surely.

The subdifferential 10, Definition 16.1], [20, Sect. 23] of a convex function f: RN — R
is defined for all x € RN by

f(x):={ueRY: f() = f(¥) + (y —x,u) (y e RV) .
A point u € df (x) is called the subgradient of f at x € RN,

Proposition 2.1 ([21, Theorem 4.1.3], [10, Propositions 16.14(ii), (iii)]) Letf: RN — R be
convex. Then f is continuous and 3f (x) # @ for every x € RN. Moreover, for every x € RN,
there exists § > 0 such that 3f (B(x; 8)) is bounded, where B(x; §) is the closed ball with center
x and radius §.

When a mapping Q: RN — R¥ is considered under the H-norm | - ||z, we denote it as
Qu: RN — RN, We define Q := Q;. A mapping Q: RN — R¥ is said to be quasinonexpan-
sive [10, Definition 4.1(iii)] if

Q@) —y| < llx -yl

for allx € RN and all y € Fix(Q), where Fix(Q) is the fixed point set of Q defined by Fix(Q) :=
{x € RN: x = Q(x)}. When a quasinonexpansive mapping has one fixed point, its fixed
point set is closed and convex [22, Proposition 2.6]. Q is called a firmly quasinonexpansive
mapping [23, Sect. 3] if |Q(x) — || + [|(Id — Q)(x)||® < |lx — ¥||* for all x € RN and all y €
Fix(Q). Q is firmly quasinonexpansive if and only if R := 2Q - Id is quasinonexpansive
[10, Proposition 4.2]. This means that (1/2)(Id + R) is firmly quasinonexpansive when R
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N

N, we define the subgradient projection® relative to a

is quasinonexpansive. Given H € S
convex function f: RN — R by

0 x— %H*G(x) if f(x) > 0, "
f H\X) =
x otherwise,

where G(x) is any point in 9f(x) (x € RN) and lev<qf := {x € RN: f(x) < 0} # . The follow-
ing proposition holds.

Proposition 2.2 Let H € SY, and letf: RN — R be convex. Then Qpp: RN — R defined
by (1) satisfies the following:

() Qr:=Qy is firmly quasinonexpansive and Fix(Qy) = lev<f;

(i) Qrnu is firmly quasinonexpansive under the H-norm with Fix(Qy,y) = Fix(Qy).

Proof (i) This follows from Proposition 2.3 in [22].

(i) We first show that lev<of = Fix(Qy ). From (1), we have that lev.of C Fix(Qy,x). Let
x € Fix(Qr,1) and assume that x ¢ lev<of. Then the definition of the H-inner product and
G(x) € 9f (x) mean that, for all y € lev<f,

(y-xH'GW), =y -%GW)) <f(y) - f(x) < —f(x) <0, 2)
which implies that H~!G(x) # 0. From (1) and x € Fix(Qy,), we also have that

fx)

1 o _
mh’ G(x) =x - Qrulx) =0,

which, together with f(x) > 0, gives H~1G(x) = 0, which is a contradiction. Hence, we have
that levoof D Fix(Qyx), i.e., lev<of = Fix(Qfn). Accordingly, (i) ensures that Fix(Qyy) =
lev_of = Fix(Qy). For all x € RN \lev_f and all y € lev_f,

| Q) -],

fx)?
IH1G)1Z

2f (%)

==yl +
TN HAGW)I1Z,

(y - x,H‘lG(x))H +
which, together with (2), implies that Qyy is firmly quasinonexpansive under the H-

norm. U

Q: RN — RY is said to be Lipschitz continuous (L-Lipschitz continuous) if there exists
L > 0 such that |Q(x) — Q(y)|| < L|lx—y| forallx,y € RN. Q: RN — R¥ is said to be nonex-
pansive [10, Definition 4.1(ii)] if Q is 1-Lipschitz continuous, i.e., [|Q(x) — Q)| < |lx - y||
for all x,y € RN. Any nonexpansive mapping satisfies the quasinonexpansivity condition.
The metric projection [10, Subchapter 4.2, Chap. 28] onto a nonempty, closed convex
set C (C RYN), denoted by Pc, is defined for all x € RN by Pc(x) € C and ||x — Pc(x)| =
d(x, C) := infyec |lx — y||. Pc is firmly nonexpansive, i.e., || Pc(x) — Pc(y)|1? + 1(Id = Pc)(x) —

2See [23, Lemma 3.1], [22, Proposition 2.3], [24, Subchapter 4.3] for the definition and properties of the subgradient pro-
jection when H=1.
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(Id = Po)@)||? < |lx — y||? for all x,y € RN, with Fix(Pc) = C [10, Proposition 4.8, (4.8)].
The metric projection onto C under the H-norm is denoted by Pc . When C is an affine
subspace, half-space, or hyperslab, the projection onto C can be computed within a finite

number of arithmetic operations [10, Chap. 28].

3 Convex stochastic optimization problem over fixed point set

This paper considers the following problem.

Problem 3.1 Assume that

(A0) (H,)uen is the sequence in S¥, N DN;

(A1) Qu,: RN — R¥ is quasinonexpansive under the H,-norm and X := (), Fix(Qu,)
(C C) is nonempty, where C C R is a nonempty, closed convex set onto which
the projection can be easily computed;

(A2) f: RN — R defined for all x € RN by f(x) := E[F(x,£)] is well defined and convex,
where & is a random vector whose probability distribution P is supported on a set
ECRMandF: RN x E— R.

Then

find x* € X* := {x eX:f(x ) =f ::;g)f(f(x)},
where one assumes that X* is nonempty.

Examples of Qu, satisfying (A0) and (A1) are described in Sect. 3.1 and Example 4.1.
The following are sufficient conditions [5, (A1), (A2), (2.5)] for being able to solve Prob-
lem 3.1.

(C1) There is an independent and identically distributed sample &, &, ... of realizations
of the random vector &;

(C2) There is an oracle which, for a given input point (x,£) € RN x E, returns a
stochastic subgradient G(x, £) such that g(x) := E[G(x, £)] is well defined and is a
subgradient of f at x, i.e., g(x) € 9f (x);

(C3) There exists a positive number M such that, for all x € C, E[||G(x, £)||?] < M2.

Suppose that F(-,&) (§ € E) is convex and consider the oracle which returns a stochas-

tic subgradient G(x, &) € 3,F(x, &) for given (x,£) € RN x E. Then f(-) = E[F(-,&)] is well
defined and convex, and 9f (x) = E[9,F(x, )] [25, Theorem 7.51], [5, p.1575].

3.1 Related problems and their algorithms
Here, let us consider the following convex stochastic optimization problem [5, (1.1)]:

minimize f(x) = ]E[F(x, é)] subjecttox € C, 3)
where C c RN is nonempty, bounded, closed, and convex. The classical method for prob-

lem (3) under (C1)—(C3) is the stochastic approximation (SA) method [1, (5.4.1)], [2, Al-
gorithm 8.1], [3] defined as follows: given xy € RN and (A,),.en C (0, +00),

KXn+l = PC(xn - )‘-nG(xm En)) (Vl € N) (4‘)

Page 5 of 31
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The SA method requires the metric projection onto C, and hence can be applied only
to cases where C is simple in the sense that P¢ can be efficiently computed (e.g., C is a
closed ball, half-space, or hyperslab [10, Chap. 28]). When C is not simple, the SA method

requires solving the following subproblem at each iteration n:

Find x,,,1 € C such that {x,,1} = argmin” (x,, — )»,,G(x,,,é,,)) —yH.
yeC

The mirror descent SA method [4, Sects. 3 and 4], [5, Sect. 2.3] is useful for solving
problem (3) and has been analyzed for the case of step-sizes that are constant or dimin-
ishing. For example, the mirror descent SA method [5, (2.32), (2.38), and (2.47)] with a
constant step-size policy generates the following sequence (¥}),en: given xp € X° := {x €
RN: dw(x) # 0},

n+l

. . %
Xpt = argminf(y, G, £,), 2 = %) + Vixn2)}, &= ) (5)
zeC -1 Zi:l Vi

where w: C — R is differentiable and convex, V: X° x C — R, is defined for all (x,z) €
X° x C by V(x,2) := w(z) — [o(x) + (Vw(x),z — x)], and y; (t € N) is a constant step-size.
When (-) = (1/2)| - |2, %441 in (5) coincides with x,,.,; in (4). Under certain assumptions,
method (5) satisfies E[f(x]) — f*] = O(1/4/n) [5, (2.48)] (see [5, (2.57)] for the rate of con-
vergence of the mirror descent SA method with a diminishing step-size policy).

As the field of deep learning has developed, it has produced some useful stochastic op-
timization algorithms, such as AdaGrad [7, Figs. 1 and 2], [2, Algorithm 8.4], RMSProp
[2, Algorithm 8.5], and Adam [8, Algorithm 1], [2, Algorithm 8.7], for solving problem
(3). The AdaGrad algorithm is based on the mirror decent SA method (5) (see also [7,
(4)]), and the RMSProp algorithm is a variant of AdaGrad. The Adam algorithm is based
on a combination of RMSProp and the momentum method [26, (9)], as follows: given
Xy M1, Ve € RN,

mg = ﬂlmt—l + (1 - ,Bl)vxF(xt’st)r

V= Bavir + (1 — Bo) Vi F (%, &) © Vi F(x, &),

N ur N Vi
my:= ————~ V= ———

t+1’ t+1°’
- 1- 84 ©

, 1 N g \N
d; := —diag| ——— )i = - — )
Viit € Vit €/ =1

Xipl o= Pc[xt + )"tdt]! i.e., {xt+1} = argmln” (xt + )"tdt) -y
yeC

’

where 8; >0 (i =1,2), € >0, (Ay)uen C (0,1) is diminishing step-size, and A © B denotes
the Hadamard product of matrices A and B. If we define matrix H, as

Hq := diag(y/7,; + <), (7)

then the Adam algorithm (6) can be expressed as

, 1 . 14
Xn+l = PC |:xt - )\.tdlag<,\7)mti| = Pc[xt — )\.thlmt]. (8)
Vt,i + €
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Unfortunately, there exists an explicit example of a simple convex optimization setting
where Adam does not converge to the optimal solution [9, Theorem 2]. To guarantee con-
vergence and preserve the practical benefits of Adam, AMSGrad [9, Algorithm 2] was
proposed as follows: for (81,+)zen C (0, +00),

my = Prmg + (1= Bre) ViF (x4, &),
V= Bavir + (1= Bo) Vi F (%, &) © Vi F (x4, &),

Vg 1= (V) = (maX{f’t—l,z‘v Vt,i});
9
H, := diag(y/ V), ©

-1
dt = _Ht myg,

Xee1 = Pop, [+ Aedg], e, {xp) = argmin|| (% + A,dy) _y” He*
yeC

The existing SA methods (4), (5), (6), and (9) (see also [6, 27], [2, Sect. 8.5], and [5,
Sect. 2.3]) require minimizing a certain convex function over C at each iteration. There-
fore, when C has a complicated form (e.g., C is expressed as the set of all minimizers of a
convex function over a closed convex set, the solution set of a monotone variational in-
equality, or the intersection of closed convex sets), it is difficult to compute the point x,,,1
generated by any of (4), (5), (6), and (9) at each iteration.

Meanwhile, the fixed point theory [10, 28—30] enables us to define a computable quasi-
nonexpansive mapping of which the fixed point set is equal to the complicated set. For
example, let levof; (i = 1,2,...,1) be the level set of a convex function f;: RN — R, and let

X be the intersection of levqf;, i.e.,

1 I
X:=(Vlevaofi=[ |{x € RV: filx) <0} #0. (10)

i=1 i=1

Let n € N be fixed arbitrarily, and let H, € S, (see (A0)). Let Qn,: RN — RN (i =
1,2,...,1) be the subgradient projection defined by (1) with f := f; and H := H,,. Accord-
ingly, Proposition 2.2 implies that Qy, 4, is firmly quasinonexpansive under the H,-norm
and Fix(Qyn,) =lev<of; (i =1,2,...,I). Under the condition that the subgradients of f; can
be efficiently computed (see, e.g., [10, Chap. 16] for examples of convex functions with
computable subgradients), Qy , also can be computed. Here, let us define Qy, : RN — RN

as
i

Qn, = Zwiin,an (11)
i1

where (w; le C (0, +00) satisfies Zf;l w; = 1. Then Qy, is quasinonexpansive under the

H,-norm [10, Exercise 4.11]. Moreover, we have that

1

1 1
X = (\levaofi = [ Fix(Qp) = () () Fix(Qpa,) = ] Fix(Qu, ), (12)
i=1 i=1

i=1 neN neN
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where the second equality comes from Proposition 2.2(i) (i.e., Fix(Qg) = lev<of; (i =
1,2,...,1)), the third equality comes from Proposition 2.2(ii) (i.e., Fix(Qy,) = Fix(Qy n,) for
all #n € N), and the fourth equality comes from [10, Proposition 4.34]. Therefore, (10), (11),
and (12) imply that we can define a computable mapping Qu,, satisfying (A1) of which the
fixed point set is equal to the intersection of level sets. In the case where C is simple in the
sense that P¢ = P¢ can be easily computed, / > O and Q := P¢ obviously satisfy (A0) and
(A1) with Fix(P¢) = C =: X. Accordingly, Problem 3.1 with Q := P¢ coincides with problem
(3), which implies that Problem 3.1 is a generalization of problem (3).

Fixed point algorithms exist for searching for a fixed point of a nonexpansive mapping
[10, Chap. 5], [11, Chaps. 2-9], [12—-16]. The sequence (x,).cn is generated by the Halpern
fixed point algorithm [11, Subchapter 6.5], [12, 16] as follows: for all n € N,

Kn+l = X + (1 - an)Q(xn)¢ (13)

where xg € RN, (a,)nen C (0, 1) satisfies lim,,, ;o0 @, = 0and )20 a0 = +00,and Q: RN —
RY is nonexpansive with Fix(Q) # @. The sequence (x,,),cx in (13) converges to the mini-
mizer of the specific convex function f;(x) := (1/2)]x — xo||> (x € RN) over Fix(Q) (see, e.g.,
[11, Theorem 6.19]). From Vf(x) = x — xo (x € RN), the Halpern algorithm (13) can be

expressed as follows (see [31, 32] for algorithms optimizing a general convex function):

Xnsl = Q(xn) —Qp (Q(xn) - xO) = Q(x}’l) - oz,,Vfo (Q(xn)) (14')

The following algorithm obtained by combining the SA method (4) with (14) for solving

Problem 3.1 follows naturally from the above discussion: for all # € N,

Kn+l 1= PC[Qa(xn) - }\nG(Qa(xn)r En)]7 (15)

where Q, := ald + (1 —@)Q (« € (0,1)). A convergence analysis of this algorithm for differ-
ent step-size rules was performed in [17]. For example, algorithm (15) with a diminishing
step-size was shown to converge in probability to a solution to Problem 3.1 with X = Fix(Q)
[17, Theorem II1.2]. The advantage of algorithm (15) is that it allows convex stochastic op-
timization problems with complicated constraints to be solved (see also (12)). From the
fact stated in [17, Problem II.1] that the classifier ensemble problem [18, 19], which is a
central issue in machine learning, can be formulated as a convex stochastic optimization
problem with complicated constraints, the classifier ensemble problem can be regarded as
an example of Problem 3.1. This result implies that algorithm (15) can solve the classifier
ensemble problem. However, this algorithm suffers from slow convergence, as shown in
[17]. Specifically, although the learning methods based on algorithm (15) have higher ac-
curacies than the previously proposed learning methods, they have longer elapsed times.
Accordingly, we should consider developing stochastic optimization techniques to accel-
erate algorithm (15). This paper proposes an algorithm (Algorithm 1) based on useful
stochastic gradient descent algorithms, such as Adam [8, Algorithm 1] and AMSGrad [9,
Algorithm 2], for solving Problem 3.1, as a replacement for the existing stochastic first-
order method [17].
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Algorithm 1 Stochastic approximation method for solving Problem 3.1

Require: (0y)nen, (Br)unen, (An)nen C (0,1), C (O X): nonempty, closed, convex
1 1< 0,x,m_1 € RN, Hg e SN, N DV
2: loop
3 my = By + (1 - B)G(x,, &)
4 H,eSN NnDN
5. Find d,, € RN that solves H,d = —m,,
6 Yn:=Qn, (% + Apdy)
7 X1 = Pony,[onx, + (1 - an)y,)
8 n<n+l
9: end loop

4 Proposed algorithm
Before giving some examples, we first prove the following lemma listing the basic prop-
erties of Algorithm 1.

Lemma 4.1 Suppose that H, € SY, (n € N), (A1), (A2), (C1), and (C2) hold and consider
the sequence (x,),cn defined for all n € N by Algorithm 1. Then, for allx € X and all n € N,

E[ 1 - %17, ]
< E[llx, —xl§, ] + 201 — )rn {1 = BIE[f (&) - (x,) ]
+ BuB[ (= w0 m,1) ]} + (1= )2 2E[ 13, ]
— B[ %01 = 2allfy, ] = (4 = ) E[ 121 — yullfy, |-

Moreover, under (C3), E[||m,||?] < M? := max{||\m_, ||>, M?} holds for all n € N. If
(A3) h,:=sup{max,.15 N h;w: n € N} is finite, where H,, := diag(h,,;),

L
q

then B[||d,|I} | < h2M? holds for all n € N.

Proof Let x € X C C and n € N be fixed arbitrarily. The definition of x,,; and the firm
nonexpansivity of Pcy, guarantee that, almost surely,
%1 — %113,

= || [O(nxn + (1 - Ofn)yn] - x”an - ”xVHI - [anxn + (1 - an)yn] “ iln’

which, together with [lax + (1 —a)y||? = aflx[? + (1 — @)|ly]|® — a1 —a)[lx — y]|* (x,y € RN,
a € R), implies that

2 2 2 2
l1%41 _x”Hy, < ayllxy _x”Hn +(1—an)llyn _x”H,, = Oy |1 = xn”Hn

2 (16)
-(1- an)”xnﬂ —yn”Hn'

The definition of y, and (A1) ensure that, almost surely,

g = 113, < || o = 2) + Al

2 2 2
= [l%n = %I, + 220 (%0 — % A, + A, Il -
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The definitions of d,, and 1, in turn ensure that

(o — %, dn)Hn = (x —x,, my)

= Bulx —xy, mp1) + (1 - ﬂn)(x — %, G(%, En))
Hence, (16) implies that, almost surely,

2 2 2
”xn+1 _xHH,, = an”xn _x”Hn + (1 - an){ ”xn _x”H,, + 2)Wt<xn —-% dn)H

+ /\f,lldnllan} —ayll%ne1 — xn”an — (1= o) ll%pin —)’n”an
=l = xlIf, +2(1 = &) dn{ B = 20, 1,-1) (17)
+(1- ﬂn)<x — X G(xmén))} +(1- an))\i”dn”an

= Wull%ner = 2allf, — (1= @) 1 = Yl -
Moreover, the condition x,, = x,,(§,,-1)) (# € N) and (C1) guarantee that
]E[<x —Xn G(xn: En))] = E[E[<x —Xn G(xn: sn)>|€:[n—1]]]

E[(x — 2 E[Glxn, &) 6011 ])]
(x — Xu» g(xn))]’

=E[
which, together with (C2), implies that

E[{x — %, G, £0))] < E[f () —f ()]

Therefore, taking the expectation of (17) gives the first assertion of Lemma 4.1.
The definition of 1, and (C3), together with the convexity of | - ||?, guarantee that, for
allmeN,

E[llm,12] < BaB[Im,112] + (1 = B)E[ |G, £ ]
< BuE [l 1?] + (1= Bo)M>.

Induction thus ensures that, for all # € N,
E[|lm,[*] < M* := max{|m_||*>,M*} < +oc. (18)

Given n € N, H,, > O ensures that there exists a unique matrix H,, > O such that H, = ﬁi
[33, Theorem 7.2.6]. Since |||, = |[H,x|* holds for all x € RV, the definition of d,, implies
that, forall n € N,
2 —1 2 —12 2
E[lid.l5,] = B[[H, Hadu | "] < EL[H,"["1m.17],

where ||H;1|| = ||diag(h;i./2)|| = max;-12, N h;}/z (n € N). From (18) and

i=

h, = sup{

.....

Page 10 of 31
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(by (A3)), we have that, forall n € N,
E[lld,lIf, ] < m2A%.
This completes the proof. O

The convergence analyses of Algorithm 1 in Sect. 5 depend on the following assump-
tion:

(A4) [5, p.1574], [9, p-2] C (D X) is bounded.
Let us consider the case where H,, and v, are defined for all n € N by

Vi = Bt + (1= B)G(xy, &) O Gxy, &),
‘,)n = (an,i) = (max{f/n—l,ix Vn,i}): (19)

Hn = dlag( 9n,i):

where 8 € (0,1) and v_; = 7_; = 0 € RN (see also (9)), and discuss the relationship be-
tween (A3) and (A4). Assumption (A4) implies that (x,,),eny C C generated by Algorithm 1
is almost surely bounded. In the standard case of G(x,,&,) € 9xF (x4, &,), Proposition 2.1
and (A4) imply that (G(xy, £,))xen is almost surely bounded, i.e., M := sup, .y [1G(x,, €,) ©
G4, &)l < +00. Since the triangle inequality and (19) guarantee that, almost surely,
Vall < Bllva-ill + (1 = B)IG(x1,Ex) © G(x, &) I, induction shows that, for all # € N, al-
most surely, ||v,|| < M; < +o00. Accordingly, (19) leads to the almost sure boundedness of
(V)nen. Hence, h, := sup{max;_12. N \/ﬁ n € N} < +00, which implies that (A3) holds.
The above discussion shows that (A4) implies (A3) when H,, and v,, are as follows (see also
(6) and (7)):

Vi = Bvur + (1= B)G(x, &n) © G, €n),

PN _ Vi A
Vy = (Vn,i) = | max 1—7,3"”’1/”71'1‘ ’ (20)

H, := diag(y/ V,1)-

We provide some examples of Problem 3.1 with (A0)—(A4) that can be solved by Algo-
rithm 1 under (C1)-(C3).

Example 4.1 (i) Deep learning problem [9, p.2]: At each time step ¢, stochastic optimiza-
tion algorithms used in training deep networks pick a point x; € X with the parameters of
the model to be learned, where X ¢ R¥ is the simple, nonempty, bounded, closed convex
feasible set of points, and then incur loss f;(x;), where f; : RN — R is a convex loss function
represented as the loss of the model with the chosen parameters in the next minibatch.
Accordingly, the stochastic optimization problem in deep networks can be formulated as
follows:

T
minimize E fi(x) subject to x € X = Fix(Py) = ﬂ Fix(Pxn,), (21)

t=1 neN
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where T is the total number of rounds in the learning process, and (H,),en C S¥, N DN
defined by each of (19) and (20) satisfies (A0). Qu, := Pxn, (n € N) satisfies (A1), and
fO=E[fz()]:=1/T) ZtT:lft(o) satisfies (A2). Setting C := X ensures (A4), which implies
(A3). Algorithm 1 for solving problem (21) is as follows:

Xpsl i= QpXy + (1 - an)PX,H,, (xn - )"n H;lmn)- (22)

(ii) Classifier ensemble problem [18, Sect. 2.2.2], [19, Sect. 3.2.2] (see also [17, Problem
I1.1]): For a training set S = {(z,, ln)}2_; C RN x R, where z,, := ()} and 27, is the
measure corresponding to the mth sample in the sample set and the nth classifier in an
ensemble. The classifier ensemble problem with sparsity learning is the following:

minimize f(x) = ]E[1 ((z,%) — 1)2]
2 (23)

subject tox € X := R{:’ N {x eRN: x|l < tl},

where || - ||; denotes the £;-norm and ¢; is the sparsity control parameter. Suppose that H,
is as each of (19) and (20), which satisfies (A0), and define a mapping Qu, : RN — RN by

Qny = Pty PiacRN il <t1) Hoe (24)

Since the projections Ppy y and P cgN . |z, <4} 4, Can be easily computed [34, Lemma 1.1],
Qu,, defined by (24) can be also computed. Moreover, Qy, defined by (24) is nonexpansive
with X = ),y Fix(Qn,), i.e., (A1) holds. Since {x € RN: ||x|l; < t;} is bounded, we can set
a simple, bounded set C such that X C C, i.e., (A4) holds. Moreover, f in problem (23)
satisfies (A2).

The classifier ensemble problem with both sparsity and diversity learning is as follows:

minimize f(x) = ]E|:1 ((z,%) — 1)2]
2 (25)

subjecttox € X := {x € Rﬁ[: lxlly < tl} N {x eRY: fu(x) > tz},

where t; is the diversity control parameter, fgy,(x) := Zi\n/lzl{([zm],x) —(z,, %)%} (x € RN),
and [z,,,] := ((z%,))Y, € RN. From the discussion regarding (10), (11), and (12), a mapping

Qu, = 1Py + @2 Q)11 Hy + @3Q—fy (Yt Ho (26)

with (H,)uen C SY, N DN defined by each of (19) and (20), is quasinonexpansive under
the H,-norm satisfying X = (1), .y Fix(Qu, ), i.e., (A1) holds. The discussion in the previous
paragraph implies that (A0), (A2), and (A4) again hold.

Algorithm 1 for solving each of problems (23) and (25) is represented as follows:

%1 = Pop, [anxn +(1-a,)Qn, (xn - )LnH;Imn)]« (27)

In contrast to Adam (6) and AMSGrad (9) that can solve a convex stochastic optimiza-
tion problem with a simple constraint (3) (see also problem (21)), algorithm (27) can be
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applied to a convex stochastic optimization problem with complicated constraints, such
as problems (23) and (25).

(iii) Network utility maximization problem [35, (6), (7)] (see also [36, Problem I1.1]): The
network resource allocation problem is to determine the source rates that maximize the
utility aggregated over all sources over the link capacity constraints and source constraints.
This problem can be formulated as the following network utility maximization problem:

maximize Z ug(xs) subject to x = (x5)ses € X := m cn m Cs, (28)
seS lel seS

where x; denotes the transmission rate of source s € S, u; is a concave utility function of
source s, S(I) denotes the set of sources that use link [ € £, C; is the capacity constraint
set of link / having capacity ¢; € R, defined by C; := {x = (%5)ses: Zses(,) xs < ¢}, and C;
is the constraint set of source s having the maximum allowed rate M, defined by C; :=
{x = (%5)ses: %5 € [0, M]}. Since C; and C; are half-spaces, the projections P, 4, and P¢, h,,
are easily computed,® where (H,),en C S¥, N DV is defined by each of (19) and (20). For
example, we can define a nonexpansive mapping Qu,, := [ [, Pc,H, [ [ies PcoH, Satisfying
X =(),;en Fix(Qu,,). The boundedness of (), g C; allows us to set a simple, bounded set C
satisfying C D [),.s Cs D X. Algorithm (27) with G(x,,, €,) € 8(—ug,)(x,,) can be applied to
problem (28).

5 Convergence analyses and comparisons
5.1 Convergence analyses of Algorithm 1
For convergence analyses of Algorithm 1, we prove the following theorem.

Theorem 5.1 Suppose that (A0)—(A4) and (C1)—(C3) hold and that (&,)nen, (Bu)nen
(An)nen, and (Vn)nEN deﬁned by VYn = (1-a,)1- ,Bn))\n (neN) Sﬂtiéfy

0 <liminfa, <limsupa, < 1, limsupB, <1, and Yy, <y, (meN) (29)

n—+00 H—>+00 n—>+00

and that H,, = diag(h,,;) satisfies *
Bois = hns (neN,i=1,2,...,N). (30)

Then Algorithm 1 is such that the following are satisfied for all n > 1:

n

B[ —f*] < — [Zh} M{f_NZ hMZZxk,

2abn). k=1

where x,, := (1/n) ZZ=1 Xk, M and h, are defined as in Lemma 4.1,

D:= max sup{ (.1, —%:)*: k € N} < +00,
i=1,2,...,

3The projection Pcy, onto a half-space C:={x € RM: (a,x) < b} = Fix(P¢) = Fix(Pcp,) under the H,-norm, where a # 0 and
b € R, can be defined for all x € R by Pcyy, (x) = x + [(b - {a,X), /HaHH”]a (x & C) or Pcyy, (x) =x (x € C).

“4Condition (30) is satisfied when H,, is defined by either (19) or (20).
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(@n)nen C [,a] € (0,1), (Bu)nen C (0,6 C(0,1),a:=1-a,b:=1-b,¢:=1—-c,and M :=
sup{E[f(x) — f(x,)]: n € N} < +o0 for some x € X. If

(A1) Qn,: RN — RN is nonexpansive under the H,-norm,
then, foralln > 1,

=S Bl Q07
k=1

n

1 1\[D_|& 2M 2eM /DN
(2] B s
i=1 k=1

a n
k=1

1 1 am?
al =+ )e+2 2 22,
{ ()} s

k=1

Proof Let x € X be fixed arbitrarily. Lemma 4.1 guarantees that, for all k € N,

E[f () - £()] < 2—;{E[nxk ~ w13, ] - Bl - 12,1}

B
+
1- Bk

E[(x — x5, 1) | + ﬁE[||dk||ak]'

Summing the above inequality ensures that, for all n > 1,

- ; E[f(x0) £ (x)]

n

S %;%{E[”xk_x”g‘k]_E[||xk+1—xll'ﬁk]}
T, h
+12n: i E[<x—xk,Vnk—1>]+éikkE[”dk“a b
n <=1~ Py 2bn = ‘
By A ]

where (29) implies that b > 0 exists such that, foralln € N, g, <b <1 and b:=1-b. The
definition of I',, and E[||x,,,1 — xll,z_,n]/)/y, > 0 imply that

< Bl — 1) Z{ Ellk — ) _ Bl i) } : (32)

¢! 2 Yk Vi-1

Tn

Given k € N, Hi > O ensures that there exists a unique matrix Hi > O such that Hy = ﬁi
[33, Theorem 7.2.6]. Since ||x||f|,< = |[Hex||? holds for all x € RN, we have that, for all k € N,

P E[Z { [Feor = )12 [Fkea (o — )12 ” 3

2 Yk Vi-1
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Since Hi (k € N) is diagonal, we can express Hy as Hy = diag(/;), where i ; > 0 (k € N,
i=1,2,...,N). Accordingly, for all k € N and all x := (x;), € RN,

N

— 1 —

He=diag(h?) and [Hix|” =) jn. (34)
i=1

Hence, (33) ensures that, for all 7 € N,

f,-E [ZZ(’““ ) - }

oo i1 \ Yk Vk-1

From yi < -1 (k > 1) (see (29)) and (30), we have that hy;/ vk — hx_1i/yk-1 > 0 (k > 1,
i=1,2,...,N). Moreover, (A4) implies that D := max;_; ,_x sup{(x,; — x,)%: n € N} < +o0.

,,,,,

Accordingly, for all # € N,

- <DE[ZZ(@ ] hk_)} DE[i(’f_ ] h_)}

o2 io1 \ Yk Yk-1 Vn 2!

Hence, (32), together with E[||x; — xllal]/yl < DIEE[Z?Z1 hy/y1], implies that, for all n € N,

r, §DE|:§: };—11} +DE[§:(@ - h—l)] = —E[thm],

i=1 NV Y

which, together with the existence of 2 > 0 such that, foralln € N, o, <a < 1 (by (29)) and

a:=1 - a, implies that

N
E|:Z h:| (35)
i=1

The Cauchy—Schwarz inequality, together with D := max;-; 5, n sup{(x,; — x;)*: n € N} <
+00 and E[||m,,||] <M := /max{||m_1||%, M?} (n € N) (by Lemma 4.1), guarantees that, for

allmeN,
n n
B D
B, < k E[llx - acllllme-i ] < —=— ) BE[llmi-ll]

P b 'S

- (36)
M~+/DN &

< 7 Zﬂk'

Since E[||d, I, ] < h?M? (n € N) holds (by Lemma 4.1), we have that, for all # € N,

= D ME[lldilf, ] < MY (37)
k=1 k=1

Page 15 of 31
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Therefore, (31), (35), (36), and (37), together with the convexity of f, imply that, for all

neN,

n

M~/DN W2M>?
Z h}’ll =~ lgk + =
bn P 2bn P

E[f &) - f(%)] <

Lemma 4.1 ensures that, for all 7 € N,

@y B[l - yelld, ]

k=1
n

<Z ek = %17, ] = B[l =213, ]} + (1 - )i E[l1dk 17, ]

k=1

Xn

n

+2 Z(l — )i {(1 = BOE[f (x) — f (k)] + BE[ & — o0k, 1) ]}

k=1

A discussion similar to the one for obtaining (35) implies that
N N N
Xn < DE |:Z hl,i:| + DE [Z(hn’l — hl,i):| =DE |:Z hn,i:| .
i=1 i-1 i=1

The continuity of f (see (A2)) and (A4) mean that M= sup{E[f(x) — f(x,,)]: n € N} < +o00
Accordingly, an argument similar to the one for obtaining (36) and (37) guarantees that

foralln e N,

1 n
=D Ellwei -l ]

k=1
D M & 2M «/
=< HE[Z hm:| - Y Q-1 =B+ ——— Z(l i) Bk
k-1 k-1

B2 &
Y (- A

an
k=1

From (29), there exists ¢ > 0 such that, for all # € N, ¢ < «,,. Setting ¢ := 1 — ¢, it follows

that, forall n € N,

1 n
=D Bl -l ]
k=1

Ak (38)

2cM«/_ Z 8
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A discussion similar to the one for obtaining (38) ensures that, for alln € N,

1 n
=D B[l -2l ]
k=1

|:Z hnzi| + % kZ:(l = B)hi + % kzzﬁklk (39)
=1 =1

n

Z’\k

cth 2

Suppose that (A1) holds. Then we have that, for all k € N, almost surely |y« —
Que ) I = 1Qu (k + Aicdi) — Qu, (i) Ik, < Aklldk I, which, together with [lx — y||* <
2)lx1* + 2[|yl1* (x,y € RY), implies that

2 2
E[ || - QHk(xk)HHk] < 2E[llxx — yellfy, | + 2E[ |y - QHk(xk)”Hk]

< 2E[lla = yxllfy, ] + 22 E[ el ]-

Accordingly, (38) and (39) guarantee that, for all n € N,

1 n
LS Bl - Qo]
k=1

n n

4 4
<~ > Bl =il ]+ — Y [l el ] + Zx E[lldel?, ]

k=1 k=1

§4<1+—>{ [Zhnt] 2CMZ(1 ﬁk))»k+26MnDNZ/3k?»k
k=1

11\, _|BM*&,

+{4<Z+Z)C+2} p ZA,

k=1

which completes the proof. O

5.1.1 Constant step-size rule
The following theorem indicates that sufficiently small constant step-sizes B, := f and
Ay := A allow a solution to the problem to be approximated.

Theorem 5.2 Suppose that the assumptions in Theorem 5.1 hold and also assume that,
foralli=1,2,...,N, there exists a positive number B; such that’

sup{E[h,,,,»]: ne N} <B,. (40)

Then Algorithm 1 with a,, := «, By, := B, and A, := A (n € N) satisfies that

2 | « - h2M?
llmmﬂE[HxV,—xmlllHn]f Oé{M(l—/3)+M«/DNﬁ+ *2 k}k, (41)

n—+00 o

5Condition (40) is satisfied when H,, is defined by either (19) or (20).
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. _ H2M?
LminfE[ a1 — yullf, | < 2{M(1 - B) + MV/DNB + *2 ,\}x,
n—+00

.. * M\/I)—N h2M2
]y}g:gof]E[f(xn) _f ] = 1-8 2(1 ﬂ)

o 1\ MDN h2M2
Bl -] <0( 1)+ T B gt

where %, := (1/n) Y j_, xx and & := 1 — .. Under (A1), we have

1
~ > B[l - Qu 0[]

k=1

1\ 4, - - - -
< O(—) + —{2M(1 - B) + 2M~/DNB + 2H2M> )} \ + 202012
n o

Proof We first show that, for all € > 0,

20 21\7[2
hmlnfE[llx,, xm1||Hn]§—{M(1 B) + Mv/DNB + }A
o

n—+00

If (46) does not hold, then there exists ¢y > 0 such that

hm1nfE[||x,,—xn+1||Hn]>2—{ (1-pB)+M~vDN ﬁ+h2M2 }A

n—+00

+ Deg + €.

(42)

(43)

(44)

(45)

(46)

(47)

Let x € X and x, := E[||x, - xllan] for all n € N. Lemma 4.1, together with the proofs of

(36) and (37), implies that, for all n € N,

2 2
Xn+l = Xn + Xn+1 _E[”xrﬁl _x”H,,] _O‘E[”xnﬂ _xn”Hn]

Xn

2 A2
+ 2&,\{1\%(1 - B) + M/DNB + h*;w k}.

From (34) and (A4), for all n € N,

N
X E[Z(hnﬂl n,i (xn+1z _xl) :| SDE[Z(hn+1,i_hn,i):|-

i=1

Accordingly, (30) and (40) ensure that there exists ny € N such that, for all n > ny,

5(,,, < DO[E().

(48)

(49)

Page 18 of 31
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Hence, (48) implies that, for all n > ny,

2
Xne1 < Xn + Daég — aE[ %41 — %l |

. . H2M?
+2&A{M(1—ﬁ)+MvDN/3+ *2 k}.
From (47), there exists n; € N such that, for all # > ny,

h2M>
2

26 [ - s
E[[l%n — %ne1llfy, | > —“{M(1 —B)+ M~/DNB + A}A + Deg + %0
(07

Therefore, for all n > n, := max{ng, n1},

[~ N W2 M? 1)
Xns1 < Yn + Doeg — 200 { M(1 - B) + MV DNB + 5 At —Daey — -

2712
+ 2&,\{1\71(1 - B) + MNV/DNB + h;vl A}

(02

2

(620
= Xny — T(n +1 —”12),

=Xn

which is a contradiction since the right-hand side of the above inequality approaches mi-
nus infinity as # increases. Hence, (46) holds for all €, which implies that (41) holds. A dis-

cussion similar to the one for showing (46) leads to (42). We next show that, for all € > 0,

. < MYDN WM, Do
Uit B ) == S 20 p* Y dma i

€.

If (50) does not hold for all € > 0, then there exist €y > 0 and #3 € N such that, for all #n > u3,

M~/DN 2 M? Daeg €o

]EU(xn) _f*] > 1 _ﬁ + 2(1 —ﬂ) * 26{(1 - /3))\' * 3

Lemma 4.1, together with (48) and (49), ensures that, for all #n > ny,
Xns1 < Xn + Daeg — 2a(1 — BAE[f (x,) - f*] + {2MV/DNB + h2M*).} .

Accordingly, for all n > ny := max{ng, n3},

Xn+1
M+/DN W2 M? D
fxn+Daeo—25:(1—;3)A{ T_5 ,3+2(1*_,3) +2&(1a_6;)}\+%0}

+ {2M~V/DNB + B2 ).}
= xn—&(1 - B)reo

< Xng — (1 = B)Aeo(n + 1 —ny),

Page 19 of 31
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which is a contradiction. Since (50) holds for all € > 0, we have (43). Conditions (44) and
(45) follow from Theorem 5.1, which completes the proof. d

5.1.2 Diminishing step-size rule
Lemma 4.1 and Theorem 5.1 give us the following theorem as a convergence analysis of

Algorithm 1 with a diminishing step-size.

Theorem 5.3 Suppose that the assumptions in Theorem 5.1 and (40) hold. Let (B,,)nen and
(An)nen satisfy the following:

+00 +00 +0
nLier B.=0, X(;)‘” = 400, X(;Afl < +00, and X(;,Bn)»n < +00. (51)
Then Algorithm 1 satisfies that
hmlnfE[”xn _xn+1”H,,] =0, hmlnfE[”anrl _yn”Hn] =0, (52)
n—+00 n—+00
liminfE[f(x,) - f*] <0. (53)

n—+00

Moreover, if (A1)’ holds, then we have

liminfE[ |, — Qu, ()], ] =0.

n—+00

Let (By)nen and (Ay)yen satisfy the following:

. 1 R
Jm =0 im S Tie0 adim 1SS0 5
Then the sequence (%,),en defined by %, := (1/n) Y_;_, xi satisfies

lim sup IE[f(ic,,) —f*] <0

n—+00
with

DYN B, MJDN <& W2
lel Ly 7 Zﬁk+ * Zkk.
k=1

]ED’(x,,) -/ ] = Zél;nkn 2bn

k=1

Moreover, if (A1)’ holds, then we have

1y
Jim S Ele- Qu a0l ] =0

with

n

1
= > B[l - Qu 0[]

k=1
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n

1 1\|DYXN, B 2em 2¢M~/DN &
< 4(: + —){L =Y A= B+ ———— > Bk
a 1 n

c n n —
1 1 M &

+34| =+ - )c+27 = AL

(G c)eee] 2

Proof We first show (52). Lemma 4.1, together with (36), (37), and (48), implies that, for
allneN,

N
Bl 01—l } < ) = K @) + DE[Z(hM,,» - hn,»}

(1 = ) E[[l%41 _yn”an] i-1 (55)

+ 2M,, + 2M~/DN B, + H2M?22,

where y,(x) := E[|lx, — x||E|n] for all x € X and all # € N. Consider (Case 1): For all x € X,
there exists m( € N such that, for all # € N, n > mg implies x,;1(x) < x,(x). This case
guarantees the existence of lim,_, ;o x,(x) for all x € X. From (30) and (40), we have that
lim,_s 100 E[Zﬁl(hnﬂ,i —hy,;)] = 0. Moreover, (51) ensures that lim,_, ;o 8, = lim,— 100 Ay =
0. Accordingly, (55) and 0 < liminf,,_, ;o o, <limsup,_, , . o, < 1 (by (29)) imply that

lim E[”xnﬂ —xn”Hn] =0 and nEIPooE[”an —yn”Hn] =0. (56)

n—+00

Consider (Case 2): There exists xo € X, for all m € N, there exists #n € N such that n > m
and y,.+1(x0) > xu(%0). In this case, there exists (x,)ien C (%4)nen such that, for all i € N,
Xn+1(%0) > Xn; (%0). From (55), we have that, for all i e N,

A Bl 1%n 41 — % 15 ] N
i B 1% 41 nl||Hm ) <DE Z(hn/+1,/—hnf,/)
1 _an)E[”xniH _yn,'”Hni] -1

+ 2My, + 2M~/ DNy, + HEMPA2,.
A discussion similar to the one for showing (56) guarantees that

lim B[40 — %llw, ] =0 and  Tlim E[|%,41 =y ln,, ] = 0. (57)

I—>+00 I—>+00

Therefore, we have (52). If (A1)’ holds, then Lemma 4.1 implies that, for all 7 € N,

E[ [y = Qn, @), ] < iy,

which implies that lim,_, ;0 E[||yx — Qn,*,)[ln,] = 0. In (Case 1), (56) and the triangle
inequality mean that lim,_, , o E[||%, — ¥, ] = 0. Accordingly, the triangle inequality and
lim; s o0 E[[lyn — Qn, (%4)ll1,] = 0 imply that lim,,, . E[[lx4 — Qn, (x,1)[I4,] = 0. In (Case
2), (57) and the triangle inequality mean that lim;_, ,co E[[|%s;, — ¥, I, ] = 0. Accordingly,
the triangle inequality and lim;_, . o0 E[ ||y, — QHn,- () Hi, ] = 0 imply that lim;_, , o0 E[ ||, —
QHn[ (%) ”H”i] = 0. Thus, we have that

liminfE[||x, — Qu, (x4) HHM] =0.

n—+00
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Next, we show (53). Lemma 4.1, together with (36) and (37), ensures that, for all x* € X*
andall k e N,

2(1 - ) (1 = BOME[f (i) —f*]

N
< Xg — Xps1 +DE |:Z(hk+l'i - hk,i):| + 2MvDNﬂkAk + thz)\,f,

i=1

where x,; := x,(x*) for all ¥* € X* and all # € N. Summing the above inequality from k = 0
to k = n gives that, forall n e N,

2 Z(l — o )(1 = BOME[f (i) —f*]

k=0
N n n
<x; +DE [Z hnm} +2M~/DN Z Bihi + H2M? Z A2,
i=1 k=0 k=0
which, together with (40) and (51), implies that

+00

> (- a1 - BOME[f (i) — ] < +00.

k=0

If (53) does not hold, then there exist ¢ > 0 and m; € N such that, for all k > my, E[f (x;) —
f*] > ¢. Hence, we have that

+00=¢ Y (1—a)(1 - Bre < Y _(1— ) (1 = BOME[f (i) —f*] < +00,
k=0 k=0

where the first equation comes from limsup,,_, , &, <1, Y 720 Ay = +00, and Y% Buhn <
+00 (by (29) and (51)). Since we have a contradiction, (53) holds. Theorem 5.1, together
with (40) and (54), ensures that

1 n
lim sup ]E[f(icn) —f*] <0 and nLiglw p ZE[ka — Qn, (1) ||ik] =0
k=1

n—+00
with the convergence rate in Theorem 5.3. O
Theorem 5.3 leads to the following corollary.

Corollary 5.1 Suppose that the assumptions in Theorem 5.3 and (A1)’ hold, and consider
Algorithm 1 with 1, := 1/n" (n € [1/2,1]) and (By)nen such that Y% By < +00. Under n €
(1/2,1], we have that

liminfE[f(x,) ~f*] <0, liminfE[x, - Qu, (x4, ] = 0.

n—+00

Under n € [1/2,1), we have that

n—+00

. ~ * : 1 -
lim sup ]Ev(xn) -f ] <0, HLITPOO ; ;E[”xk - QHk(xk)”ak] =0
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with the rate of convergence

S e 1 1o 1
E[f (%) —f*] SO(ﬁ): ;ZE[ka—QHk(xk)”ak] :O<ﬁ>'

k=1

Proof The step-size A, := 1/n" (n € (1/2,1]) and (B,)uen such that Y% B, < +00 satisfy
(51). Accordingly, Theorem 5.3 with (A1)’ implies that liminf,_, ..c E[f(x,) — f*] <0, and
liminf,, ;o0 E[ll%, — Qn, (%x)lln,] = 0. The step-size A, := 1/n" (n € [1/2,1)) satisfies

. 1 . 1
lim = lim ——=0.
H—>+00 WA,  H—>+00 nl-n

Moreover, we have that

1o 1o 1 nde) 1 w#7 1 1
—ZAZE—ZME—{1+/ —}:—{” - }5 —. (58)
e i n A nl{l-n 1-n 1-nmn"

Hence, limy,_, 100(1/1) Y3 _; Ak = lim,,— 100 (1/1) Y_;_; A7 = 0. The condition ), %] B, < +00
implies that lim,_ .o (1/1) Y ;_; Bx = 0 and lim,,_,,oc(1/n) Y ;_; Bix = 0. Hence, (54) is
satisfied. Accordingly, from Theorem 5.3 with (A1)’ and (58), we have the convergence
rate of Algorithm 1 in Corollary 5.1. g

5.2 Comparisons of Algorithm 1 with the existing adaptive learning rate
optimization algorithms

The main objective of the existing adaptive learning rate optimization algorithms is to

minimize Zth Jt(x) subject to x € X, where T is the total number of rounds in the learning

process, f; : RN - R (t=1,2,...,T) is a differentiable, convex loss function, and X ¢ RV

is bounded, closed, and convex (see also problem (21) in Example 4.1(i)). We would like

to achieve low regret on the sequence (f;(x)).;, measured as

T T T T
R(T):= E fe(xe) — I;lel)r(l E fi(x) = th(xt) - E ft(x*),
=1 t=1 t=1

t= t=1

where x* € X is a minimizer of Zth fi(x) over X, and (x;)L, C X is the sequence gener-
ated by a learning algorithm. Although Theorem 4.1 in [8] indicates that Adam [8, Algo-
rithm 1], [2, Algorithm 8.7] (algorithm (6)) is such that there exists a positive real number
D such that R(T)/T < D/~/T, the proof of Theorem 4.1 in [8] is incomplete [9, Theo-
rem 1]. AMSGrad [9, Algorithm 2] (algorithm (9)) is such that the following result holds
[9, Theorem 4, Corollary 1]: Suppose that By, := B1A"™1 (B1,A € (0,1)), ¥ := B1//B2 < 1,
and A; := a/+/t (a > 0). Then there exist positive real numbers D; (i=1,2,3) such that

RT) 1 Lo,
7 L) AW

DIN piD, av1+InT N
= — + — 2 +— Z ”gl:T,i”r
aﬂlﬁ 2,31(1_)") T ﬂl (l—y)«/l—ﬂgT i=1
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where 1 := 1-B1, g := ViF(x, &), ® and l|gi.7,ill := /Y, €% < D3+/T. Hence, with AMS-

Grad, there exists a positive real number D such that

RT) 1< 1 & . [1+InT
— = E fi(xs) — — E It(x*) <D . (59)
T T4 T & T

We apply Algorithm 1 with A, := 1/n" (n € [1/2,1)) (see also algorithm (22)) to Prob-
lem 3.1 for the special case where f(-) = E[f; ()] := (1/T) thlft(-), Qn,, :=Pxn, (neN),H,
is defined by either (19) or (20), and C = X (see also problem (21)). Then Theorem 5.2 has
the following corollary.

Corollary 5.2 Consider problem (21) and suppose that the assumptions in Theorem 5.1
hold. Then algorithm (22) satisfies that

I L, | < VDN 1P
lnlgljgofE[? ;ft(xn)_ ?;ﬁ(x ):| = 1-8 b+ 2(1—,3))L,

T * ’
n—+00 o1 o1 1- ,B 2(1 - ,3)

len, . 1< MVDN =~ W22
limsupE|:? Zﬁ(x,,) - = Zﬁ(x*)] < B * A

where %, := (1/n) Y_j_, xk and (x,)uen C X is the sequence in algorithm (22).

In contrast to Adam and AMSGrad with diminishing step-sizes, Corollary 5.2 indicates
that algorithm (22) with constant step-sizes may approximate a solution of problem (21).
Corollary 5.1 implies the following corollary.

Corollary 5.3 Suppose that the assumptions in Corollary 5.1 hold and X, := 1/n" (n €
[1/2,1]), and (Bu)nen is such that Y, %] B, < +o00. Under n € (1/2,1], algorithm (22) satisfies
that

T T
liminf & [Zﬁ(xn) - (x*)} =0.
t=1

t=1

Moreover, under n € [1/2,1), any accumulation point of (X, := (1/n)Y_;_; %k)nen almost
surely belongs to the solution set of problem (21), and algorithm (22) achieves the following
rate of convergence:

E[éﬁm) - éﬁ(x*)} - (9(”1—1,7)

Proof For problem (21), Corollary 5.3 implies that 0 < liminf,_, ;o E[f(x,) — f*] < 0 and
0 <limsup,_, .. E[f®,) —f*] <0, where f := (1/T) Zthlft The second inequality guar-
antees that lim,,—, .00 E[f(%,) — f*] = 0. Let ¥ € X be an arbitrary accumulation point of

(%)nen C X. Since there exists (¥,;)ieny C (X4)nen such that (X, );en converges almost surely

6Since AMSGrad is applied to constrained convex optimization, in general, lim7_ ;c0 [|g1.7/]| # 0 and [|gi7;]| < bgﬁ hold
[8, Corollary 4.2].
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to & € X, the continuity of f ensures that 0 = lim;_, .o E[f(%,,) — f*] = E[f(%) — f*], i.e.,
X € X*. The rate of convergence of (X,),cn is obtained from Corollary 5.1. O

It is not guaranteed that x7 defined by AMSGrad with A, := a/+/t optimizes Zth Jf: over
X since (59) depends on a given parameter 7, i.e.,

@<O< l+1nT>
T — T ’

Meanwhile, Corollary 5.3 implies that any accumulation point of (¥,),cn defined by algo-
rithm (22) with A, := 1/4/n almost surely belongs to the set of minimizers of ZtT: Jt over
X and (¥,).en achieves an O(1/4/n) convergence rate, i.e.,

E[éﬁ(&n) - téﬁ(x*):| _ o(%)

5.3 Numerical comparisons

In this section, we consider the classifier ensemble problem [18, Sect. 2.2.2],
[19, Sect. 3.2.2], [17, Problem IL.1] (see problems (23) and (25) in Example 4.1 (ii)) and
compare the performances of the learning methods based on the following algorithms
which used commonly 8 = 0.99 [9, Sect. 5] and o, = 1/2 (n € N).

SG: Stochastic gradient algorithm (15) with A,, € [1073/(n + 1),1/(n + 1)] computed by

the Armijo line search algorithm [17, Algorithms 2 and 3, LS].

C1: Algorithm 1 with (19) and 8, = A, = 1071,

C2: Algorithm 1 with (19) and B, = A, = 1073,

C3: Algorithm 1 with (20) and 8, = A,, = 1071,

C4: Algorithm 1 with (20) and B, = A, = 1073,

D1: Algorithm 1 with (19), B, = 0.9/2", and A,, = 10" //n + 1.

D2: Algorithm 1 with (19), 8, = 0.9/2", and A, = 107//n + 1.

D3: Algorithm 1 with (19), B, = 0.9/2", and A, € [1073/y/n + 1,1/+/n + 1] computed by

the Armijo line search algorithm.

D4: Algorithm 1 with (20), B, = 0.9/2", and A, = 107//n + 1.

D5: Algorithm 1 with (20), 8, = 0.9/2", and A, = 1073/+/n + 1.

D6: Algorithm 1 with (20), B, = 0.9/2", and A, € [1073/y/n + 1,1/4/n + 1] computed by

the Armijo line search algorithm.

The step-size B, := 0.9/2" used in D1-D6 was based on [9, Sect. 5]. The numerical results
in [17] showed that the learning method based on SG performed better than the existing
methods in [19, (18)]. Therefore, we compare the performance of the learning method
based on SG with the one of the learning methods based on C1-D6. See Corollary 1 in [17],
Theorems 5.2 and 5.3, and Corollary 5.1 for convergence analyses of the above algorithms
for solving problems (23) and (25).

The experiments used Mac Pro (Late 2013) with a 3.5 GHz 6-core Intel Xeon E5 CPU, 32
GB 1866 MHz DDR3 memory, and macOS Catalina version 10.15.1 operating system. The
algorithms used in the experiments were written in Python 3.7.5 with the NumPy 1.17.4
package. The experiments used the datasets from LIBSVM [37] and the UCI Machine
Learning Repository [38] for which information is shown in Table 1. In these experiments,
stratified 10-fold cross-validation for the datasets was performed. For this validation, the



liduka Fixed Point Theory Algorithms Sci Eng (2021) 2021:10 Page 26 of 31

Table 1 Datasets used for classification

Dataset Classes  Instances  Attributes
1. australian 2 690 14
2. breast-cancer 2 683 10
3. diabetes 2 768 8
4. ionosphere 2 351 34
5. leukemia 2 72 7129
6. madelon 2 2600 500
7. splice 2 3175 60
8. iris 3 150 4
9. svmguide2 3 391 20

10.  wine 3 178 13

11.  vehicle 4 846 18

12. glass 6 214 9

13, segment 7 2310 19

14, digits 10 1797 64

15, usps 10 9298 256

StratifiedKFold class in the scikit-learn 0.21.3 package was used. Ensembles of sup-
port vector classifiers were constructed by the BaggingClassifier class in the scikit-
learn 0.21.3 package. The number of base estimators was set as the default value of the
scikit-learn package. For learning multiclass classification tasks with the classifiers used
in the experiments, the one-vs-the-rest multiclass classification strategy implemented as
the OnevsRestClassifier classin the scikit-learn 0.21.3 package was used. The stop-
ping condition for the algorithms used in the experiments was # = 100.

Let us consider problem (23) and compare the performances of the sparsity learning
methods based on the algorithms with Qu, defined by (24). Although we can consider
problem (25) and compare the performances of the sparsity and diversity learning meth-
ods based on the algorithms with Qu, defined by (26), we omit the details due to lack of
space.’

Tables 2 and 3 show that the accuracy of the learning method based on SG was almost
the same as that of the learning methods based on C1, C2, C3, C4, D3, D4, and D6. These
tables also show that the elapsed times for the proposed learning methods were shorter
than the elapsed times for the learning method based on SG.

The average accuracies and elapsed times of the existing learning method (SG) were
compared to the average accuracies and elapsed times of the proposed learning meth-
ods (C1-D6) by using an analysis of variance (ANOVA) test and Tukey—Kramer’s hon-
estly significant difference (HSD) test. The scipy.stats.f_oneway method in the
SciPy library was used as the implementation of the ANOVA test, and the statsmod-
els.stats.multicomp.pairwise_tukeyhsd method in the StatsModels pack-
age was used as the implementation of Tukey—Kramer’s HSD test. Recall that the ANOVA
test examines whether the hypothesis that the given groups have the same population
mean is rejected, whereas Tukey—Kramer’s HSD test can be used to find specifically which
pair has a significant difference in groups. The significance level was set at 5% (0.05) for the
ANOVA and Tukey-Kramer’s HSD tests. The p-value computed by the ANOVA test for
the accuracies was about 4.09 x 107! (< 0.05). Table 4 indicates that the adjusted p-value
between each of the learning methods based on C1, C2, C3, C4, D3, D4, and D6 and the

7We checked that the sparsity and diversity learning methods based on C1, C2, C3, C4, D3, D4, and D6 with Qy, defined
by (26) perform better than the learning method based on SG, as seen in the results (Tables 2, 3, 4, and 5) for ensemble
learning with sparsity.
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Table 2 Classification accuracies (%) and elapsed times (s) for the sparsity learning methods based
on SG, C1, C2, C3, and C4 applied to the datasets in Table 1

# SG C1 « 3 4
acc. time acc. time acc. time acc. time acc. time

1 80.59 0.531 81.74 0.206 83.34 0.197 84.20 0.208 83.92 0213
2 95.52 0499 94.45 0.203 94.01 0.206 94.44 0.205 9343 0.209
3 65.10 0510 64.06 0.205 63.15 0.205 6341 0.210 63.67 0.211
4 71.29 0433 74.78 0.206 71.03 0.209 7214 0210 71.03 0212
5 7516 39.848 48.16 9.405 68.66 9402 57.83 9.364 75.16 9.246
6 50.00 4.107 48.65 0.801 50.05 03815 50.30 0.819 49.95 0.805
7 45.70 0.697 46.68 0.220 43.89 0219 43.89 0.224 42.19 0.230
8 8733 0916 8333 0.601 8133 0.599 82.66 0.605 82.00 0.615
9 56.54 1.080 56.54 0.605 56.54 0616 40.63 0.632 13.53 0.626
10 96.72 1.015 96.72 1.015 89.91 0613 92.13 0.621 91.09 0.625
M 45.89 2236 48.05 0.806 4444 0.829 42.68 0.850 4397 0.856
12 42.17 2111 46.77 1211 46.22 1.201 46.67 1.238 4543 1.226
13 68.05 7.326 75.06 1517 7294 1.500 72.98 1521 71.60 1.532
14 70.24 10.197 66.78 2.298 65.58 2278 75.62 2.358 40.73 2.303
15 60.91 95.861 64.99 11.571 71.20 11.594 58.69 11.604 69.95 11.611
Ave. 6741 11.158 66.04 2.030 66.82 2.032 65.22 2.045 62.51 2.035

Table 3 Classification accuracies (%) and elapsed times (s) for the sparsity learning methods based
on D1, D2, D3, D4, D5, and D6 applied to the datasets in Table 1

# D1 D2 D3 D4 D5 D6
acc. time acc. time acc. time acc. time acc. time acc. time

7784 0210 8275 0.207 8392 0298 8247 0210 8333 0213 8378  0.229
95.52 0180 8976 0206 9444 0287 9357 0206 9181 0.208 9415 0.254
2786 0202 51.17 0206 6432 0280 5676 0212 59.11 0.209 6406  0.237
7645 0.187 7103 0.200 7158 0312 7132 0213 7101 0212 7186  0.267
39.00 9383 54.00 9365 4616 9697 515 9525 6616 9584 6866 10.190
4990 0795 5135 0.822 5020 1.068 508 0.805 49.65 0.849 5000 0974
4349 0222 4308 0225 4360 0352 4439 0223 4249 0229 4348  0.298
63.33 0607 7466 0600 8466 0780 7733 0621 7866 0613 8133 0.690
25.01 0615 3924 0612 5654 0722 1679 0625 2328 0629 5654 0694
62.47 0592 6950 0603 9155 0823 8871 0630 9453 0616 9165 0.717
29.28 0841 3214 0829 4094 1.150 4008 0835 3749 0843 43.86 1.006
2238 1221 2562 1.205 45.80 1617 3102 1234 3395 1246 4902 1.469
50.95 1497 4147 1507 7225 2.182 6744 1527  53.03 1.527  76.66 1.937
64.78 2304 3418 2322 6633 3319 7417 2356 3778 2358 6640 3.079
3206 11604 4601 11585 6763 13472 6263 11620 5546 11671 6620 13259

LA WN—= OO0V NOUN~NWN —

Ave. 5069 2031 5373 2033 6533 2424 6060 2056 5852 2067 6718 2353

existing learning method based on SG was greater than 0.05. This implies that the exist-
ing and proposed methods based on C1, C2, C3, C4, D3, D4, and D6 had almost the same
performances in the sense of accuracy. The p-value computed by the ANOVA test for the
elapsed time was about 2.67 x 107?° (< 0.05). Table 5 indicates that there is a significant
difference in the sense of the elapsed time between each of the proposed methods and the
existing method based on SG. Therefore, the proposed methods ran significantly faster
than the existing method based on SG.

6 Conclusion

In this paper, we proposed a stochastic approximation method based on adaptive learning
rate optimization algorithms for solving a convex stochastic optimization problem over
the fixed point set of a quasinonexpansive mapping. It also presented convergence analyses
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Table 4 Multiple comparison for accuracies for the sparsity learning methods applied to the datasets
in Table 1 using Tukey—Kramer’s HSD test at the 5% significance level (‘meandiffs” indicates the
pairwise mean differences between Groups 1 and 2, “p-adj” indicates the adjusted p-value, and
“Lower” (resp. “Upper”) indicates the lower (resp. upper) value of the confidence interval for the
pairwise mean differences)

Group 1 Group 2 meandiffs p-adj Lower Upper Reject
il 2 0.7823 09 -6.969 85335 FALSE
l 3 -0.8189 0.9 -8.5702 6.9323 FALSE
il c4 -3.5273 09 -11.2785 4.2239 FALSE
l D1 -154512 0.001 —23.2024 —-7.6999 TRUE
@ D2 —-12.3071 0.001 —-20.0583 -4.5559 TRUE
@ D3 -0.7095 0.9 -8.4607 7.0417 FALSE
@ D4 -5.4384 0.4642 -13.1897 23128 FALSE
@ D5 -7.5201 0.0668 -15.2713 0.2311 FALSE
l D6 11391 09 -6.6122 8.8903 FALSE
@ SG 1.3916 0.9 -6.3596 9.1428 FALSE
2 a3 -1.6012 09 -9.3524 6.15 FALSE
2 Cc4 -4.3096 0.7575 —-12.0608 34416 FALSE
2 D1 -16.2334 0.001 -23.9847 -8.4822 TRUE
2 D2 —-13.0894 0.001 —20.8406 -5.3382 TRUE
2 D3 -1.4918 09 -9.243 6.2594 FALSE
2 D4 -6.2207 0.2564 -13.9719 1.5305 FALSE
2 D5 -8.3023 0.0241 -16.0536 -0.5511 TRUE
2 D6 0.3568 0.9 —-7.3944 8.108 FALSE
2 SG 0.6093 09 -7.1419 8.3605 FALSE
c3 c4 -2.7084 0.9 -10.4596 5.0428 FALSE
c3 D1 -14.6322 0.001 -22.3834 -6.881 TRUE
a3 D2 —-11.4882 0.001 -19.2394 -3.737 TRUE
C3 D3 0.1094 09 -7.6418 7.8606 FALSE
a D4 -4.6195 0.6775 -12.3707 31317 FALSE
c3 D5 -6.7011 0.1642 -14.4524 1.0501 FALSE
a D6 1.958 0.9 -5.7932 9.7092 FALSE
c3 SG 22105 09 -5.5407 9.9617 FALSE
c4 D1 -11.9238 0.001 -19.6751 -4.1726 TRUE
c4 D2 -8.7798 0.0121 -16.531 -1.0286 TRUE
c4 D3 28178 0.9 -4.9334 10.569 FALSE
c4 D4 -19111 09 -9.6623 5.8401 FALSE
4 D5 -3.9928 0.8393 -11.744 3.7585 FALSE
c4 D6 4.6664 0.6654 -3.0848 124176 FALSE
c4 SG 49189 0.6002 -2.8323 12,6701 FALSE
D1 D2 3.144 0.9 -4.6072 10.8953 FALSE
D1 D3 14.7416 0.001 6.9904 224929 TRUE
D1 D4 10.0127 0.0016 22615 17.7639 TRUE
D1 D5 79311 0.0398 0.1799 15.6823 TRUE
D1 D6 16.5902 0.001 8.839 24.3414 TRUE
D1 SG 16.8427 0.001 9.0915 24.594 TRUE
D2 D3 11.5976 0.001 3.8464 19.3488 TRUE
D2 D4 6.8687 0.1379 -0.8825 14.6199 FALSE
D2 D5 4.787 0.6343 -2.9642 12.5383 FALSE
D2 D6 13.4462 0.001 5.6949 21.1974 TRUE
D2 SG 13.6987 0.001 59475 214499 TRUE
D3 D4 -4.7289 0.6493 -12.4801 3.0223 FALSE
D3 D5 -6.8106 0.1467 -14.5618 0.9407 FALSE
D3 D6 1.8486 09 -5.9027 9.5998 FALSE
D3 SG 21011 0.9 -5.6501 9.8523 FALSE
D4 D5 -2.0816 09 -9.8329 5.6696 FALSE
D4 D6 6.5775 0.1849 -1.1737 14.3287 FALSE
D4 SG 6.83 0.1437 -0.9212 14.5812 FALSE
D5 D6 8.6591 0.0145 0.9079 164104 TRUE
D5 SG 89117 0.0099 1.1604 16.6629 TRUE

D6 SG 0.2525 09 ~7.4987 8.0037 FALSE
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Table 5 Multiple comparison for elapsed time for the sparsity learning methods applied to the
datasets in Table 1 using Tukey—Kramer’s HSD test at the 5% significance level (‘meandiffs” indicates
the pairwise mean differences between Groups 1 and 2, “p-adj” indicates the adjusted p-value, and
“Lower” (resp. “Upper”) indicates the lower (resp. upper) value of the confidence interval for the
pairwise mean differences)

Group 1 Group 2 meandiffs p-adj Lower Upper Reject
il (@) 0.0019 09 -3.0351 3.0389 FALSE
l c3 0.0142 0.9 -3.0227 3.0512 FALSE
i c4 0.0043 09 -3.0327 3.0413 FALSE
l D1 0.0003 09 -3.0367 3.0372 FALSE
@ D2 0.0026 09 -3.0344 3.0395 FALSE
@ D3 0.3937 09 -2.6433 34307 FALSE
@ D4 0.0258 0.9 -3.0111 3.0628 FALSE
@ D5 0.0366 09 —-3.0003 3.0736 FALSE
@ D6 0323 0.9 -2.714 3.3599 FALSE
@ SG 9.1275 0.001 6.0905 12.1645 TRUE

2 c3 0.0123 09 -3.0246 3.0493 FALSE
2 c4 0.0024 0.9 -3.0346 3.0394 FALSE
2 D1 -0.0016 09 -3.0386 3.0353 FALSE
2 D2 0.0007 09 -3.0363 3.0376 FALSE
2 D3 03918 09 -2.6452 34288 FALSE
2 D4 0.0239 09 -3.013 3.0609 FALSE
2 D5 0.0347 0.9 -3.0022 3.0717 FALSE
2 D6 0.3211 09 -2.7159 3.358 FALSE
2 SG 9.1256 0.001 6.0886 12.1626 TRUE

c3 c4 —-0.0099 0.9 -3.0469 3.027 FALSE
c3 D1 -0.014 09 -3.051 3.023 FALSE
a3 D2 -0.0117 0.9 -3.0486 3.0253 FALSE
C3 D3 0.3795 09 -2.6575 34164 FALSE
a D4 0.0116 0.9 -3.0254 3.0485 FALSE
c3 D5 0.0224 09 -3.0146 3.0593 FALSE
a D6 0.3087 0.9 -2.7282 3.3457 FALSE
c3 SG 9.1132 0.001 6.0763 12.1502 TRUE

c4 D1 —-0.004 0.9 -3.041 3.0329 FALSE
c4 D2 -0.0017 09 -3.0387 3.0352 FALSE
c4 D3 0.3894 0.9 -2.6476 34264 FALSE
c4 D4 0.0215 09 -3.0155 3.0585 FALSE
4 D5 0.0323 0.9 —-3.0046 3.0693 FALSE
c4 D6 0.3187 0.9 -2.7183 3.3556 FALSE
c4 SG 9.1232 0.001 6.0862 12.1602 TRUE

D1 D2 0.0023 0.9 -3.0347 3.0393 FALSE
D1 D3 0.3935 0.9 -2.6435 34304 FALSE
D1 D4 0.0256 0.9 -3.0114 3.0625 FALSE
D1 D5 0.0364 09 -3.0006 3.0733 FALSE
D1 D6 0.3227 0.9 -2.7143 3.3597 FALSE
D1 SG 9.1272 0.001 6.0903 12.1642 TRUE

D2 D3 03911 0.9 -2.6458 34281 FALSE
D2 D4 0.0232 09 -3.0137 3.0602 FALSE
D2 D5 0.0341 0.9 -3.0029 3.071 FALSE
D2 D6 0.3204 09 -2.7166 3.3574 FALSE
D2 SG 9.1249 0.001 6.088 12.1619 TRUE

D3 D4 -0.3679 09 -3.4049 2.6691 FALSE
D3 D5 -0.3571 0.9 -3.3941 26799 FALSE
D3 D6 -0.0707 09 -3.1077 2.9662 FALSE
D3 SG 8.7338 0.001 5.6968 11.7707 TRUE

D4 D5 0.0108 09 -3.0262 3.0478 FALSE
D4 D6 0.2972 0.9 -2.7398 3.3341 FALSE
D4 SG 9.1017 0.001 6.0647 12.1386 TRUE

D5 D6 0.2863 0.9 —-2.7506 33233 FALSE
D5 SG 9.0909 0.001 6.0539 121278 TRUE

D6 SG 8.8045 0.001 5.7676 11.8415 TRUE
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of the proposed method with constant and diminishing step-sizes. The analyses confirm
that any accumulation point of the sequence generated by the proposed method almost
surely belongs to the solution set of the stochastic optimization problem in deep learn-
ing. We also compared the proposed algorithm with the existing adaptive learning rate
optimization algorithms and showed that the proposed algorithm achieved an O(1/./n)
convergence rate which was not achieved for the existing adaptive learning rate optimiza-
tion algorithms. Numerical results for the classifier ensemble problems demonstrated that
the proposed learning methods achieve high accuracies faster than the existing learning
method based on the first-order algorithm. In particular, the proposed methods with con-
stant step-sizes or Armijo line search step-sizes solve the classifier ensemble problems
faster than the existing method based on the first-order algorithm.
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