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Abstract
This paper proposes a stochastic approximation method for solving a convex
stochastic optimization problem over the fixed point set of a quasinonexpansive
mapping. The proposed method is based on the existing adaptive learning rate
optimization algorithms that use certain diagonal positive-definite matrices for
training deep neural networks. This paper includes convergence analyses and
convergence rate analyses for the proposed method under specific assumptions.
Results show that any accumulation point of the sequence generated by the method
with diminishing step-sizes almost surely belongs to the solution set of a stochastic
optimization problem in deep learning. Additionally, we apply the learning methods
based on the existing and proposed methods to classifier ensemble problems and
conduct a numerical performance comparison showing that the proposed learning
methods achieve high accuracies faster than the existing learning method.
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1 Introduction
Convex stochastic optimization problems in which the objective function is the expec-
tation of convex functions are considered important due to their occurrence in practical
applications, such as machine learning and deep learning.

The classical method for solving these problems is the stochastic approximation (SA)
method [1, (5.4.1)], [2, Algorithm 8.1], [3], which is applicable when unbiased estimates of
(sub)gradients of an objective function are available. Modified versions of the SA method,
such as the mirror descent SA method [4, Sects. 3 and 4], [5, Sect. 2.3] and the accel-
erated SA method [6, Sect. 3.1], have been reported as useful methods for solving these
problems. Meanwhile, some stochastic optimization algorithms have been proposed with
the rapid development of deep learning. For example, AdaGrad [7, Figs. 1 and 2] is an
algorithm based on the mirror descent SA method, and Adam [8, Algorithm 1], [2, Algo-
rithm 8.7] and AMSGrad [9, Algorithm 2] are well known as powerful tools for solving
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convex stochastic optimization problems in deep neural networks. These algorithms use
the inverses of diagonal positive-definite matrices at each iteration to adapt the learning
rates of all model parameters. Hence, these algorithms are called adaptive learning rate
optimization algorithms.

The above-mentioned methods commonly assume that metric projection onto a given
constraint set is computationally possible. However, although the metric projection onto
a simple convex set, such an affine subspace, half-space, or hyperslab, can be easily com-
puted, the projection onto a complicated set, such as the intersections of simple convex
sets, the set of minimizers of a convex function, or the solution set of a monotone varia-
tional inequality, cannot be easily computed. Accordingly, it is difficult to apply the above-
mentioned methods to stochastic optimization problems with complicated constraints.

In order to solve a stochastic optimization problem over a complicated constraint set,
we define a computable quasinonexpansive mapping whose fixed point set coincides with
the constraint set, which is possible for the above-mentioned complicated convex sets
(see Sect. 3.1 and Example 4.1 for examples of computable quasinonexpansive mappings).
Accordingly, the present paper deals with a convex stochastic optimization problem over
the fixed point set of a computable quasinonexpansive mapping.

Since useful fixed point algorithms have already been reported [10, Chap. 5], [11,
Chaps. 2–9], [12–16], we can find fixed points of quasinonexpansive mappings, which
are feasible points of the convex stochastic optimization problem. By combining the SA
method with an existing fixed point algorithm, we could obtain algorithms [17, Algorithms
1 and 2] for solving convex stochastic optimization problems that can be applied to clas-
sifier ensemble problems [18, 19] (Example 4.1(ii)), which arise in the field of machine
learning. However, the existing algorithms converge slowly [17] due to being stochastic
first-order methods. In this paper, we propose an algorithm (Algorithm 1) for solving a
convex stochastic optimization problem (Problem 3.1) that performs better than the al-
gorithms in [17, Algorithms 1 and 2]. The algorithm proposed herein is based on useful
adaptive learning rate optimization algorithms, such as Adam and AMSGrad, that use cer-
tain diagonal positive-definite matrices.1 The first contribution of the present study is an
analysis of the convergence of the proposed algorithm (Theorem 5.1). This analysis finds
that, if sufficiently small constant step-sizes are used, then the proposed algorithm approx-
imates a solution to the problem (Theorem 5.2). Moreover, for sequences of diminishing
step-sizes, the convergence rates of the proposed algorithm can be specified (Theorem 5.3
and Corollary 5.1).

We compare the proposed algorithm with the existing adaptive learning rate optimiza-
tion algorithms for a constrained convex stochastic optimization problem in deep learn-
ing (Example 4.1(i)). Although the existing adaptive learning rate optimization algorithms
achieve low regret, they cannot solve the problem. The second contribution of the present
study is to show that, unlike the existing adaptive learning rate optimization algorithms,
the proposed algorithm can solve the problem (Corollaries 5.2 and 5.3) (see Sect. 5.2 for
details). The third contribution is that we show that the proposed algorithm can solve
classifier ensemble problems and that the learning methods based on the proposed algo-
rithm perform better numerically than the existing learning method based on the existing
algorithms in [17]. In particular, the numerical results indicate that the learning methods

1See (6) and (9) for the definitions of Adam and AMSGrad.
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based on the proposed algorithm with constant step-sizes or step-sizes computed by the
Armijo line search algorithm can solve classifier ensemble problems faster than the exist-
ing learning method based on the algorithms in [17]. As a result, the proposed learning
methods achieve high accuracies faster than the existing learning method.

2 Mathematical preliminaries
2.1 Definitions and propositions
Let N be the set of all positive integers. Let RN be an N-dimensional Euclidean space with
the inner product 〈·, ·〉 with the associated norm ‖·‖, and letRN

+ := {(xi)N
i=1 ∈R

N : xi ≥ 0 (i =
1, 2, . . . , N)}. Let X� denote the transpose of matrix X, let I denote the identity matrix,
and let Id denote the identity mapping on R

N . Let SN be the set of N × N symmetric
matrices, i.e., SN = {X ∈ R

N×N : X = X�}. Let SN
++ denote the set of symmetric positive-

definite matrices, i.e., SN
++ = {X ∈ S

N : X � O}. Given H ∈ S
N
++, the H-inner product of RN

and the H-norm can be defined for all x, y ∈ R
N by 〈x, y〉H := 〈x, Hy〉 and ‖x‖2

H := 〈x, Hx〉.
Let diag(xi) be an N ×N diagonal matrix with diagonal components xi ∈ R (i = 1, 2, . . . , N ),
and let DN be the set of N × N diagonal matrices, i.e., DN = {X ∈R

N×N : X = diag(xi), xi ∈
R (i = 1, 2, . . . , N)}.

Let E[X] denote the expectation of random variable X. The history of the process
ξ0, ξ1, . . . up to time n is denoted by ξ[n] = (ξ0, ξ1, . . . , ξn). Let E[X|ξ[n]] denote the condi-
tional expectation of X given by ξ[n] = (ξ0, ξ1, . . . , ξn). Unless stated otherwise, all relations
between random variables are supported to hold almost surely.

The subdifferential [10, Definition 16.1], [20, Sect. 23] of a convex function f : RN → R

is defined for all x ∈R
N by

∂f (x) :=
{

u ∈ R
N : f (y) ≥ f (x) + 〈y – x, u〉 (y ∈ R

N)}.

A point u ∈ ∂f (x) is called the subgradient of f at x ∈R
N .

Proposition 2.1 ([21, Theorem 4.1.3], [10, Propositions 16.14(ii), (iii)]) Let f : RN →R be
convex. Then f is continuous and ∂f (x) 
= ∅ for every x ∈ R

N . Moreover, for every x ∈ R
N ,

there exists δ > 0 such that ∂f (B(x; δ)) is bounded, where B(x; δ) is the closed ball with center
x and radius δ.

When a mapping Q : RN → R
N is considered under the H-norm ‖ · ‖H , we denote it as

QH : RN →R
N . We define Q := QI . A mapping Q : RN →R

N is said to be quasinonexpan-
sive [10, Definition 4.1(iii)] if

∥∥Q(x) – y
∥∥≤ ‖x – y‖

for all x ∈R
N and all y ∈ Fix(Q), where Fix(Q) is the fixed point set of Q defined by Fix(Q) :=

{x ∈ R
N : x = Q(x)}. When a quasinonexpansive mapping has one fixed point, its fixed

point set is closed and convex [22, Proposition 2.6]. Q is called a firmly quasinonexpansive
mapping [23, Sect. 3] if ‖Q(x) – y‖2 + ‖(Id – Q)(x)‖2 ≤ ‖x – y‖2 for all x ∈ R

N and all y ∈
Fix(Q). Q is firmly quasinonexpansive if and only if R := 2Q – Id is quasinonexpansive
[10, Proposition 4.2]. This means that (1/2)(Id + R) is firmly quasinonexpansive when R
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is quasinonexpansive. Given H ∈ S
N
++, we define the subgradient projection2 relative to a

convex function f : RN →R by

Qf ,H(x) :=

⎧
⎨

⎩

x – f (x)
‖H–1G(x)‖2

H
H–1G(x) if f (x) > 0,

x otherwise,
(1)

where G(x) is any point in ∂f (x) (x ∈R
N ) and lev≤0f := {x ∈R

N : f (x) ≤ 0} 
= ∅. The follow-
ing proposition holds.

Proposition 2.2 Let H ∈ S
N
++ and let f : RN →R be convex. Then Qf ,H : RN →R

N defined
by (1) satisfies the following:

(i) Qf := Qf ,I is firmly quasinonexpansive and Fix(Qf ) = lev≤0f ;
(ii) Qf ,H is firmly quasinonexpansive under the H-norm with Fix(Qf ,H) = Fix(Qf ).

Proof (i) This follows from Proposition 2.3 in [22].
(ii) We first show that lev≤0f = Fix(Qf ,H ). From (1), we have that lev≤0f ⊂ Fix(Qf ,H ). Let

x ∈ Fix(Qf ,H ) and assume that x /∈ lev≤0f . Then the definition of the H-inner product and
G(x) ∈ ∂f (x) mean that, for all y ∈ lev≤0f ,

〈
y – x, H–1G(x)

〉
H =

〈
y – x, G(x)

〉≤ f (y) – f (x) ≤ –f (x) < 0, (2)

which implies that H–1G(x) 
= 0. From (1) and x ∈ Fix(Qf ,H ), we also have that

f (x)
‖H–1G(x)‖2

H
H–1G(x) = x – Qf ,H (x) = 0,

which, together with f (x) > 0, gives H–1G(x) = 0, which is a contradiction. Hence, we have
that lev≤0f ⊃ Fix(Qf ,H), i.e., lev≤0f = Fix(Qf ,H ). Accordingly, (i) ensures that Fix(Qf ,H) =
lev≤0f = Fix(Qf ). For all x ∈R

N\lev≤0f and all y ∈ lev≤0f ,

∥∥Qf ,H(x) – y
∥∥2

H

= ‖x – y‖2
H +

2f (x)
‖H–1G(x)‖2

H

〈
y – x, H–1G(x)

〉
H +

f (x)2

‖H–1G(x)‖2
H

,

which, together with (2), implies that Qf ,H is firmly quasinonexpansive under the H-
norm. �

Q : RN →R
N is said to be Lipschitz continuous (L-Lipschitz continuous) if there exists

L > 0 such that ‖Q(x) – Q(y)‖ ≤ L‖x – y‖ for all x, y ∈R
N . Q : RN →R

N is said to be nonex-
pansive [10, Definition 4.1(ii)] if Q is 1-Lipschitz continuous, i.e., ‖Q(x) – Q(y)‖ ≤ ‖x – y‖
for all x, y ∈ R

N . Any nonexpansive mapping satisfies the quasinonexpansivity condition.
The metric projection [10, Subchapter 4.2, Chap. 28] onto a nonempty, closed convex
set C (⊂ R

N ), denoted by PC , is defined for all x ∈ R
N by PC(x) ∈ C and ‖x – PC(x)‖ =

d(x, C) := infy∈C ‖x – y‖. PC is firmly nonexpansive, i.e., ‖PC(x) – PC(y)‖2 + ‖(Id – PC)(x) –

2See [23, Lemma 3.1], [22, Proposition 2.3], [24, Subchapter 4.3] for the definition and properties of the subgradient pro-
jection when H = I.
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(Id – PC)(y)‖2 ≤ ‖x – y‖2 for all x, y ∈ R
N , with Fix(PC) = C [10, Proposition 4.8, (4.8)].

The metric projection onto C under the H-norm is denoted by PC,H . When C is an affine
subspace, half-space, or hyperslab, the projection onto C can be computed within a finite
number of arithmetic operations [10, Chap. 28].

3 Convex stochastic optimization problem over fixed point set
This paper considers the following problem.

Problem 3.1 Assume that
(A0) (Hn)n∈N is the sequence in S

N
++ ∩D

N ;
(A1) QHn : RN →R

N is quasinonexpansive under the Hn-norm and X :=
⋂

n∈N Fix(QHn )
(⊂ C) is nonempty, where C ⊂R

N is a nonempty, closed convex set onto which
the projection can be easily computed;

(A2) f : RN →R defined for all x ∈ R
N by f (x) := E[F(x, ξ )] is well defined and convex,

where ξ is a random vector whose probability distribution P is supported on a set
� ⊂ R

M and F : RN × � →R.
Then

find x� ∈ X� :=
{

x� ∈ X : f
(
x�
)

= f � := inf
x∈X

f (x)
}

,

where one assumes that X� is nonempty.

Examples of QHn satisfying (A0) and (A1) are described in Sect. 3.1 and Example 4.1.
The following are sufficient conditions [5, (A1), (A2), (2.5)] for being able to solve Prob-

lem 3.1.
(C1) There is an independent and identically distributed sample ξ0, ξ1, . . . of realizations

of the random vector ξ ;
(C2) There is an oracle which, for a given input point (x, ξ ) ∈R

N × �, returns a
stochastic subgradient G(x, ξ ) such that g(x) := E[G(x, ξ )] is well defined and is a
subgradient of f at x, i.e., g(x) ∈ ∂f (x);

(C3) There exists a positive number M such that, for all x ∈ C, E[‖G(x, ξ )‖2] ≤ M2.
Suppose that F(·, ξ ) (ξ ∈ �) is convex and consider the oracle which returns a stochas-

tic subgradient G(x, ξ ) ∈ ∂xF(x, ξ ) for given (x, ξ ) ∈ R
N × �. Then f (·) = E[F(·, ξ )] is well

defined and convex, and ∂f (x) = E[∂xF(x, ξ )] [25, Theorem 7.51], [5, p.1575].

3.1 Related problems and their algorithms
Here, let us consider the following convex stochastic optimization problem [5, (1.1)]:

minimize f (x) = E
[
F(x, ξ )

]
subject to x ∈ C, (3)

where C ⊂R
N is nonempty, bounded, closed, and convex. The classical method for prob-

lem (3) under (C1)–(C3) is the stochastic approximation (SA) method [1, (5.4.1)], [2, Al-
gorithm 8.1], [3] defined as follows: given x0 ∈ R

N and (λn)n∈N ⊂ (0, +∞),

xn+1 = PC
(
xn – λnG(xn, ξn)

)
(n ∈N). (4)



Iiduka Fixed Point Theory Algorithms Sci Eng         (2021) 2021:10 Page 6 of 31

The SA method requires the metric projection onto C, and hence can be applied only
to cases where C is simple in the sense that PC can be efficiently computed (e.g., C is a
closed ball, half-space, or hyperslab [10, Chap. 28]). When C is not simple, the SA method
requires solving the following subproblem at each iteration n:

Find xn+1 ∈ C such that {xn+1} = argmin
y∈C

∥∥(xn – λnG(xn, ξn)
)

– y
∥∥.

The mirror descent SA method [4, Sects. 3 and 4], [5, Sect. 2.3] is useful for solving
problem (3) and has been analyzed for the case of step-sizes that are constant or dimin-
ishing. For example, the mirror descent SA method [5, (2.32), (2.38), and (2.47)] with a
constant step-size policy generates the following sequence (x̃n

1)n∈N: given x0 ∈ Xo := {x ∈
R

N : ∂ω(x) 
= ∅},

xn+1 = argmin
z∈C

{〈
γnG(xn, ξn), z – xn

〉
+ V (xn, z)

}
, x̃n+1

1 :=
n+1∑

t=1

γt
∑n+1

i=1 γi
xt , (5)

where ω : C → R is differentiable and convex, V : Xo × C → R+ is defined for all (x, z) ∈
Xo × C by V (x, z) := ω(z) – [ω(x) + 〈∇ω(x), z – x〉], and γt (t ∈ N) is a constant step-size.
When ω(·) = (1/2)‖ · ‖2, xn+1 in (5) coincides with xn+1 in (4). Under certain assumptions,
method (5) satisfies E[f (x̃n

1) – f �] = O(1/
√

n) [5, (2.48)] (see [5, (2.57)] for the rate of con-
vergence of the mirror descent SA method with a diminishing step-size policy).

As the field of deep learning has developed, it has produced some useful stochastic op-
timization algorithms, such as AdaGrad [7, Figs. 1 and 2], [2, Algorithm 8.4], RMSProp
[2, Algorithm 8.5], and Adam [8, Algorithm 1], [2, Algorithm 8.7], for solving problem
(3). The AdaGrad algorithm is based on the mirror decent SA method (5) (see also [7,
(4)]), and the RMSProp algorithm is a variant of AdaGrad. The Adam algorithm is based
on a combination of RMSProp and the momentum method [26, (9)], as follows: given
xt , mt–1, vt–1 ∈R

N ,

mt := β1mt–1 + (1 – β1)∇xF(xt , ξt),

vt := β2vt–1 + (1 – β2)∇xF(xt , ξt) � ∇xF(xt , ξt),

m̂t :=
mt

1 – β t+1
1

, v̂t :=
vt

1 – β t+1
2

,

dt := –diag
(

1
√

v̂t,i + ε

)
m̂t = –

(
m̂t,i√
v̂t,i + ε

)N

i=1
,

xt+1 := PC[xt + λtdt], i.e., {xt+1} = argmin
y∈C

∥∥(xt + λtdt) – y
∥∥,

(6)

where βi > 0 (i = 1, 2), ε > 0, (λn)n∈N ⊂ (0, 1) is diminishing step-size, and A � B denotes
the Hadamard product of matrices A and B. If we define matrix Ht as

Ht := diag(
√

v̂t,i + ε), (7)

then the Adam algorithm (6) can be expressed as

xn+1 = PC

[
xt – λtdiag

(
1

√
v̂t,i + ε

)
m̂t

]
= PC

[
xt – λtH–1

t m̂t
]
. (8)



Iiduka Fixed Point Theory Algorithms Sci Eng         (2021) 2021:10 Page 7 of 31

Unfortunately, there exists an explicit example of a simple convex optimization setting
where Adam does not converge to the optimal solution [9, Theorem 2]. To guarantee con-
vergence and preserve the practical benefits of Adam, AMSGrad [9, Algorithm 2] was
proposed as follows: for (β1,t)t∈N ⊂ (0, +∞),

mt := β1,tmt–1 + (1 – β1,t)∇xF(xt , ξt),

vt := β2vt–1 + (1 – β2)∇xF(xt , ξt) � ∇xF(xt , ξt),

v̂t := (v̂t,i) =
(
max{v̂t–1,i, vt,i}

)
,

Ht := diag(
√

v̂t,i),

dt := –H–1
t mt ,

xt+1 := PC,Ht [xt + λtdt], i.e., {xt+1} = argmin
y∈C

∥∥(xt + λtdt) – y
∥∥

Ht
.

(9)

The existing SA methods (4), (5), (6), and (9) (see also [6, 27], [2, Sect. 8.5], and [5,
Sect. 2.3]) require minimizing a certain convex function over C at each iteration. There-
fore, when C has a complicated form (e.g., C is expressed as the set of all minimizers of a
convex function over a closed convex set, the solution set of a monotone variational in-
equality, or the intersection of closed convex sets), it is difficult to compute the point xn+1

generated by any of (4), (5), (6), and (9) at each iteration.
Meanwhile, the fixed point theory [10, 28–30] enables us to define a computable quasi-

nonexpansive mapping of which the fixed point set is equal to the complicated set. For
example, let lev≤0fi (i = 1, 2, . . . , I) be the level set of a convex function fi : RN →R, and let
X be the intersection of lev≤0fi, i.e.,

X :=
I⋂

i=1

lev≤0fi =
I⋂

i=1

{
x ∈R

N : fi(x) ≤ 0
} 
= ∅. (10)

Let n ∈ N be fixed arbitrarily, and let Hn ∈ S
N
++ (see (A0)). Let Qfi ,Hn : RN → R

N (i =
1, 2, . . . , I) be the subgradient projection defined by (1) with f := fi and H := Hn. Accord-
ingly, Proposition 2.2 implies that Qfi ,Hn is firmly quasinonexpansive under the Hn-norm
and Fix(Qfi ,Hn ) = lev≤0fi (i = 1, 2, . . . , I). Under the condition that the subgradients of fi can
be efficiently computed (see, e.g., [10, Chap. 16] for examples of convex functions with
computable subgradients), Qfi ,Hn also can be computed. Here, let us define QHn : RN → R

N

as

QHn :=
I∑

i=1

ωiQfi ,Hn , (11)

where (ωi)I
i=1 ⊂ (0, +∞) satisfies

∑I
i=1 ωi = 1. Then QHn is quasinonexpansive under the

Hn-norm [10, Exercise 4.11]. Moreover, we have that

X =
I⋂

i=1

lev≤0fi =
I⋂

i=1

Fix(Qfi ) =
I⋂

i=1

⋂

n∈N
Fix(Qfi ,Hn ) =

⋂

n∈N
Fix(QHn ), (12)
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where the second equality comes from Proposition 2.2(i) (i.e., Fix(Qfi ) = lev≤0fi (i =
1, 2, . . . , I)), the third equality comes from Proposition 2.2(ii) (i.e., Fix(Qfi ) = Fix(Qfi ,Hn ) for
all n ∈N), and the fourth equality comes from [10, Proposition 4.34]. Therefore, (10), (11),
and (12) imply that we can define a computable mapping QHn satisfying (A1) of which the
fixed point set is equal to the intersection of level sets. In the case where C is simple in the
sense that PC = PC,I can be easily computed, I � O and Q := PC obviously satisfy (A0) and
(A1) with Fix(PC) = C =: X. Accordingly, Problem 3.1 with Q := PC coincides with problem
(3), which implies that Problem 3.1 is a generalization of problem (3).

Fixed point algorithms exist for searching for a fixed point of a nonexpansive mapping
[10, Chap. 5], [11, Chaps. 2–9], [12–16]. The sequence (xn)n∈N is generated by the Halpern
fixed point algorithm [11, Subchapter 6.5], [12, 16] as follows: for all n ∈N,

xn+1 := αnx0 + (1 – αn)Q(xn), (13)

where x0 ∈R
N , (αn)n∈N ⊂ (0, 1) satisfies limn→+∞ αn = 0 and

∑+∞
n=0 αn = +∞, and Q : RN →

R
N is nonexpansive with Fix(Q) 
= ∅. The sequence (xn)n∈N in (13) converges to the mini-

mizer of the specific convex function f0(x) := (1/2)‖x – x0‖2 (x ∈R
N ) over Fix(Q) (see, e.g.,

[11, Theorem 6.19]). From ∇f0(x) = x – x0 (x ∈ R
N ), the Halpern algorithm (13) can be

expressed as follows (see [31, 32] for algorithms optimizing a general convex function):

xn+1 = Q(xn) – αn
(
Q(xn) – x0

)
= Q(xn) – αn∇f0

(
Q(xn)

)
. (14)

The following algorithm obtained by combining the SA method (4) with (14) for solving
Problem 3.1 follows naturally from the above discussion: for all n ∈N,

xn+1 := PC
[
Qα(xn) – λnG

(
Qα(xn), ξn

)]
, (15)

where Qα := αId + (1 – α)Q (α ∈ (0, 1)). A convergence analysis of this algorithm for differ-
ent step-size rules was performed in [17]. For example, algorithm (15) with a diminishing
step-size was shown to converge in probability to a solution to Problem 3.1 with X = Fix(Q)
[17, Theorem III.2]. The advantage of algorithm (15) is that it allows convex stochastic op-
timization problems with complicated constraints to be solved (see also (12)). From the
fact stated in [17, Problem II.1] that the classifier ensemble problem [18, 19], which is a
central issue in machine learning, can be formulated as a convex stochastic optimization
problem with complicated constraints, the classifier ensemble problem can be regarded as
an example of Problem 3.1. This result implies that algorithm (15) can solve the classifier
ensemble problem. However, this algorithm suffers from slow convergence, as shown in
[17]. Specifically, although the learning methods based on algorithm (15) have higher ac-
curacies than the previously proposed learning methods, they have longer elapsed times.
Accordingly, we should consider developing stochastic optimization techniques to accel-
erate algorithm (15). This paper proposes an algorithm (Algorithm 1) based on useful
stochastic gradient descent algorithms, such as Adam [8, Algorithm 1] and AMSGrad [9,
Algorithm 2], for solving Problem 3.1, as a replacement for the existing stochastic first-
order method [17].
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Algorithm 1 Stochastic approximation method for solving Problem 3.1
Require: (αn)n∈N, (βn)n∈N, (λn)n∈N ⊂ (0, 1), C (⊃ X): nonempty, closed, convex

1: n ← 0, x0, m–1 ∈R
N , H0 ∈ S

N
++ ∩D

N

2: loop
3: mn := βnmn–1 + (1 – βn)G(xn, ξn)
4: Hn ∈ S

N
++ ∩D

N

5: Find dn ∈R
N that solves Hnd = –mn

6: yn := QHn (xn + λndn)
7: xn+1 := PC,Hn [αnxn + (1 – αn)yn]
8: n ← n + 1
9: end loop

4 Proposed algorithm
Before giving some examples, we first prove the following lemma listing the basic prop-

erties of Algorithm 1.

Lemma 4.1 Suppose that Hn ∈ S
N
++ (n ∈ N), (A1), (A2), (C1), and (C2) hold and consider

the sequence (xn)n∈N defined for all n ∈ N by Algorithm 1. Then, for all x ∈ X and all n ∈N,

E
[‖xn+1 – x‖2

Hn

]

≤ E
[‖xn – x‖2

Hn

]
+ 2(1 – αn)λn

{
(1 – βn)E

[
f (x) – f (xn)

]

+ βnE
[〈x – xn, mn–1〉

]}
+ (1 – αn)λ2

nE
[‖dn‖2

Hn

]

– αnE
[‖xn+1 – xn‖2

Hn

]
– (1 – αn)E

[‖xn+1 – yn‖2
Hn

]
.

Moreover, under (C3), E[‖mn‖2] ≤ M̃2 := max{‖m–1‖2, M2} holds for all n ∈N. If
(A3) h� := sup{maxi=1,2,...,N h–1/2

n,i : n ∈N} is finite, where Hn := diag(hn,i),
then E[‖dn‖2

Hn ] ≤ h2
�M̃2 holds for all n ∈N.

Proof Let x ∈ X ⊂ C and n ∈ N be fixed arbitrarily. The definition of xn+1 and the firm
nonexpansivity of PC,Hn guarantee that, almost surely,

‖xn+1 – x‖2
Hn

≤ ∥∥[αnxn + (1 – αn)yn
]

– x
∥∥2

Hn
–
∥∥xn+1 –

[
αnxn + (1 – αn)yn

]∥∥2
Hn

,

which, together with ‖αx + (1 – α)y‖2 = α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)‖x – y‖2 (x, y ∈ R
N ,

α ∈ R), implies that

‖xn+1 – x‖2
Hn ≤ αn‖xn – x‖2

Hn + (1 – αn)‖yn – x‖2
Hn – αn‖xn+1 – xn‖2

Hn

– (1 – αn)‖xn+1 – yn‖2
Hn .

(16)

The definition of yn and (A1) ensure that, almost surely,

‖yn – x‖2
Hn ≤ ∥∥(xn – x) + λndn

∥∥2
Hn

= ‖xn – x‖2
Hn + 2λn〈xn – x, dn〉Hn + λ2

n‖dn‖2
Hn .
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The definitions of dn and mn in turn ensure that

〈xn – x, dn〉Hn = 〈x – xn, mn〉
= βn〈x – xn, mn–1〉 + (1 – βn)

〈
x – xn, G(xn, ξn)

〉
.

Hence, (16) implies that, almost surely,

‖xn+1 – x‖2
Hn ≤ αn‖xn – x‖2

Hn + (1 – αn)
{‖xn – x‖2

Hn + 2λn〈xn – x, dn〉Hn

+ λ2
n‖dn‖2

Hn

}
– αn‖xn+1 – xn‖2

Hn – (1 – αn)‖xn+1 – yn‖2
Hn

= ‖xn – x‖2
Hn + 2(1 – αn)λn

{
βn〈x – xn, mn–1〉 (17)

+ (1 – βn)
〈
x – xn, G(xn, ξn)

〉}
+ (1 – αn)λ2

n‖dn‖2
Hn

– αn‖xn+1 – xn‖2
Hn – (1 – αn)‖xn+1 – yn‖2

Hn .

Moreover, the condition xn = xn(ξ[n–1]) (n ∈N) and (C1) guarantee that

E
[〈

x – xn, G(xn, ξn)
〉]

= E
[
E
[〈

x – xn, G(xn, ξn)
〉|ξ[n–1]

]]

= E
[〈

x – xn,E
[
G(xn, ξn)|ξ[n–1]

]〉]

= E
[〈

x – xn, g(xn)
〉]

,

which, together with (C2), implies that

E
[〈

x – xn, G(xn, ξn)
〉]≤ E

[
f (x) – f (xn)

]
.

Therefore, taking the expectation of (17) gives the first assertion of Lemma 4.1.
The definition of mn and (C3), together with the convexity of ‖ · ‖2, guarantee that, for

all n ∈N,

E
[‖mn‖2]≤ βnE

[‖mn–1‖2] + (1 – βn)E
[∥∥G(xn, ξn)

∥∥2]

≤ βnE
[‖mn–1‖2] + (1 – βn)M2.

Induction thus ensures that, for all n ∈N,

E
[‖mn‖2]≤ M̃2 := max

{‖m–1‖2, M2} < +∞. (18)

Given n ∈ N, Hn � O ensures that there exists a unique matrix Hn � O such that Hn = H
2
n

[33, Theorem 7.2.6]. Since ‖x‖2
Hn = ‖Hnx‖2 holds for all x ∈ R

N , the definition of dn implies
that, for all n ∈N,

E
[‖dn‖2

Hn

]
= E

[∥∥H
–1
n Hndn

∥∥2]≤ E
[∥∥H

–1
n
∥∥2‖mn‖2],

where ‖H
–1
n ‖ = ‖diag(h–1/2

n,i )‖ = maxi=1,2,...,N h–1/2
n,i (n ∈N). From (18) and

h� := sup
{

max
i=1,2,...,N

h–1/2
n,i : n ∈N

}
< +∞
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(by (A3)), we have that, for all n ∈ N,

E
[‖dn‖2

Hn

]≤ h2
�M̃2.

This completes the proof. �

The convergence analyses of Algorithm 1 in Sect. 5 depend on the following assump-
tion:

(A4) [5, p.1574], [9, p.2] C (⊃ X) is bounded.
Let us consider the case where Hn and vn are defined for all n ∈N by

vn := βvn–1 + (1 – β)G(xn, ξn) � G(xn, ξn),

v̂n := (v̂n,i) =
(
max{v̂n–1,i, vn,i}

)
,

Hn := diag(
√

v̂n,i),

(19)

where β ∈ (0, 1) and v–1 = v̂–1 = 0 ∈ R
N (see also (9)), and discuss the relationship be-

tween (A3) and (A4). Assumption (A4) implies that (xn)n∈N ⊂ C generated by Algorithm 1
is almost surely bounded. In the standard case of G(xn, ξn) ∈ ∂xF(xn, ξn), Proposition 2.1
and (A4) imply that (G(xn, ξn))n∈N is almost surely bounded, i.e., M1 := supn∈N ‖G(xn, ξn) �
G(xn, ξn)‖ < +∞. Since the triangle inequality and (19) guarantee that, almost surely,
‖vn‖ ≤ β‖vn–1‖ + (1 – β)‖G(xn, ξn) � G(xn, ξn)‖, induction shows that, for all n ∈ N, al-
most surely, ‖vn‖ ≤ M1 < +∞. Accordingly, (19) leads to the almost sure boundedness of
(v̂n)n∈N. Hence, h� := sup{maxi=1,2,...,N

√
v̂n,i : n ∈ N} < +∞, which implies that (A3) holds.

The above discussion shows that (A4) implies (A3) when Hn and vn are as follows (see also
(6) and (7)):

vn := βvn–1 + (1 – β)G(xn, ξn) � G(xn, ξn),

v̂n := (v̂n,i) =
(

max

{
vn,i

1 – βn+1 , v̂n–1,i

})
,

Hn := diag(
√

v̂n,i).

(20)

We provide some examples of Problem 3.1 with (A0)–(A4) that can be solved by Algo-
rithm 1 under (C1)–(C3).

Example 4.1 (i) Deep learning problem [9, p.2]: At each time step t, stochastic optimiza-
tion algorithms used in training deep networks pick a point xt ∈ X with the parameters of
the model to be learned, where X ⊂R

N is the simple, nonempty, bounded, closed convex
feasible set of points, and then incur loss ft(xt), where ft : RN →R is a convex loss function
represented as the loss of the model with the chosen parameters in the next minibatch.
Accordingly, the stochastic optimization problem in deep networks can be formulated as
follows:

minimize
T∑

t=1

ft(x) subject to x ∈ X = Fix(PX) =
⋂

n∈N
Fix(PX,Hn ), (21)
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where T is the total number of rounds in the learning process, and (Hn)n∈N ⊂ S
N
++ ∩ D

N

defined by each of (19) and (20) satisfies (A0). QHn := PX,Hn (n ∈ N) satisfies (A1), and
f (·) = E[fξ (·)] := (1/T)

∑T
t=1 ft(·) satisfies (A2). Setting C := X ensures (A4), which implies

(A3). Algorithm 1 for solving problem (21) is as follows:

xn+1 := αnxn + (1 – αn)PX,Hn

(
xn – λnH–1

n mn
)
. (22)

(ii) Classifier ensemble problem [18, Sect. 2.2.2], [19, Sect. 3.2.2] (see also [17, Problem
II.1]): For a training set S = {(zm, lm)}M

m=1 ⊂ R
N × R, where zm := (zn

m)N
n=1 and zn

m is the
measure corresponding to the mth sample in the sample set and the nth classifier in an
ensemble. The classifier ensemble problem with sparsity learning is the following:

minimize f (x) = E

[
1
2
(〈z, x〉 – l

)2
]

subject to x ∈ X := R
N
+ ∩ {x ∈R

N : ‖x‖1 ≤ t1
}

,
(23)

where ‖ · ‖1 denotes the 
1-norm and t1 is the sparsity control parameter. Suppose that Hn

is as each of (19) and (20), which satisfies (A0), and define a mapping QHn : RN →R
N by

QHn := P
R

N
+ ,Hn

P{x∈RN : ‖x‖1≤t1},Hn . (24)

Since the projections P
R

N
+ ,Hn

and P{x∈RN : ‖x‖1≤t1},Hn can be easily computed [34, Lemma 1.1],
QHn defined by (24) can be also computed. Moreover, QHn defined by (24) is nonexpansive
with X =

⋂
n∈N Fix(QHn ), i.e., (A1) holds. Since {x ∈R

N : ‖x‖1 ≤ t1} is bounded, we can set
a simple, bounded set C such that X ⊂ C, i.e., (A4) holds. Moreover, f in problem (23)
satisfies (A2).

The classifier ensemble problem with both sparsity and diversity learning is as follows:

minimize f (x) = E

[
1
2
(〈z, x〉 – l

)2
]

subject to x ∈ X :=
{

x ∈ R
N
+ : ‖x‖1 ≤ t1

}∩ {x ∈R
N : fdiv(x) ≥ t2

}
,

(25)

where t2 is the diversity control parameter, fdiv(x) :=
∑M

m=1{〈[zm], x〉 – 〈zm, x〉2} (x ∈ R
N ),

and [zm] := ((zi
m)2)N

i=1 ∈R
N . From the discussion regarding (10), (11), and (12), a mapping

QHn := ω1P
R

N
+ ,Hn

+ ω2Q‖·‖1–t1,Hn + ω3Q–fdiv(·)+t2,Hn , (26)

with (Hn)n∈N ⊂ S
N
++ ∩ D

N defined by each of (19) and (20), is quasinonexpansive under
the Hn-norm satisfying X =

⋂
n∈N Fix(QHn ), i.e., (A1) holds. The discussion in the previous

paragraph implies that (A0), (A2), and (A4) again hold.
Algorithm 1 for solving each of problems (23) and (25) is represented as follows:

xn+1 := PC,Hn

[
αnxn + (1 – αn)QHn

(
xn – λnH–1

n mn
)]

. (27)

In contrast to Adam (6) and AMSGrad (9) that can solve a convex stochastic optimiza-
tion problem with a simple constraint (3) (see also problem (21)), algorithm (27) can be



Iiduka Fixed Point Theory Algorithms Sci Eng         (2021) 2021:10 Page 13 of 31

applied to a convex stochastic optimization problem with complicated constraints, such
as problems (23) and (25).

(iii) Network utility maximization problem [35, (6), (7)] (see also [36, Problem II.1]): The
network resource allocation problem is to determine the source rates that maximize the
utility aggregated over all sources over the link capacity constraints and source constraints.
This problem can be formulated as the following network utility maximization problem:

maximize
∑

s∈S
us(xs) subject to x = (xs)s∈S ∈ X :=

⋂

l∈L
Cl ∩

⋂

s∈S
Cs, (28)

where xs denotes the transmission rate of source s ∈ S , us is a concave utility function of
source s, S(l) denotes the set of sources that use link l ∈ L, Cl is the capacity constraint
set of link l having capacity cl ∈ R+ defined by Cl := {x = (xs)s∈S :

∑
s∈S(l) xs ≤ cl}, and Cs

is the constraint set of source s having the maximum allowed rate Ms defined by Cs :=
{x = (xs)s∈S : xs ∈ [0, Ms]}. Since Cl and Cs are half-spaces, the projections PCl ,Hn and PCs ,Hn

are easily computed,3 where (Hn)n∈N ⊂ S
N
++ ∩ D

N is defined by each of (19) and (20). For
example, we can define a nonexpansive mapping QHn :=

∏
l∈L PCl ,Hn

∏
s∈S PCs ,Hn satisfying

X =
⋂

n∈N Fix(QHn ). The boundedness of
⋂

s∈S Cs allows us to set a simple, bounded set C
satisfying C ⊃⋂

s∈S Cs ⊃ X. Algorithm (27) with G(xn, ξn) ∈ ∂(–uξn )(xn) can be applied to
problem (28).

5 Convergence analyses and comparisons
5.1 Convergence analyses of Algorithm 1
For convergence analyses of Algorithm 1, we prove the following theorem.

Theorem 5.1 Suppose that (A0)–(A4) and (C1)–(C3) hold and that (αn)n∈N, (βn)n∈N,
(λn)n∈N, and (γn)n∈N defined by γn := (1 – αn)(1 – βn)λn (n ∈N) satisfy

0 < lim inf
n→+∞ αn ≤ lim sup

n→+∞
αn < 1, lim sup

n→+∞
βn < 1, and γn+1 ≤ γn (n ∈N) (29)

and that Hn = diag(hn,i) satisfies 4

hn+1,i ≥ hn,i (n ∈N, i = 1, 2, . . . , N). (30)

Then Algorithm 1 is such that the following are satisfied for all n ≥ 1:

E
[
f (x̃n) – f �

]≤ D
2ãb̃nλn

E

[ N∑

i=1

hn,i

]

+
M̃

√
DN

b̃n

n∑

k=1

βk +
h2

�M̃2

2b̃n

n∑

k=1

λk ,

where x̃n := (1/n)
∑n

k=1 xk , M̃ and h� are defined as in Lemma 4.1,

D := max
i=1,2,...,N

sup
{

(xk+1,i – xi)2 : k ∈N
}

< +∞,

3The projection PC,Hn onto a half-space C := {x ∈ R
N : 〈a, x〉 ≤ b} = Fix(PC ) = Fix(PC,Hn ) under the Hn-norm, where a 
= 0 and

b ∈ R, can be defined for all x ∈ R
N by PC,Hn (x) := x + [(b – 〈a, x〉Hn )/‖a‖2Hn ]a (x /∈ C) or PC,Hn (x) := x (x ∈ C).

4Condition (30) is satisfied when Hn is defined by either (19) or (20).
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(αn)n∈N ⊂ [c, a] ⊂ (0, 1), (βn)n∈N ⊂ (0, b] ⊂ (0, 1), ã := 1 – a, b̃ := 1 – b, c̃ := 1 – c, and M̂ :=
sup{E[f (x) – f (xn)] : n ∈N} < +∞ for some x ∈ X. If

(A1)’ QHn : RN → R
N is nonexpansive under the Hn-norm,

then, for all n ≥ 1,

1
n

n∑

k=1

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]

≤ 4
(

1
ã

+
1
c

){
D
n
E

[ N∑

i=1

hn,i

]

+
2c̃M̂

n

n∑

k=1

(1 – βk)λk +
2c̃M̃

√
DN

n

n∑

k=1

βkλk

}

+
{

4
(

1
ã

+
1
c

)
c̃ + 2

}
h2

�M̃2

n

n∑

k=1

λ2
k .

Proof Let x ∈ X be fixed arbitrarily. Lemma 4.1 guarantees that, for all k ∈N,

E
[
f (xk) – f (x)

]≤ 1
2γk

{
E
[‖xk – x‖2

Hk

]
– E

[‖xk+1 – x‖2
Hk

]}

+
βk

1 – βk
E
[〈x – xk , mk–1〉

]
+

λk

2(1 – βk)
E
[‖dk‖2

Hk

]
.

Summing the above inequality ensures that, for all n ≥ 1,

1
n

n∑

k=1

E
[
f (xk) – f (x)

]

≤ 1
2n

n∑

k=1

1
γk

{
E
[‖xk – x‖2

Hk

]
– E

[‖xk+1 – x‖2
Hk

]}

︸ ︷︷ ︸
�n

+
1
n

n∑

k=1

βk

1 – βk
E
[〈x – xk , mk–1〉

]

︸ ︷︷ ︸
Bn

+
1

2b̃n

n∑

k=1

λkE
[‖dk‖2

Hk

]

︸ ︷︷ ︸
�n

,

(31)

where (29) implies that b > 0 exists such that, for all n ∈ N, βn ≤ b < 1 and b̃ := 1 – b. The
definition of �n and E[‖xn+1 – x‖2

Hn ]/γn ≥ 0 imply that

�n ≤ E[‖x1 – x‖2
H1

]
γ1

+
n∑

k=2

{
E[‖xk – x‖2

Hk
]

γk
–
E[‖xk – x‖2

Hk–1
]

γk–1

}

︸ ︷︷ ︸
�̃n

. (32)

Given k ∈ N, Hk � O ensures that there exists a unique matrix Hk � O such that Hk = H
2
k

[33, Theorem 7.2.6]. Since ‖x‖2
Hk

= ‖Hkx‖2 holds for all x ∈ R
N , we have that, for all k ∈N,

�̃n = E

[ n∑

k=2

{‖Hk(xk – x)‖2

γk
–

‖Hk–1(xk – x)‖2

γk–1

}]

. (33)
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Since Hk (k ∈ N) is diagonal, we can express Hk as Hk = diag(hk,i), where hk,i > 0 (k ∈ N,
i = 1, 2, . . . , N ). Accordingly, for all k ∈ N and all x := (xi)N

i=1 ∈R
N ,

Hk = diag
(
h

1
2
k,i
)

and ‖Hkx‖2 =
N∑

i=1

hk,ix2
i . (34)

Hence, (33) ensures that, for all n ∈N,

�̃n = E

[ n∑

k=2

N∑

i=1

(
hk,i

γk
–

hk–1,i

γk–1

)
(xk,i – xi)2

]

.

From γk ≤ γk–1 (k ≥ 1) (see (29)) and (30), we have that hk,i/γk – hk–1,i/γk–1 ≥ 0 (k ≥ 1,
i = 1, 2, . . . , N ). Moreover, (A4) implies that D := maxi=1,2,...,N sup{(xn,i – xi)2 : n ∈ N} < +∞.
Accordingly, for all n ∈N,

�̃n ≤ DE

[ n∑

k=2

N∑

i=1

(
hk,i

γk
–

hk–1,i

γk–1

)]

= DE

[ N∑

i=1

(
hn,i

γn
–

h1,i

γ1

)]

.

Hence, (32), together with E[‖x1 – x‖2
H1

]/γ1 ≤ DE[
∑N

i=1 h1,i/γ1], implies that, for all n ∈N,

�n ≤ DE

[ N∑

i=1

h1,i

γ1

]

+ DE

[ N∑

i=1

(
hn,i

γn
–

h1,i

γ1

)]

=
D
γn

E

[ N∑

i=1

hn,i

]

,

which, together with the existence of a > 0 such that, for all n ∈N, αn ≤ a < 1 (by (29)) and
ã := 1 – a, implies that

�n ≤ D
ãb̃λn

E

[ N∑

i=1

hn,i

]

. (35)

The Cauchy–Schwarz inequality, together with D := maxi=1,2,...,N sup{(xn,i – xi)2 : n ∈ N} <
+∞ and E[‖mn‖] ≤ M̃ :=

√
max{‖m–1‖2, M2} (n ∈N) (by Lemma 4.1), guarantees that, for

all n ∈N,

Bn ≤
n∑

k=1

βk

1 – βk
E
[‖x – xk‖‖mk–1‖

]≤
√

DN
b̃

n∑

k=1

βkE
[‖mk–1‖

]

≤ M̃
√

DN
b̃

n∑

k=1

βk .

(36)

Since E[‖dn‖2
Hn ] ≤ h2

�M̃2 (n ∈N) holds (by Lemma 4.1), we have that, for all n ∈ N,

�n :=
n∑

k=1

λkE
[‖dk‖2

Hk

]≤ h2
�M̃2

n∑

k=1

λk . (37)
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Therefore, (31), (35), (36), and (37), together with the convexity of f , imply that, for all
n ∈N,

E
[
f (x̃n) – f (x)

]≤ D
2ãb̃nλn

E

[ N∑

i=1

hn,i

]

+
M̃

√
DN

b̃n

n∑

k=1

βk +
h2

�M̃2

2b̃n

n∑

k=1

λk .

Lemma 4.1 ensures that, for all n ∈ N,

ã
n∑

k=1

E
[‖xk+1 – yk‖2

Hk

]

≤
n∑

k=1

{
E
[‖xk – x‖2

Hk

]
– E

[‖xk+1 – x‖2
Hk

]}

︸ ︷︷ ︸
Xn

+
n∑

k=1

(1 – αk)λ2
kE
[‖dk‖2

Hk

]

+ 2
n∑

k=1

(1 – αk)λk
{

(1 – βk)E
[
f (x) – f (xk)

]
+ βkE

[〈x – xk , mk–1〉
]}

.

A discussion similar to the one for obtaining (35) implies that

Xn ≤ DE

[ N∑

i=1

h1,i

]

+ DE

[ N∑

i=1

(hn,i – h1,i)

]

= DE

[ N∑

i=1

hn,i

]

.

The continuity of f (see (A2)) and (A4) mean that M̂ := sup{E[f (x) – f (xn)] : n ∈ N} < +∞.
Accordingly, an argument similar to the one for obtaining (36) and (37) guarantees that,
for all n ∈N,

1
n

n∑

k=1

E
[‖xk+1 – yk‖2

Hk

]

≤ D
ãn

E

[ N∑

i=1

hn,i

]

+
2M̂
ãn

n∑

k=1

(1 – αk)(1 – βk)λk +
2M̃

√
DN

ãn

n∑

k=1

(1 – αk)βkλk

+
h2

�M̃2

ãn

n∑

k=1

(1 – αk)λ2
k .

From (29), there exists c > 0 such that, for all n ∈ N, c ≤ αn. Setting c̃ := 1 – c, it follows
that, for all n ∈N,

1
n

n∑

k=1

E
[‖xk+1 – yk‖2

Hk

]

≤ D
ãn

E

[ N∑

i=1

hn,i

]

+
2c̃M̂
ãn

n∑

k=1

(1 – βk)λk +
2c̃M̃

√
DN

ãn

n∑

k=1

βkλk

+
c̃h2

�M̃2

ãn

n∑

k=1

λ2
k .

(38)
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A discussion similar to the one for obtaining (38) ensures that, for all n ∈ N,

1
n

n∑

k=1

E
[‖xk+1 – xk‖2

Hk

]

≤ D
cn

E

[ N∑

i=1

hn,i

]

+
2c̃M̂
cn

n∑

k=1

(1 – βk)λk +
2c̃M̃

√
DN

cn

n∑

k=1

βkλk

+
c̃h2

�M̃2

cn

n∑

k=1

λ2
k .

(39)

Suppose that (A1)’ holds. Then we have that, for all k ∈ N, almost surely ‖yk –
QHk (xk)‖Hk = ‖QHk (xk + λkdk) – QHk (xk)‖Hk ≤ λk‖dk‖Hk , which, together with ‖x – y‖2 ≤
2‖x‖2 + 2‖y‖2 (x, y ∈R

N ), implies that

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]≤ 2E
[‖xk – yk‖2

Hk

]
+ 2E

[∥∥yk – QHk (xk)
∥∥2

Hk

]

≤ 2E
[‖xk – yk‖2

Hk

]
+ 2λ2

kE
[‖dk‖2

Hk

]
.

Accordingly, (38) and (39) guarantee that, for all n ∈ N,

1
n

n∑

k=1

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]

≤ 4
n

n∑

k=1

E
[‖xk – xk+1‖2

Hk

]
+

4
n

n∑

k=1

E
[‖xk+1 – yk‖2

Hk

]
+

2
n

n∑

k=1

λ2
kE
[‖dk‖2

Hk

]

≤ 4
(

1
ã

+
1
c

){
D
n
E

[ N∑

i=1

hn,i

]

+
2c̃M̂

n

n∑

k=1

(1 – βk)λk +
2c̃M̃

√
DN

n

n∑

k=1

βkλk

}

+
{

4
(

1
ã

+
1
c

)
c̃ + 2

}
h2

�M̃2

n

n∑

k=1

λ2
k ,

which completes the proof. �

5.1.1 Constant step-size rule
The following theorem indicates that sufficiently small constant step-sizes βn := β and
λn := λ allow a solution to the problem to be approximated.

Theorem 5.2 Suppose that the assumptions in Theorem 5.1 hold and also assume that,
for all i = 1, 2, . . . , N , there exists a positive number Bi such that5

sup
{
E[hn,i] : n ∈N

}≤ Bi. (40)

Then Algorithm 1 with αn := α, βn := β , and λn := λ (n ∈N) satisfies that

lim inf
n→+∞ E

[‖xn – xn+1‖2
Hn

]≤ 2α̃

α

{
M̂(1 – β) + M̃

√
DNβ +

h2
�M̃2

2
λ

}
λ, (41)

5Condition (40) is satisfied when Hn is defined by either (19) or (20).
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lim inf
n→+∞ E

[‖xn+1 – yn‖2
Hn

]≤ 2
{

M̂(1 – β) + M̃
√

DNβ +
h2

�M̃2

2
λ

}
λ, (42)

lim inf
n→+∞ E

[
f (xn) – f �

]≤ M̃
√

DN
1 – β

β +
h2

�M̃2

2(1 – β)
λ, (43)

E
[
f (x̃n) – f �

]≤O
(

1
n

)
+

M̃
√

DN
1 – β

β +
h2

�M̃2

2(1 – β)
λ, (44)

where x̃n := (1/n)
∑n

k=1 xk and α̃ := 1 – α. Under (A1)’, we have

1
n

n∑

k=1

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]

≤O
(

1
n

)
+

4
α

{
2M̂(1 – β) + 2M̃

√
DNβ + 2h2

�M̃2λ
}
λ + 2h2

�M̃2λ2.

(45)

Proof We first show that, for all ε > 0,

lim inf
n→+∞ E

[‖xn – xn+1‖2
Hn

]≤ 2α̃

α

{
M̂(1 – β) + M̃

√
DNβ +

h2
�M̃2

2
λ

}
λ

+ Dε + ε.

(46)

If (46) does not hold, then there exists ε0 > 0 such that

lim inf
n→+∞ E

[‖xn – xn+1‖2
Hn

]
>

2α̃

α

{
M̂(1 – β) + M̃

√
DNβ +

h2
�M̃2

2
λ

}
λ

+ Dε0 + ε0.

(47)

Let x ∈ X and χn := E[‖xn – x‖2
Hn ] for all n ∈ N. Lemma 4.1, together with the proofs of

(36) and (37), implies that, for all n ∈ N,

χn+1 ≤ χn + χn+1 – E
[‖xn+1 – x‖2

Hn

]

︸ ︷︷ ︸
X̃n

–αE
[‖xn+1 – xn‖2

Hn

]

+ 2α̃λ

{
M̂(1 – β) + M̃

√
DNβ +

h2
�M̃2

2
λ

}
.

(48)

From (34) and (A4), for all n ∈N,

X̃n = E

[ N∑

i=1

(hn+1,i – hn,i)(xn+1,i – xi)2

]

≤ DE

[ N∑

i=1

(hn+1,i – hn,i)

]

.

Accordingly, (30) and (40) ensure that there exists n0 ∈N such that, for all n ≥ n0,

X̃n ≤ Dαε0. (49)
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Hence, (48) implies that, for all n ≥ n0,

χn+1 ≤ χn + Dαε0 – αE
[‖xn+1 – xn‖2

Hn

]

+ 2α̃λ

{
M̂(1 – β) + M̃

√
DNβ +

h2
�M̃2

2
λ

}
.

From (47), there exists n1 ∈N such that, for all n ≥ n1,

E
[‖xn – xn+1‖2

Hn

]
>

2α̃

α

{
M̂(1 – β) + M̃

√
DNβ +

h2
�M̃2

2
λ

}
λ + Dε0 +

ε0

2
.

Therefore, for all n ≥ n2 := max{n0, n1},

χn+1 ≤ χn + Dαε0 – 2α̃λ

{
M̂(1 – β) + M̃

√
DNβ +

h2
�M̃2

2
λ

}
– Dαε0 –

αε0

2

+ 2α̃λ

{
M̂(1 – β) + M̃

√
DNβ +

h2
�M̃2

2
λ

}

= χn –
αε0

2

≤ χn2 –
αε0

2
(n + 1 – n2),

which is a contradiction since the right-hand side of the above inequality approaches mi-
nus infinity as n increases. Hence, (46) holds for all ε, which implies that (41) holds. A dis-
cussion similar to the one for showing (46) leads to (42). We next show that, for all ε > 0,

lim inf
n→+∞ E

[
f (xn) – f �

]≤ M̃
√

DN
1 – β

β +
h2

�M̃2

2(1 – β)
λ +

Dαε

2α̃(1 – β)λ
+ ε. (50)

If (50) does not hold for all ε > 0, then there exist ε0 > 0 and n3 ∈N such that, for all n ≥ n3,

E
[
f (xn) – f �

]
>

M̃
√

DN
1 – β

β +
h2

�M̃2

2(1 – β)
λ +

Dαε0

2α̃(1 – β)λ
+

ε0

2
.

Lemma 4.1, together with (48) and (49), ensures that, for all n ≥ n0,

χn+1 ≤ χn + Dαε0 – 2α̃(1 – β)λE
[
f (xn) – f �

]
+
{

2M̃
√

DNβ + h2
�M̃2λ

}
α̃λ.

Accordingly, for all n ≥ n4 := max{n0, n3},

χn+1

≤ χn + Dαε0 – 2α̃(1 – β)λ
{

M̃
√

DN
1 – β

β +
h2

�M̃2

2(1 – β)
λ +

Dαε0

2α̃(1 – β)λ
+

ε0

2

}

+
{

2M̃
√

DNβ + h2
�M̃2λ

}
α̃λ

= χn – α̃(1 – β)λε0

≤ χn4 – α̃(1 – β)λε0(n + 1 – n4),
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which is a contradiction. Since (50) holds for all ε > 0, we have (43). Conditions (44) and
(45) follow from Theorem 5.1, which completes the proof. �

5.1.2 Diminishing step-size rule
Lemma 4.1 and Theorem 5.1 give us the following theorem as a convergence analysis of
Algorithm 1 with a diminishing step-size.

Theorem 5.3 Suppose that the assumptions in Theorem 5.1 and (40) hold. Let (βn)n∈N and
(λn)n∈N satisfy the following:

lim
n→+∞βn = 0,

+∞∑

n=0

λn = +∞,
+∞∑

n=0

λ2
n < +∞, and

+∞∑

n=0

βnλn < +∞. (51)

Then Algorithm 1 satisfies that

lim inf
n→+∞ E

[‖xn – xn+1‖Hn

]
= 0, lim inf

n→+∞ E
[‖xn+1 – yn‖Hn

]
= 0, (52)

lim inf
n→+∞ E

[
f (xn) – f �

]≤ 0. (53)

Moreover, if (A1)’ holds, then we have

lim inf
n→+∞ E

[∥∥xn – QHn (xn)
∥∥

Hn

]
= 0.

Let (βn)n∈N and (λn)n∈N satisfy the following:

lim
n→+∞

1
nλn

= 0, lim
n→+∞

1
n

n∑

k=1

λk = 0, and lim
n→+∞

1
n

n∑

k=1

βk = 0. (54)

Then the sequence (x̃n)n∈N defined by x̃n := (1/n)
∑n

k=1 xk satisfies

lim sup
n→+∞

E
[
f (x̃n) – f �

]≤ 0

with

E
[
f (x̃n) – f �

]≤ D
∑N

i=1 Bi

2ãb̃nλn
+

M̃
√

DN
b̃n

n∑

k=1

βk +
h2

�M̃2

2b̃n

n∑

k=1

λk .

Moreover, if (A1)’ holds, then we have

lim
n→+∞

1
n

n∑

k=1

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]
= 0

with

1
n

n∑

k=1

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]



Iiduka Fixed Point Theory Algorithms Sci Eng         (2021) 2021:10 Page 21 of 31

≤ 4
(

1
ã

+
1
c

){
D
∑N

i=1 Bi

n
+

2c̃M̂
n

n∑

k=1

(1 – βk)λk +
2c̃M̃

√
DN

n

n∑

k=1

βkλk

}

+
{

4
(

1
ã

+
1
c

)
c̃ + 2

}
h2

�M̃2

n

n∑

k=1

λ2
k .

Proof We first show (52). Lemma 4.1, together with (36), (37), and (48), implies that, for
all n ∈N,

αnE[‖xn+1 – xn‖2
Hn ]

(1 – αn)E[‖xn+1 – yn‖2
Hn ]

}

≤ χn(x) – χn+1(x) + DE

[ N∑

i=1

(hn+1,i – hn,i)

]

+ 2M̂λn + 2M̃
√

DNβnλn + h2
�M̃2λ2

n,

(55)

where χn(x) := E[‖xn – x‖2
Hn ] for all x ∈ X and all n ∈ N. Consider (Case 1): For all x ∈ X,

there exists m0 ∈ N such that, for all n ∈ N, n ≥ m0 implies χn+1(x) ≤ χn(x). This case
guarantees the existence of limn→+∞ χn(x) for all x ∈ X. From (30) and (40), we have that
limn→+∞ E[

∑N
i=1(hn+1,i –hn,i)] = 0. Moreover, (51) ensures that limn→+∞ βn = limn→+∞ λn =

0. Accordingly, (55) and 0 < lim infn→+∞ αn ≤ lim supn→+∞ αn < 1 (by (29)) imply that

lim
n→+∞E

[‖xn+1 – xn‖Hn

]
= 0 and lim

n→+∞E
[‖xn+1 – yn‖Hn

]
= 0. (56)

Consider (Case 2): There exists x0 ∈ X, for all m ∈ N, there exists n ∈ N such that n ≥ m
and χn+1(x0) > χn(x0). In this case, there exists (xni )i∈N ⊂ (xn)n∈N such that, for all i ∈ N,
χni+1(x0) > χni (x0). From (55), we have that, for all i ∈N,

αniE[‖xni+1 – xni‖2
Hni

]
(1 – αn)E[‖xni+1 – yni‖2

Hni
]

}

< DE

[ N∑

j=1

(hni+1,j – hni ,j)

]

+ 2M̂λni + 2M̃
√

DNβniλni + h2
�M̃2λ2

ni
.

A discussion similar to the one for showing (56) guarantees that

lim
i→+∞E

[‖xni+1 – xni‖Hni

]
= 0 and lim

i→+∞E
[‖xni+1 – yni‖Hni

]
= 0. (57)

Therefore, we have (52). If (A1)’ holds, then Lemma 4.1 implies that, for all n ∈N,

E
[∥∥yn – QHn (xn)

∥∥
Hn

]≤ h�M̃λn,

which implies that limn→+∞ E[‖yn – QHn (xn)‖Hn ] = 0. In (Case 1), (56) and the triangle
inequality mean that limn→+∞ E[‖xn – yn‖Hn ] = 0. Accordingly, the triangle inequality and
limn→+∞ E[‖yn – QHn (xn)‖Hn ] = 0 imply that limn→+∞ E[‖xn – QHn (xn)‖Hn ] = 0. In (Case
2), (57) and the triangle inequality mean that limi→+∞ E[‖xni – yni‖Hni

] = 0. Accordingly,
the triangle inequality and limi→+∞ E[‖yni – QHni

(xni )‖Hni
] = 0 imply that limi→+∞ E[‖xni –

QHni
(xni )‖Hni

] = 0. Thus, we have that

lim inf
n→+∞ E

[∥∥xn – QHn (xn)
∥∥

Hn

]
= 0.
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Next, we show (53). Lemma 4.1, together with (36) and (37), ensures that, for all x� ∈ X�

and all k ∈ N,

2(1 – αk)(1 – βk)λkE
[
f (xk) – f �

]

≤ χ�
k – χ�

k+1 + DE

[ N∑

i=1

(hk+1,i – hk,i)

]

+ 2M̃
√

DNβkλk + h2
�M̃2λ2

k ,

where χ�
n := χn(x�) for all x� ∈ X� and all n ∈ N. Summing the above inequality from k = 0

to k = n gives that, for all n ∈N,

2
n∑

k=0

(1 – αk)(1 – βk)λkE
[
f (xk) – f �

]

≤ χ�
0 + DE

[ N∑

i=1

hn+1,i

]

+ 2M̃
√

DN
n∑

k=0

βkλk + h2
�M̃2

n∑

k=0

λ2
k ,

which, together with (40) and (51), implies that

+∞∑

k=0

(1 – αk)(1 – βk)λkE
[
f (xk) – f �

]
< +∞.

If (53) does not hold, then there exist ζ > 0 and m1 ∈N such that, for all k ≥ m1, E[f (xk) –
f �] ≥ ζ . Hence, we have that

+∞ = ζ

+∞∑

k=0

(1 – αk)(1 – βk)λk ≤
+∞∑

k=0

(1 – αk)(1 – βk)λkE
[
f (xk) – f �

]
< +∞,

where the first equation comes from lim supn→+∞ αn < 1,
∑+∞

n=0 λn = +∞, and
∑+∞

n=0 βnλn <
+∞ (by (29) and (51)). Since we have a contradiction, (53) holds. Theorem 5.1, together
with (40) and (54), ensures that

lim sup
n→+∞

E
[
f (x̃n) – f �

]≤ 0 and lim
n→+∞

1
n

n∑

k=1

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]
= 0

with the convergence rate in Theorem 5.3. �

Theorem 5.3 leads to the following corollary.

Corollary 5.1 Suppose that the assumptions in Theorem 5.3 and (A1)’ hold, and consider
Algorithm 1 with λn := 1/nη (η ∈ [1/2, 1]) and (βn)n∈N such that

∑+∞
n=1 βn < +∞. Under η ∈

(1/2, 1], we have that

lim inf
n→+∞ E

[
f (xn) – f �

]≤ 0, lim inf
n→+∞ E

[∥∥xn – QHn (xn)
∥∥

Hn

]
= 0.

Under η ∈ [1/2, 1), we have that

lim sup
n→+∞

E
[
f (x̃n) – f �

]≤ 0, lim
n→+∞

1
n

n∑

k=1

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]
= 0
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with the rate of convergence

E
[
f (x̃n) – f �

]≤O
(

1
n1–η

)
,

1
n

n∑

k=1

E
[∥∥xk – QHk (xk)

∥∥2
Hk

]
= O

(
1

nη

)
.

Proof The step-size λn := 1/nη (η ∈ (1/2, 1]) and (βn)n∈N such that
∑+∞

n=1 βn < +∞ satisfy
(51). Accordingly, Theorem 5.3 with (A1)’ implies that lim infn→+∞ E[f (xn) – f �] ≤ 0, and
lim infn→+∞ E[‖xn – QHn (xn)‖Hn ] = 0. The step-size λn := 1/nη (η ∈ [1/2, 1)) satisfies

lim
n→+∞

1
nλn

= lim
n→+∞

1
n1–η

= 0.

Moreover, we have that

1
n

n∑

k=1

λ2
k ≤ 1

n

n∑

k=1

λk ≤ 1
n

{
1 +

∫ n

1

dt
tη

}
=

1
n

{
n1–η

1 – η
–

η

1 – η

}
≤ 1

1 – η

1
nη

. (58)

Hence, limn→+∞(1/n)
∑n

k=1 λk = limn→+∞(1/n)
∑n

k=1 λ2
k = 0. The condition

∑+∞
n=1 βn < +∞

implies that limn→+∞(1/n)
∑n

k=1 βk = 0 and limn→+∞(1/n)
∑n

k=1 βkλk = 0. Hence, (54) is
satisfied. Accordingly, from Theorem 5.3 with (A1)’ and (58), we have the convergence
rate of Algorithm 1 in Corollary 5.1. �

5.2 Comparisons of Algorithm 1 with the existing adaptive learning rate
optimization algorithms

The main objective of the existing adaptive learning rate optimization algorithms is to
minimize

∑T
t=1 ft(x) subject to x ∈ X, where T is the total number of rounds in the learning

process, ft : RN → R (t = 1, 2, . . . , T ) is a differentiable, convex loss function, and X ⊂ R
N

is bounded, closed, and convex (see also problem (21) in Example 4.1(i)). We would like
to achieve low regret on the sequence (ft(xt))T

t=1, measured as

R(T) :=
T∑

t=1

ft(xt) – min
x∈X

T∑

t=1

ft(x) =
T∑

t=1

ft(xt) –
T∑

t=1

ft
(
x∗),

where x∗ ∈ X is a minimizer of
∑T

t=1 ft(x) over X, and (xt)T
t=1 ⊂ X is the sequence gener-

ated by a learning algorithm. Although Theorem 4.1 in [8] indicates that Adam [8, Algo-
rithm 1], [2, Algorithm 8.7] (algorithm (6)) is such that there exists a positive real number
D such that R(T)/T ≤ D/

√
T , the proof of Theorem 4.1 in [8] is incomplete [9, Theo-

rem 1]. AMSGrad [9, Algorithm 2] (algorithm (9)) is such that the following result holds
[9, Theorem 4, Corollary 1]: Suppose that β1,t := β1λ

t–1 (β1,λ ∈ (0, 1)), γ := β1/
√

β2 < 1,
and λt := α/

√
t (α > 0). Then there exist positive real numbers D̂i (i = 1, 2, 3) such that

R(T)
T

=
1
T

T∑

t=1

ft(xt) –
1
T

T∑

t=1

ft
(
x∗)

≤ D̂1N
αβ̃1

√
T

+
β1D̂2

2β̃1(1 – λ)2T
+

α
√

1 + ln T

β̃1
2(1 – γ )

√
1 – β2T

N∑

i=1

‖g1:T ,i‖,
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where β̃1 := 1–β1, gt := ∇xF(xt , ξt), 6 and ‖g1:T ,i‖ :=
√∑T

t=1 g2
t,i ≤ D̂3

√
T . Hence, with AMS-

Grad, there exists a positive real number D̂ such that

R(T)
T

=
1
T

T∑

t=1

ft(xt) –
1
T

T∑

t=1

ft
(
x∗)≤ D̂

√
1 + ln T

T
. (59)

We apply Algorithm 1 with λn := 1/nη (η ∈ [1/2, 1)) (see also algorithm (22)) to Prob-
lem 3.1 for the special case where f (·) = E[fξ (·)] := (1/T)

∑T
t=1 ft(·), QHn := PX,Hn (n ∈N), Hn

is defined by either (19) or (20), and C = X (see also problem (21)). Then Theorem 5.2 has
the following corollary.

Corollary 5.2 Consider problem (21) and suppose that the assumptions in Theorem 5.1
hold. Then algorithm (22) satisfies that

lim inf
n→+∞ E

[
1
T

T∑

t=1

ft(xn) –
1
T

T∑

t=1

ft
(
x∗)
]

≤ M̃
√

DN
1 – β

β +
h2

�M̃2

2(1 – β)
λ,

lim sup
n→+∞

E

[
1
T

T∑

t=1

ft(x̃n) –
1
T

T∑

t=1

ft
(
x∗)
]

≤ M̃
√

DN
1 – β

β +
h2

�M̃2

2(1 – β)
λ,

where x̃n := (1/n)
∑n

k=1 xk and (xn)n∈N ⊂ X is the sequence in algorithm (22).

In contrast to Adam and AMSGrad with diminishing step-sizes, Corollary 5.2 indicates
that algorithm (22) with constant step-sizes may approximate a solution of problem (21).

Corollary 5.1 implies the following corollary.

Corollary 5.3 Suppose that the assumptions in Corollary 5.1 hold and λn := 1/nη (η ∈
[1/2, 1]), and (βn)n∈N is such that

∑+∞
n=1 βn < +∞. Under η ∈ (1/2, 1], algorithm (22) satisfies

that

lim inf
n→+∞ E

[ T∑

t=1

ft(xn) –
T∑

t=1

ft
(
x∗)
]

= 0.

Moreover, under η ∈ [1/2, 1), any accumulation point of (x̃n := (1/n)
∑n

k=1 xk)n∈N almost
surely belongs to the solution set of problem (21), and algorithm (22) achieves the following
rate of convergence:

E

[ T∑

t=1

ft(x̃n) –
T∑

t=1

ft
(
x∗)
]

= O
(

1
n1–η

)
.

Proof For problem (21), Corollary 5.3 implies that 0 ≤ lim infn→+∞ E[f (xn) – f �] ≤ 0 and
0 ≤ lim supn→+∞ E[f (x̃n) – f �] ≤ 0, where f := (1/T)

∑T
t=1 ft . The second inequality guar-

antees that limn→+∞ E[f (x̃n) – f �] = 0. Let x̂ ∈ X be an arbitrary accumulation point of
(x̃n)n∈N ⊂ X. Since there exists (x̃ni )i∈N ⊂ (x̃n)n∈N such that (x̃ni )i∈N converges almost surely

6Since AMSGrad is applied to constrained convex optimization, in general, limT→+∞ ‖g1:T ,i‖ 
= 0 and ‖g1:T ,i‖ ≤ D̂3

√
T hold

[8, Corollary 4.2].
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to x̂ ∈ X, the continuity of f ensures that 0 = limi→+∞ E[f (x̃ni ) – f �] = E[f (x̂) – f �], i.e.,
x̂ ∈ X�. The rate of convergence of (x̃n)n∈N is obtained from Corollary 5.1. �

It is not guaranteed that xT defined by AMSGrad with λt := α/
√

t optimizes
∑T

t=1 ft over
X since (59) depends on a given parameter T , i.e.,

R(T)
T

≤O
(√

1 + ln T
T

)
.

Meanwhile, Corollary 5.3 implies that any accumulation point of (x̃n)n∈N defined by algo-
rithm (22) with λn := 1/

√
n almost surely belongs to the set of minimizers of

∑T
t=1 ft over

X and (x̃n)n∈N achieves an O(1/
√

n) convergence rate, i.e.,

E

[ T∑

t=1

ft(x̃n) –
T∑

t=1

ft
(
x∗)
]

= O
(

1√
n

)
.

5.3 Numerical comparisons
In this section, we consider the classifier ensemble problem [18, Sect. 2.2.2],
[19, Sect. 3.2.2], [17, Problem II.1] (see problems (23) and (25) in Example 4.1 (ii)) and
compare the performances of the learning methods based on the following algorithms
which used commonly β = 0.99 [9, Sect. 5] and αn = 1/2 (n ∈N).

SG: Stochastic gradient algorithm (15) with λn ∈ [10–3/(n + 1), 1/(n + 1)] computed by
the Armijo line search algorithm [17, Algorithms 2 and 3, LS].

C1: Algorithm 1 with (19) and βn = λn = 10–1.
C2: Algorithm 1 with (19) and βn = λn = 10–3.
C3: Algorithm 1 with (20) and βn = λn = 10–1.
C4: Algorithm 1 with (20) and βn = λn = 10–3.
D1: Algorithm 1 with (19), βn = 0.9/2n, and λn = 10–1/

√
n + 1.

D2: Algorithm 1 with (19), βn = 0.9/2n, and λn = 10–3/
√

n + 1.
D3: Algorithm 1 with (19), βn = 0.9/2n, and λn ∈ [10–3/

√
n + 1, 1/

√
n + 1] computed by

the Armijo line search algorithm.
D4: Algorithm 1 with (20), βn = 0.9/2n, and λn = 10–1/

√
n + 1.

D5: Algorithm 1 with (20), βn = 0.9/2n, and λn = 10–3/
√

n + 1.
D6: Algorithm 1 with (20), βn = 0.9/2n, and λn ∈ [10–3/

√
n + 1, 1/

√
n + 1] computed by

the Armijo line search algorithm.
The step-size βn := 0.9/2n used in D1–D6 was based on [9, Sect. 5]. The numerical results

in [17] showed that the learning method based on SG performed better than the existing
methods in [19, (18)]. Therefore, we compare the performance of the learning method
based on SG with the one of the learning methods based on C1–D6. See Corollary 1 in [17],
Theorems 5.2 and 5.3, and Corollary 5.1 for convergence analyses of the above algorithms
for solving problems (23) and (25).

The experiments used Mac Pro (Late 2013) with a 3.5 GHz 6-core Intel Xeon E5 CPU, 32
GB 1866 MHz DDR3 memory, and macOS Catalina version 10.15.1 operating system. The
algorithms used in the experiments were written in Python 3.7.5 with the NumPy 1.17.4
package. The experiments used the datasets from LIBSVM [37] and the UCI Machine
Learning Repository [38] for which information is shown in Table 1. In these experiments,
stratified 10-fold cross-validation for the datasets was performed. For this validation, the
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Table 1 Datasets used for classification

Dataset Classes Instances Attributes

1. australian 2 690 14
2. breast-cancer 2 683 10
3. diabetes 2 768 8
4. ionosphere 2 351 34
5. leukemia 2 72 7129
6. madelon 2 2600 500
7. splice 2 3175 60
8. iris 3 150 4
9. svmguide2 3 391 20
10. wine 3 178 13
11. vehicle 4 846 18
12. glass 6 214 9
13. segment 7 2310 19
14. digits 10 1797 64
15. usps 10 9298 256

StratifiedKFold class in the scikit-learn 0.21.3 package was used. Ensembles of sup-
port vector classifiers were constructed by the BaggingClassifier class in the scikit-
learn 0.21.3 package. The number of base estimators was set as the default value of the
scikit-learn package. For learning multiclass classification tasks with the classifiers used
in the experiments, the one-vs-the-rest multiclass classification strategy implemented as
theOneVsRestClassifier class in the scikit-learn 0.21.3 package was used. The stop-
ping condition for the algorithms used in the experiments was n = 100.

Let us consider problem (23) and compare the performances of the sparsity learning
methods based on the algorithms with QHn defined by (24). Although we can consider
problem (25) and compare the performances of the sparsity and diversity learning meth-
ods based on the algorithms with QHn defined by (26), we omit the details due to lack of
space.7

Tables 2 and 3 show that the accuracy of the learning method based on SG was almost
the same as that of the learning methods based on C1, C2, C3, C4, D3, D4, and D6. These
tables also show that the elapsed times for the proposed learning methods were shorter
than the elapsed times for the learning method based on SG.

The average accuracies and elapsed times of the existing learning method (SG) were
compared to the average accuracies and elapsed times of the proposed learning meth-
ods (C1–D6) by using an analysis of variance (ANOVA) test and Tukey–Kramer’s hon-
estly significant difference (HSD) test. The scipy.stats.f_oneway method in the
SciPy library was used as the implementation of the ANOVA test, and the statsmod-
els.stats.multicomp.pairwise_tukeyhsd method in the StatsModels pack-
age was used as the implementation of Tukey–Kramer’s HSD test. Recall that the ANOVA
test examines whether the hypothesis that the given groups have the same population
mean is rejected, whereas Tukey–Kramer’s HSD test can be used to find specifically which
pair has a significant difference in groups. The significance level was set at 5% (0.05) for the
ANOVA and Tukey–Kramer’s HSD tests. The p-value computed by the ANOVA test for
the accuracies was about 4.09 × 10–19 (< 0.05). Table 4 indicates that the adjusted p-value
between each of the learning methods based on C1, C2, C3, C4, D3, D4, and D6 and the

7We checked that the sparsity and diversity learning methods based on C1, C2, C3, C4, D3, D4, and D6 with QHn defined
by (26) perform better than the learning method based on SG, as seen in the results (Tables 2, 3, 4, and 5) for ensemble
learning with sparsity.
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Table 2 Classification accuracies (%) and elapsed times (s) for the sparsity learning methods based
on SG, C1, C2, C3, and C4 applied to the datasets in Table 1

# SG C1 C2 C3 C4

acc. time acc. time acc. time acc. time acc. time

1 80.59 0.531 81.74 0.206 83.34 0.197 84.20 0.208 83.92 0.213
2 95.52 0.499 94.45 0.203 94.01 0.206 94.44 0.205 93.43 0.209
3 65.10 0.510 64.06 0.205 63.15 0.205 63.41 0.210 63.67 0.211
4 71.29 0.433 74.78 0.206 71.03 0.209 72.14 0.210 71.03 0.212
5 75.16 39.848 48.16 9.405 68.66 9.402 57.83 9.364 75.16 9.246
6 50.00 4.107 48.65 0.801 50.05 0.815 50.30 0.819 49.95 0.805
7 45.70 0.697 46.68 0.220 43.89 0.219 43.89 0.224 42.19 0.230
8 87.33 0.916 83.33 0.601 81.33 0.599 82.66 0.605 82.00 0.615
9 56.54 1.080 56.54 0.605 56.54 0.616 40.63 0.632 13.53 0.626
10 96.72 1.015 96.72 1.015 89.91 0.613 92.13 0.621 91.09 0.625
11 45.89 2.236 48.05 0.806 44.44 0.829 42.68 0.850 43.97 0.856
12 42.17 2.111 46.77 1.211 46.22 1.201 46.67 1.238 45.43 1.226
13 68.05 7.326 75.06 1.517 72.94 1.500 72.98 1.521 71.60 1.532
14 70.24 10.197 66.78 2.298 65.58 2.278 75.62 2.358 40.73 2.303
15 60.91 95.861 64.99 11.571 71.20 11.594 58.69 11.604 69.95 11.611

Ave. 67.41 11.158 66.04 2.030 66.82 2.032 65.22 2.045 62.51 2.035

Table 3 Classification accuracies (%) and elapsed times (s) for the sparsity learning methods based
on D1, D2, D3, D4, D5, and D6 applied to the datasets in Table 1

# D1 D2 D3 D4 D5 D6

acc. time acc. time acc. time acc. time acc. time acc. time

1 77.84 0.210 82.75 0.207 83.92 0.298 82.47 0.210 83.33 0.213 83.78 0.229
2 95.52 0.180 89.76 0.206 94.44 0.287 93.57 0.206 91.81 0.208 94.15 0.254
3 27.86 0.202 51.17 0.206 64.32 0.280 56.76 0.212 59.11 0.209 64.06 0.237
4 76.45 0.187 71.03 0.200 71.58 0.312 71.32 0.213 71.01 0.212 71.86 0.267
5 39.00 9.383 54.00 9.365 46.16 9.697 51.5 9.525 66.16 9.584 68.66 10.190
6 49.90 0.795 51.35 0.822 50.20 1.068 50.8 0.805 49.65 0.849 50.00 0.974
7 43.49 0.222 43.08 0.225 43.60 0.352 44.39 0.223 42.49 0.229 43.48 0.298
8 63.33 0.607 74.66 0.600 84.66 0.780 77.33 0.621 78.66 0.613 81.33 0.690
9 25.01 0.615 39.24 0.612 56.54 0.722 16.79 0.625 23.28 0.629 56.54 0.694
10 62.47 0.592 69.50 0.603 91.55 0.823 88.71 0.630 94.53 0.616 91.65 0.717
11 29.28 0.841 32.14 0.829 40.94 1.150 40.08 0.835 37.49 0.843 43.86 1.006
12 22.38 1.221 25.62 1.205 45.80 1.617 31.02 1.234 33.95 1.246 49.02 1.469
13 50.95 1.497 41.47 1.507 72.25 2.182 67.44 1.527 53.03 1.527 76.66 1.937
14 64.78 2.304 34.18 2.322 66.33 3.319 74.17 2.356 37.78 2.358 66.40 3.079
15 32.06 11.604 46.01 11.585 67.63 13.472 62.63 11.620 55.46 11.671 66.20 13.259

Ave. 50.69 2.031 53.73 2.033 65.33 2.424 60.60 2.056 58.52 2.067 67.18 2.353

existing learning method based on SG was greater than 0.05. This implies that the exist-
ing and proposed methods based on C1, C2, C3, C4, D3, D4, and D6 had almost the same
performances in the sense of accuracy. The p-value computed by the ANOVA test for the
elapsed time was about 2.67 × 10–29 (< 0.05). Table 5 indicates that there is a significant
difference in the sense of the elapsed time between each of the proposed methods and the
existing method based on SG. Therefore, the proposed methods ran significantly faster
than the existing method based on SG.

6 Conclusion
In this paper, we proposed a stochastic approximation method based on adaptive learning
rate optimization algorithms for solving a convex stochastic optimization problem over
the fixed point set of a quasinonexpansive mapping. It also presented convergence analyses
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Table 4 Multiple comparison for accuracies for the sparsity learning methods applied to the datasets
in Table 1 using Tukey–Kramer’s HSD test at the 5% significance level (“meandiffs” indicates the
pairwise mean differences between Groups 1 and 2, “p-adj” indicates the adjusted p-value, and
“Lower” (resp. “Upper”) indicates the lower (resp. upper) value of the confidence interval for the
pairwise mean differences)

Group 1 Group 2 meandiffs p-adj Lower Upper Reject

C1 C2 0.7823 0.9 –6.969 8.5335 FALSE
C1 C3 –0.8189 0.9 –8.5702 6.9323 FALSE
C1 C4 –3.5273 0.9 –11.2785 4.2239 FALSE
C1 D1 –15.4512 0.001 –23.2024 –7.6999 TRUE
C1 D2 –12.3071 0.001 –20.0583 –4.5559 TRUE
C1 D3 –0.7095 0.9 –8.4607 7.0417 FALSE
C1 D4 –5.4384 0.4642 –13.1897 2.3128 FALSE
C1 D5 –7.5201 0.0668 –15.2713 0.2311 FALSE
C1 D6 1.1391 0.9 –6.6122 8.8903 FALSE
C1 SG 1.3916 0.9 –6.3596 9.1428 FALSE
C2 C3 –1.6012 0.9 –9.3524 6.15 FALSE
C2 C4 –4.3096 0.7575 –12.0608 3.4416 FALSE
C2 D1 –16.2334 0.001 –23.9847 –8.4822 TRUE
C2 D2 –13.0894 0.001 –20.8406 –5.3382 TRUE
C2 D3 –1.4918 0.9 –9.243 6.2594 FALSE
C2 D4 –6.2207 0.2564 –13.9719 1.5305 FALSE
C2 D5 –8.3023 0.0241 –16.0536 –0.5511 TRUE
C2 D6 0.3568 0.9 –7.3944 8.108 FALSE
C2 SG 0.6093 0.9 –7.1419 8.3605 FALSE
C3 C4 –2.7084 0.9 –10.4596 5.0428 FALSE
C3 D1 –14.6322 0.001 –22.3834 –6.881 TRUE
C3 D2 –11.4882 0.001 –19.2394 –3.737 TRUE
C3 D3 0.1094 0.9 –7.6418 7.8606 FALSE
C3 D4 –4.6195 0.6775 –12.3707 3.1317 FALSE
C3 D5 –6.7011 0.1642 –14.4524 1.0501 FALSE
C3 D6 1.958 0.9 –5.7932 9.7092 FALSE
C3 SG 2.2105 0.9 –5.5407 9.9617 FALSE
C4 D1 –11.9238 0.001 –19.6751 –4.1726 TRUE
C4 D2 –8.7798 0.0121 –16.531 –1.0286 TRUE
C4 D3 2.8178 0.9 –4.9334 10.569 FALSE
C4 D4 –1.9111 0.9 –9.6623 5.8401 FALSE
C4 D5 –3.9928 0.8393 –11.744 3.7585 FALSE
C4 D6 4.6664 0.6654 –3.0848 12.4176 FALSE
C4 SG 4.9189 0.6002 –2.8323 12.6701 FALSE
D1 D2 3.144 0.9 –4.6072 10.8953 FALSE
D1 D3 14.7416 0.001 6.9904 22.4929 TRUE
D1 D4 10.0127 0.0016 2.2615 17.7639 TRUE
D1 D5 7.9311 0.0398 0.1799 15.6823 TRUE
D1 D6 16.5902 0.001 8.839 24.3414 TRUE
D1 SG 16.8427 0.001 9.0915 24.594 TRUE
D2 D3 11.5976 0.001 3.8464 19.3488 TRUE
D2 D4 6.8687 0.1379 –0.8825 14.6199 FALSE
D2 D5 4.787 0.6343 –2.9642 12.5383 FALSE
D2 D6 13.4462 0.001 5.6949 21.1974 TRUE
D2 SG 13.6987 0.001 5.9475 21.4499 TRUE
D3 D4 –4.7289 0.6493 –12.4801 3.0223 FALSE
D3 D5 –6.8106 0.1467 –14.5618 0.9407 FALSE
D3 D6 1.8486 0.9 –5.9027 9.5998 FALSE
D3 SG 2.1011 0.9 –5.6501 9.8523 FALSE
D4 D5 –2.0816 0.9 –9.8329 5.6696 FALSE
D4 D6 6.5775 0.1849 –1.1737 14.3287 FALSE
D4 SG 6.83 0.1437 –0.9212 14.5812 FALSE
D5 D6 8.6591 0.0145 0.9079 16.4104 TRUE
D5 SG 8.9117 0.0099 1.1604 16.6629 TRUE
D6 SG 0.2525 0.9 –7.4987 8.0037 FALSE
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Table 5 Multiple comparison for elapsed time for the sparsity learning methods applied to the
datasets in Table 1 using Tukey–Kramer’s HSD test at the 5% significance level (“meandiffs” indicates
the pairwise mean differences between Groups 1 and 2, “p-adj” indicates the adjusted p-value, and
“Lower” (resp. “Upper”) indicates the lower (resp. upper) value of the confidence interval for the
pairwise mean differences)

Group 1 Group 2 meandiffs p-adj Lower Upper Reject

C1 C2 0.0019 0.9 –3.0351 3.0389 FALSE
C1 C3 0.0142 0.9 –3.0227 3.0512 FALSE
C1 C4 0.0043 0.9 –3.0327 3.0413 FALSE
C1 D1 0.0003 0.9 –3.0367 3.0372 FALSE
C1 D2 0.0026 0.9 –3.0344 3.0395 FALSE
C1 D3 0.3937 0.9 –2.6433 3.4307 FALSE
C1 D4 0.0258 0.9 –3.0111 3.0628 FALSE
C1 D5 0.0366 0.9 –3.0003 3.0736 FALSE
C1 D6 0.323 0.9 –2.714 3.3599 FALSE
C1 SG 9.1275 0.001 6.0905 12.1645 TRUE
C2 C3 0.0123 0.9 –3.0246 3.0493 FALSE
C2 C4 0.0024 0.9 –3.0346 3.0394 FALSE
C2 D1 –0.0016 0.9 –3.0386 3.0353 FALSE
C2 D2 0.0007 0.9 –3.0363 3.0376 FALSE
C2 D3 0.3918 0.9 –2.6452 3.4288 FALSE
C2 D4 0.0239 0.9 –3.013 3.0609 FALSE
C2 D5 0.0347 0.9 –3.0022 3.0717 FALSE
C2 D6 0.3211 0.9 –2.7159 3.358 FALSE
C2 SG 9.1256 0.001 6.0886 12.1626 TRUE
C3 C4 –0.0099 0.9 –3.0469 3.027 FALSE
C3 D1 –0.014 0.9 –3.051 3.023 FALSE
C3 D2 –0.0117 0.9 –3.0486 3.0253 FALSE
C3 D3 0.3795 0.9 –2.6575 3.4164 FALSE
C3 D4 0.0116 0.9 –3.0254 3.0485 FALSE
C3 D5 0.0224 0.9 –3.0146 3.0593 FALSE
C3 D6 0.3087 0.9 –2.7282 3.3457 FALSE
C3 SG 9.1132 0.001 6.0763 12.1502 TRUE
C4 D1 –0.004 0.9 –3.041 3.0329 FALSE
C4 D2 –0.0017 0.9 –3.0387 3.0352 FALSE
C4 D3 0.3894 0.9 –2.6476 3.4264 FALSE
C4 D4 0.0215 0.9 –3.0155 3.0585 FALSE
C4 D5 0.0323 0.9 –3.0046 3.0693 FALSE
C4 D6 0.3187 0.9 –2.7183 3.3556 FALSE
C4 SG 9.1232 0.001 6.0862 12.1602 TRUE
D1 D2 0.0023 0.9 –3.0347 3.0393 FALSE
D1 D3 0.3935 0.9 –2.6435 3.4304 FALSE
D1 D4 0.0256 0.9 –3.0114 3.0625 FALSE
D1 D5 0.0364 0.9 –3.0006 3.0733 FALSE
D1 D6 0.3227 0.9 –2.7143 3.3597 FALSE
D1 SG 9.1272 0.001 6.0903 12.1642 TRUE
D2 D3 0.3911 0.9 –2.6458 3.4281 FALSE
D2 D4 0.0232 0.9 –3.0137 3.0602 FALSE
D2 D5 0.0341 0.9 –3.0029 3.071 FALSE
D2 D6 0.3204 0.9 –2.7166 3.3574 FALSE
D2 SG 9.1249 0.001 6.088 12.1619 TRUE
D3 D4 –0.3679 0.9 –3.4049 2.6691 FALSE
D3 D5 –0.3571 0.9 –3.3941 2.6799 FALSE
D3 D6 –0.0707 0.9 –3.1077 2.9662 FALSE
D3 SG 8.7338 0.001 5.6968 11.7707 TRUE
D4 D5 0.0108 0.9 –3.0262 3.0478 FALSE
D4 D6 0.2972 0.9 –2.7398 3.3341 FALSE
D4 SG 9.1017 0.001 6.0647 12.1386 TRUE
D5 D6 0.2863 0.9 –2.7506 3.3233 FALSE
D5 SG 9.0909 0.001 6.0539 12.1278 TRUE
D6 SG 8.8045 0.001 5.7676 11.8415 TRUE
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of the proposed method with constant and diminishing step-sizes. The analyses confirm
that any accumulation point of the sequence generated by the proposed method almost
surely belongs to the solution set of the stochastic optimization problem in deep learn-
ing. We also compared the proposed algorithm with the existing adaptive learning rate
optimization algorithms and showed that the proposed algorithm achieved an O(1/

√
n)

convergence rate which was not achieved for the existing adaptive learning rate optimiza-
tion algorithms. Numerical results for the classifier ensemble problems demonstrated that
the proposed learning methods achieve high accuracies faster than the existing learning
method based on the first-order algorithm. In particular, the proposed methods with con-
stant step-sizes or Armijo line search step-sizes solve the classifier ensemble problems
faster than the existing method based on the first-order algorithm.
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13. Krasnosel’skĭı, M.A.: Two remarks on the method of successive approximations. Usp. Mat. Nauk 10, 123–127 (1955)
14. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)
15. Nakajo, K., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups.

J. Math. Anal. Appl. 279, 372–379 (2003)
16. Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58, 486–491 (1992)
17. Iiduka, H.: Stochastic fixed point optimization algorithm for classifier ensemble. IEEE Trans. Cybern. 50, 4370–4380

(2020)



Iiduka Fixed Point Theory Algorithms Sci Eng         (2021) 2021:10 Page 31 of 31

18. Yin, X.C., Huang, K., Hao, H.W., Iqbal, K., Wang, Z.B.: A novel classifier ensemble method with sparsity and diversity.
Neurocomputing 134, 214–221 (2014)

19. Yin, X.C., Huang, K., Yang, C., Hao, H.W.: Convex ensemble learning with sparsity and diversity. Inf. Fusion 20, 49–58
(2014)

20. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
21. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, New York

(2000)
22. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert

space. Math. Oper. Res. 26, 248–264 (2001)
23. Bauschke, H.H., Chen, J.: A projection method for approximating fixed points of quasi nonexpansive mappings

without the usual demiclosedness condition. J. Nonlinear Convex Anal. 15, 129–135 (2014)
24. Vasin, V.V., Ageev, A.L.: Ill-Posed Problems with a Priori Information. V.S.P. Intl. Science, Utrecht (1995)
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