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1 Introduction
In the last few decades, fixed-point theorem-based iterative procedures whose con-
vergence established on the strictly hemicontractive-type mappings earn a great atten-
tion for its rigorous applications in the diverse fields of various mathematical prob-
lems; see for instance [2-5] and the references cited therein. Application of strictly
hemicontractive-type mapping was initiated by Chidume and Osilike [4] for improving the
consequence of Chidume [5]. After Chidume and Osilike [4], several researchers studied
strictly hemicontractive-type mapping in many directions; see for instance [1-3, 6-21]
and the references cited therein. Among the articles cited in [1-3, 6-21], Hussain et al.
[1] studied Lipschitz strictly hemicontractive-type mapping in arbitrary Banach spaces to
extend and improve the equivalent consequences of the monographs [4, 5, 12-15].
Throughout this paper, R denotes the set of real numbers, B represents a nonempty
subset of an arbitrary Banach space X and X* is a dual space of X. Let T be a single-valued
map from B into itself, then r € B is called a fixed point of T iff T(r) = r. The symbols
Dy, Ry and Fr denote the domain of T, the range of T and the set of fixed points of T’
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respectively. Let J : X — 2X" be a normalized duality mapping given by
J(r) = {g* € X*:(r,g") = 7> = | ¢*]*}-
The mapping T is called Lipschitzian if there exists a L > 0 such that
I17g - Tr|| < Lllg - |l (1.1)

forallg,r € B.If L = 1, then T is called a non-expansive mapping, and if 0 <L <1, then T
is called a contraction mapping.

The mapping T is called a strictly hemicontractive mapping if Fr # ¢ and if there exists
a constant ¢ > 1 such that

lg—rl <|(1+¢)g-r)-de(Tg-Tr)| (1.2)

forallg € Dy, r€ Frandt > 0.

If the mapping T satisfies both inequalities (1.1) and (1.2), then it is called a Lipschitz
strictly hemicontractive mapping.

The mapping T is called asymptotically non-expansive on B if there exists a sequence
{s,} in [0, 00) with lim,_, o s, = O such that, for each p,q € B,

| T - T"q| < L +s)lp-qll, Vn>1.

T is called an asymptotically non-expansive mapping in the intermediate sense if T is uni-
formly continuous and

lim sup sup (|T"p - T"q| - p—¢ll) <O.

n—oo p,geB

The mapping T is called an asymptotically quasi-non-expansive mapping if there exists a
sequence {s,,} in [0, c0) with lim,,_, o, s, = 0 such that, for all p € B, q € Fr,

IT"p-q| <@ +s)lp-ql, Vn=>1.

According to the definitions, it is clear that an asymptotically non-expansive mapping
must be an asymptotically non-expansive mapping in the intermediate sense and an
asymptotically quasi-non-expansive mapping, but the converse is not always true. We may
justify this concept by using the following example.

Example 1.1 (See [22]) Let X = R (with the usual norm), B = [—%, %] and || < 1. For each
u € B, we define

tusin% ifu0,
0 ifu=0.

Tu =

Then T is an asymptotically non-expansive mapping in the intermediate sense and an
asymptotically quasi-non-expansive mapping, but is not a Lipschitzian mapping, thus it
is not an asymptotically non-expansive mapping as well as it is not a Lipschitz strictly

hemicontractive mapping.
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Remark 1.2 We note that an asymptotically non-expansive mapping in the intermediate
sense or an asymptotically quasi-non-expansive mapping is not always a Lipschitz strictly
hemicontractive mapping.

We now provide an example which shows that a Lipschitz strictly hemicontractive map-
ping is also an asymptotically non-expansive mapping.

Example 1.3 Let X = R with the usual norm and B = [0,27]. Define T: B — B by Tu =
% for each u € B. Clearly Fr = {0}. For each u € Dz, r € Fr, t' >0, choose t = 2. Then

we have

|1+ ) (u—r) = 6(Tu—Tr)| = |(1 +¢')u — 26 Tu|

ucosu

=|(1+¢)u-2t"
>+ )u-tu=u=\u-rl

and hence T is a strictly hemicontractive mapping.
And, if we consider u = 7, v = 27, then it is easy to see that |u — v| = 7 and hence

ucosu vCosv

|Tu — Tv| =
2 2

b4
= E|cosn —2cos2m|

b4
< E|COS7T—COS27T|
2

T T
< —|lm-2n|=—=Llu-v|,
2 2

forallu,v € Band L = 7 > 0. Thus, T is a Lipschitz strictly hemicontractive mapping.
Furthermore, for a sequence {%} we have

. . 1 brg
|T"u—T"v| = —|ucosu—vcosv| = —|cosm —2cos 27|
21 21

b4
< —|cosm —cos2m|
2n

T T 1 1
< —|m-2m|=—-mw<({1l+—-)-w=(1+—-)|lu—-v|,
2" 2" n n

for all u,v € Band n > 1. Hence, T is an asymptotically non-expansive mapping. There-
fore, a Lipschitz strictly hemicontractive mapping may also be an asymptotically non-
expansive mapping.

The following example shows that a strictly hemicontractive mapping is neither a Lips-
chitzian mapping nor an asymptotically non-expansive mapping.

Example 1.4 (See [23]) Let X = R (with the usual norm), B = [0, 1] and let ¢ be the Cantor
ternary function. If we define T': B— X by

- 4 fo<u=<i,
p(1-u)/2) ifi<u<l,
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then T"u — 0 uniformly on B and T is a strictly hemicontractive mapping. But we observe
that T is neither a Lipschitzian mapping nor an asymptotically non-expansive mapping.

In 2006, Plubtieng and Wangkeeree [24] introduced and studied the following multi-
step Noor iterative procedure with errors for some special type of asymptotically non-
expansive mappings (asymptotically non-expansive mapping in the intermediate sense
and asymptotically quasi-non-expansive mapping) in Banach spaces: For a given u; € B,
and a fixed m € N (set of all positive integers), the iterative sequences {ug) 1 {uﬁ,z)}, ey {u;m)}
defined by

uld = a,, T”u,, +b Uu,, + Py,

u? = aP U + P u, + VP,
...... (1.3)
uglm—l) _ (m—l) Tn (m-2) + b(m—l)un + qum I)V;m 1)
Uyl = ufq =a™ TV 4 by, + PV > 1,
where {vﬁ,l)}, . {v,, } are bounded sequences in B and {a } {b } {cn } are appropriate

real sequences in [0, 1] such that a,f) + b + c,, =1foreachie{l,2,...,m}.

The iterative procedure given by (1.3) is known as the multi-step Noor iterative proce-
dure with errors (MNIPE). After Plubtieng and Wangkeeree [24], a numerous number of
research articles have been published on different types of iterative procedures with er-
rors for various kinds of mappings; see for instance [1, 9, 12, 25-27] and the references
cited therein. Among the above-mentioned articles, Hussain et al. [1] studied the follow-
ing special type of Ishikawa iterative procedure with errors (STIIPE) for two Lipschitz
strictly hemicontractive-type mappings in arbitrary Banach spaces: For a given u, € B,
the iterative sequences {u,}-, defined by

Uit = Uy = aff)un + 00 Tul) + vy,

(l) ai, )un + b Su,, + cf})vf}), n=>0,

(1.4)
where {vﬁ,l)}, {vng)} are bounded sequences in B and {agf)}, {bg) 1 {cg)} are appropriate real
sequences in [0, 1] satisfying aff) + bg) + cg) =1forallie{1,2}.

Stimulated by the work of Hussain et al. [1, 9], Plubtieng and Wangkeeree [24], Yu et
al. [11], Agwu and Igbokwe [17] and Zegeye and Tufa [19] in this paper, we propose and
study the following modified multi-step Noor iterative procedure with errors (MMNIPE)
for two Lipschitz strictly hemicontractive-type mappings in arbitrary Banach spaces: For
a given uy € B, and a fixed m € N, we compute the iterative sequences {u,}52, b

e = 1ty = @y + b Tul" ™ + ¢,

uglm—l) _ agqm l)un + bg,M71)Tu£IM72) + C;M71)VEM71),

...... (1.5)
(2) = afqz)un + b Tu,, + ch )Vf),
(1) (1) (1), (1)

U, —a,, un+b Sun+c,, v, n=>0,

where {v,, )}, {Vn )} are bounded sequences in B and {zz } {b l)} {cn } are appropriate

real sequences in [0, 1] such that ay,’) + b + cn =1foreachie{l,2,...,m}.

Page 4 of 30
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Remark 1.5 It is clear that the iterative procedures defined by (1.4) (the STIIPE given by
Hussain et al. [1]), the Mann iterative procedure (MIP) given by Mann [28], the Ishikawa
iterative procedure (IIP) given by Ishikawa [29], the Noor iterative procedure (NIP) given
by Xu and Noor [30], Mann iterative procedures with errors (MIPE) given by Liu [31]
and Xu [32], the Ishikawa iterative procedure with errors (IIPE) given by Liu [31] and Xu
[32] and the three-step iterative procedure with errors (TIPE) given by Cho et al. [33]
are all special cases of the newly proposed MMNIPE given by (1.5). That is, the iterative
procedure defined by (1.5) is a general iterative procedure among the above-mentioned

iterative procedures.

To the best of our knowledge, there does not exist any work about the convergence
and almost common-stability and common-stability of the iterative procedure given by
(1.5) for Lipschitz strictly hemicontractive-type mappings in arbitrary Banach spaces.
From this context, here we establish the convergence, almost common-stability and
common-stability of the newly proposed MMNIPE given by (1.5) for two Lipschitz strictly
hemicontractive-type mappings in arbitrary Banach spaces. The rest of this paper is orga-
nized as follows:

In Sect. 2, we recall some essential definitions and fundamental results. Sect. 3 is the
main part of this paper. Here, we establish convergence, almost common-stability and
common-stability of our proposed MMNIPE given by (1.5). In Sect. 4, we discuss a nu-
merical example to verify the main results of this paper. Finally, in Sect. 5, we conclude
this paper.

2 Preliminary notes

This section is devoted to recalling some definitions and fundamental results which are
truly needed to establish the main results.

Definition 2.1 (See [4, 34]) The mapping T is called pseudocontractive if the inequality

lg-rll <|g-r+t(U-T)g-U-T)r)| (2.1)

holds for each g,7 € B and for all ¢ > 0. According to the result of Kato [35], it follows that
T is a pseudocontractive if and only if there exists a (g — r) € J(q — r) such that

(Tq = Tr,hq - r)) < llq - rII” (2.2)
for all g, € B. T is called strongly pseudocontractive if there exists a ¢ > 1 such that
lg-rl < [(1+2)q-r)-tdTqg-T7)| (2.3)

for all ¢,» € Dr and ¢’ > 0. T is called local strongly pseudocontractive if, for each q € Dr,
there exists a t; > 1 such that

lg—rl <[ (1+¢)g-r) —tt,(Tqg-T7)| (2.4)

forallg,r € Dy and ¢’ > 0.
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Definition 2.2 (See [36—38]) Suppose ug € B and u,,; = f(u,, T) defines an iterative
procedure which yields a sequence of points {,} C B. Let Fr # ¢ and let {u,} con-
verge to a fixed point g of T. Let {v,} C B and {§,} be a sequence in [0,00), where
8u = Vi1 —f (v, T)|. Now, if lim,,_, 8, = O implies that lim,_, o v, = ¢, then the itera-
tive procedure defined by u,,1 = f(u,, T) is said to be T-stable or stable on B with respect
to T and if ) -8, < oo implies that lim,_, v, = g, then the iterative procedure defined
by .1 =f(uy, T) is said to be an almost T-stable on B with respect to T

Definition 2.3 (See [1]) Let B be a nonempty convex subset of an arbitrary Banach space
X and let T and S be two self-operators on B. Suppose uy € Band u,,1 = f(uy,, T, S) defines
an iterative procedure which yields a sequence of points {u,} C B. Let Fr N Fs # ¢ and let
{u,} converges strongly to a common fixed point g of T and S. Let {v,} be any bounded
sequence in B and {x,,} be a sequence in [0, 00), where w, = ||vy11 — f(vy, T, S)||. Now, if
lim,, oo (4, = 0 implies that lim,,_, » v, = r, then the iterative procedure defined by u,,; =
f(u,, T,S) is said to be a common-stable on B and if Z:o:o Wy < oo implies that lim,,—, o v, =
g, then the iterative procedure defined by u,,.1 = f(u,, T, S) is said to be an almost common-
stable on B.

Now, we recall some lemmas which are essential to prove the main results of this paper.

Lemma 2.4 (See [39]) Let {0, }020, {Butocos {Vntaoo and {w,}02, be nonnegative real se-
quences such that

Uyl < (1 - wn)an + wnﬁn + Ve, HN= 0, (25)
with {w,}22 C10,1], Y 0o wy = 00, > e Vi < 00 and lim,_ oo B, = 0. Then lim,,_, oo ayy = 0.

Lemma 2.5 (See [40]) Let {a, )2, and (B}, be sequences of nonnegative real numbers
and 0 < n < 1, so that

Upe1 <Ny + By, Y >0. (2.6)

(i) Iflim,,—, o B, = 0, then lim,_, , a,, = 0.
(ii) If Y02 Bn < 00, then Y o2 oty < 00.

Lemma 2.6 (See [35]) Letx,y € X. Then ||x|| < ||« + ry|| for every r > 0 if and only if there
is f € J(x) such that Re(y,f) > 0.

Lemma 2.7 (See [4]) Let T : Dy € X — X be an operator with Fr # ¢. Then T is strictly
hemicontractive if and if only if there exists a t > 1 such that for all x € Dy and q € Fr there
exists h € J(x — q) satisfying

Re(x— Tx,h(x—q)) > <1 - %)IIx—qHz. (2.7)

Lemma 2.8 (See [12]) Let X be an arbitrary norm linear space and T : Dy € X — X be
an operator.
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(a) If T is a local strongly pseudocontractive operator and Fr # ¢, then Fr is a singleton
and T is strictly hemicontractive.

b) If T is strictly hemicontractive, then Fr is a singleton.

3 Convergence and stability of modified multi-step Noor iterative procedure
with errors
In this section, we state and prove the convergence and stability of our proposed MMNIPE
for two Lipschitz strictly hemicontractive-type mappings.
Let A = "T‘l € (0,1), where o > 1, L be a common Lipschitz constant of two strictly
hemicontractive-type mappings 7', S and / be an identity mapping on the arbitrary Banach

space X. In the above-mentioned context, we state and prove the following theorems.

Theorem 3.1 Let B be a nonempty closed convex subset of X and T and S be two Lipschitz
strictly hemicontractive-type mappings from B into itself. Suppose that {V,, bheeos {VS,’”)} are
arbitrary bounded sequences in B and {a } {b l)} ,,)}for each i €{1,2,...,m} are any
appropriate real sequences in [0, 1] satisfying the following conditions:

(1) ag) + b(i) + cff) =1, foreach i€ {1,2,3,...,mj},

2) o (bf{”’),

(3) lim,_ s c,, =0, foreachje{1,2,3,...,m—1},

4) >, b = 00 foreach j € {2,3,...,m },

(5)

L[ +L)BY + (1 + L)?B" D + L(1 + L)*b{" D=2

+L2(1 +L)2 b= lb(m me 3) + [ 3(1 +L)2 pim- lb(m Z)b;m—B).”bE?)

-2 2 -1 -2 -3 2)1,(1
+ L"72(1 + L)V plm-2p0m=3) . @ p0)

n n

+ [ch”‘) +(1+ L)chm’l) +L(1+ L)b;m’l)cgf”’z)

21+ DB DB D L 131 4 LB DB O

(m)
#1721+ DB DB b2V + Z’Z <A(-0), n=0,
n

n

where 6 is a constant in (0,\) and X € (0,1).
Assume an iterative sequence {u,}o, defined by (1.5). Let {w, )2, be any sequence in B and
{1l be a sequence defined by

i = Wpi1 —x4ll, n>0,

where

0 =20 = al"w, + B TV 1 I,

a7 = al Vw, + B T 4 DD,

...... (3.1)
xg,z)—an w,,+b Tx,, +cn2)qu),

1 _ (@1 (1) (1)

X, =ay, w,,+bn Swy+c,'vy, n>0.

Then

Page 7 of 30
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(i) the iterative sequence {u,}5°, given by (1.5) converges strongly to the common fixed r
of T and S and the following inequality holds:

ltns1 = 7|
<(1 —ob™ )||u,, —rll+ A1+ L) [ " ||v —r|| +c§lm’1)Lb ||vm b —7|
=2 2pm) ||v —r|| +cmI3pmpm-Dp ||v r”
e DA
+ CEII)Lm—leIm)bEIm—l)h;m—% . hﬁf) ”"511) _ r”], n>0,
(i)
”Wn+1 _rH

< (1-68")) |y, — 7]

+271Q + L) [ ”v r” +L[b( ”v’” B rH
+4WWww”wM>wuwwwwwm Dt |

co L[BB B bD D VP - 7
+quwwwmﬁw%qumnqhw,wa

(il) Y_noo in < 00 implies that lim,,_, oo Wy, =1, S0 that {u(m) oo is almost common-stable
on B,

(iv) limy,_, oo Wy, = 1, implies that lim,,_, oo ., = 0.
Proof (i) From the condition (2), we obtain cn = 8,b m), and 8, — 0 as n — 00. By an

application of Lemma 2.8, we see that Fy N Fs is singleton, and let Fr N Fg = {r} for some
r € B. Put

A= max{sup{ || vﬁ})
n>0

sup{ [V~ |} sup{ [~ r]},... sup{ [y~ r[}}.
>0 n>0 n=0

Since T is strictly hemicontractive, from Lemma 2.7, we obtain

Re(x — Tx, h(x — r)) > Alx—r|?

= Re([-T-ADx—(-T-ADr,h(x-r)>0, VxeB. (3.2)
Now, from (3.2) and Lemma 2.6, we have

la—rll < |x—r+q[I-T-rDx~I-T-21Dr]|,

Vx € B, and Vg > 0. (3.3)
Also, from the first equation of (1.5), we get

Upsl = aff")un + bﬁ,"’) Tuﬁlm_l) + cff’)v(n’”)
= (1=, = (1= (1 =B Yty + B = T = A)ttya

+ bff”)(Tu,,H - Tu;m_l)) - cf,m) (V(”’) - u,,),

n

Page 8 of 30
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and since r € B is the fixed point of T, it follows that
(L=BY)r = (1= (1L =AD" r + (I - T - Al)r. (3.5)
Now, for all # > 0 from (3.4) and (3.5), we have

(1=85") uy —rl
“( -(1- )L)bn;ﬂ))(unntl -1+ bfqm)(l — T — A (tpe1 — 1) ”
- bn'") H Tityi1 — TuS,"’_l) || - cﬁ,’") ||qu”’) —u, ||
b(m)
Upi1 — 1+ %(1— T - )ty —7)
1-(1-A)b)

- bg,”‘) H Tihye1 — Tu;""l) || - cﬁl’”) ||v§,’”) —u, ||

= (1-(1-2)B")

> (1= (=MbY ) lter = 7l = b Titer = TV | = & [ = |
which implies that
11 =7l
1-b by N
(1 )\’)b(m) ” Uy — ” + 1- (1 _ )\’)bglm) || Tun+1 - Tu " “
(m)
e [

+ —_—
1—(1=2)p"™

IA

1= 2B lttyy = rll + 2710 || Tty — Tul" V|| + 27|V — |

IA

IA

(
(1= 2B [l = rll + A7LBY |1 — "D || + 272 ||V — |
(

n
1- kbg,’" )||u,, | + )ClLbn’" ||u,,+1 - u(n'"_l || + A7 lc;’" (Hv(’") rH + |luy — r||)

(1= 26" + 27 e )t = rll + 27 LEY futar = ™|

+ A7 c(m) ||V —r||. (3.6)

Again, from (1.5), we get

Jetnir = 2670
a0, + BT 1 () _ gDy oDy n-2) _ Db
= ” (1 - bS,"O - cglm))u + b(’") Tufq’”_l) + cfi’")v;'") - (1 - bf{”’l) - c;m_l))uy,

_ bEIm—l) Tu(m—Z) ﬁlm I)V(m 1) ||

n
B (T )+ 607 =) + B = Tul ) = €D () )|
< B (T — ) e (4 )|

n n

4 ) P o )|

< bnm) Hu Tu"’ D H + c(’") Hv( —u, H + bn - Hu,, - Tu;m_z) ||

+c£f’” ||vn’ —u,,”
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< B (=l + = T D) + (|7 = ]+ laaw = 1)

+ BV (|l - 7| + ||r—Tun’” DI+ (D = v ||+ Nl -1l
(

< 0" (ot =7l + L™ ’H)”nm (I = 7] + Nl = r1)
+ b 1)(llu,,—r||+L||u r||) (m- 1)(”V,, - —FH+||Mn—'"||)
= [0 + by + ey + 6y = 1 +bfqu||M§«m’” |+ by L x|
[P ]+ 1| e
But
[l ] = [V + B VT Dot ]

= (1 =B = D)y, + BUD Ty 4 Dy |

= ”u,,—r+b( (Tuﬁ,’” D rtr—u,) + " 1)(1/5,""1) —r+r—u)|

< Nty — 7l + 60V Tl || + 6 D Nlgyy | + D WD —r |

"y = 1l
e e R A e R e L ] Ity
6" Dty — 7|
= [1+ 57D 4 D]y — 7| + B IL |2 — |
S A (3.8)

Substituting (3.8) in (3.7), we have

s -]

< [b(’") + b 4 () g ]||un —7|

+ bfq’” [[1 + b(’"_l + c(’"_1 ]||u,, —r|+ b(’”_l)L”u(m_z) - r|| + ch’”_l) || vE,’”_l) - r||]
+b£l”’ 1)L”u(”’ -2) r|| +c ||V rH +c ||v’" ) r”

=[607 + b0 + BIPL[1 + b0V + c(”"l)] +c + " D]y — 7|

n

+[Beb0 VL + B VLY || a2 — r|| 4+ [ —r |
+ [ LY 4 D] [ pimD) —r||
pim-v 4 (1+ LY D]ty — 1

n n

=[@+L)py" + (1 +LbY™)
(

+ LD (1+ LbI™) I

] rH+JmWVm’ rl

n

DL+ LB v —p|. (3.9)
But, if we replace m by m — 1 in (3.8), then we have

||u m-2) r” = [1 + b(m’z) + c(m’z)] g, = 1l + bg[m’2)L||uilm*3) - r”

+c || V(”’ 2 r|| (3.10)
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Now, substituting (3.10) in (3.9), we have

Jetna =

< [@+ Db + (1 + L) + ) 4 (1 + L) " D]y, — 7|
+L(1+ LI V([1 + b0 + 2l — | + 6T L||ul") 7|

+ c(n’”’z) ||v£lm’2) - r||] + c;"’) “vﬁl’”) - r|| + c(m’l)(l + Lb(”‘)) ||v(m’1) - r||

<[@+L)p + (1 +L)(1 + LBU)B D + L(1 + L) Bl Dpim=2 4 (i 10
+ (1 +L60) D + L(1+ LbI™) b D] ||y, — 1|
o114 LB b W-”nu;m Do v ]
0 L) 0 < e BL D (1 L) [ =],
But, if we replace m by m — 1 in (3.10), then we have
Ju ] = i B+ Iy = ol 4 B L[ |
+cm3) | ym=3) . (3.12)
Substituting (3.12) in (3.11), we have
s — |
<[@+L0)bI + (1 +L)(1 + LBY)B" D + L(1 + LbI™) BV b2 4 ()
+ (L L))"V + L1+ LB )b Ve Dy |
+ L2 (1 + LbZ) b6 [[1+ 50" + "]l — 1|
el B R el et | A e
(R 2 ] R AU 2 ] WA
[(1+L)b§;" +(L+L)(1+LbI")p\D +L(1+L)(1+Lb N2
+ L2 (1 + LbI™)bim=Dplm=2pm=3 4 o 4 (14 LbI™) =Y
+L(1 + L) b=V lm=2) +L2(1 +Lb" )b”’ Dpm=2cm=3 |y, - q||
+L3(1 + LB )iV pm=2 pm=3) | 3 m=4) _ |
+ M [ vim) — | + - 1>(1+Lb<m)||vm Dy
+ L1+ LB B | — |
+ L1+ LB )bV v — . (3.13)

Continuing the above procedure up to second iterative step of (1.5), we obtain

2 =70
<[@+ L)Y + (1 +L)(1+LbI™)b" D + L(1 + L) (1 + Lb™)b" Vb
+L2(1+ LBU )b Vb2 4 1773 (1 4+ LB )b D b zb; 3@
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+ [+ (14 LBU) eV + L(1 + LB )bl =2
+L2 1+Lb ) m l)b(m Zc(m 3)
~+L"3(1 +Lb(”’))b Dpm=2) .. p@ c(g)]]Hu,, —r|

W=l e v =]

1+Lb ) ||vm 2 rH

+ L7721+ LBy )b Vb2 b0 - b |

—~

e (0o L) [ <] DL
+c;m*>L2<1 LB |

n

T 1+ L™ )b m-Dpim=2) ... p® ||V£,2) -r|] (3.14)
Now, from the last equation of (1.5), we have

[0 = P+ 1+ 00 o]

< Nt — 11l + bPNSy =7l + B Ny — 7l + P Nty =l + P |V 7|

(3.15)
< (1 + bill) + c(nl)) ot — 7| + bﬁ,l)Lllu,, -l + cﬁ,l) ||v§,1) - r||

=[1+(1+ L)bY + c(nl)] N2t — ]| + ) ”vE}) —r|.
Substituting (3.15) in (3.14), we have

i1 =240

<[@+L)b + 1 +L)(1 + LBU)B D + L(1 + L)(1 + LbI™) b~V plm=2

n
+L2(1+ LB )b Dpm 23 4 173 (1 4+ LHU )bV pim D) L p2)

n n n

+ [cﬁlm) + (1 +Lb£lm))cglm—1) +L(1 +Lb )b(m 1) (m-2)
+ L2(1 +Lbilm))bglm—l)bglm—Z)c(m_S)

oo+ L3 (14 LI B VD) b,f)cg)]]llun—rll

n

+ L2 (1 + Lb0) B DD p=3) . pD[(1+ (1 + Db + ) — |

n
DIl v
tc (1 +Lb(”‘))b(m—1 ||v m-2 —r||

"
+c"m 21+ Lb )bV ||v 7

n

bk DL 3(1+Lb;m)bm1 b pO VD |
:[(1+L )bU + (1+L)(1+LBY )60 + L(1 + L)(1 + LbY”) b V>
+ L2 (1 + L)(1 + LBI™) b= plm=2) plm=3)
+L"3(1+ L) (1 + LbI™) b Dpim=2) ... p@
+L"2(1+ L) (1 + L) pm-Dpim=2 .. p2 pD

+ [cﬁ,"’) + (1 + Lb(n'”))c(n”"1 + L(l + Lb(m))b(’”_l)cglm_z)

n n

+ L2(1 + Lb(m)) b(m—l) b(m—Z) C(m—S)

S+ L3 (14 L) Db p P2

n n
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+ L2 (1 4+ L) Dp0m 2 b2y — ]
P =l e (e L) v |

+ ¢ IL(1 4 LB)p |y — |

D14 LB [y |

o+ DL (14 L) D pm2) . p®) v |

L2 (1 + LbI)p Vb2 b2 D —p|. (3.16)
Substituting (3.16) in (3.6), we have

41 = rl

< (1= + 2710 [l = 1|
+A7LLBU [+ L)BY™ + (1 + L) (1 + LbI™) bl
+L(1+L)(1+ LY )b Vbl
+ L1+ L)(1 + LBI™) b= plm=2) plm=3)

+L"3(1+ L) (1 + LbI™) b Dbl ... p2
+L"2(1+ L) (1 + Lb)pmDpim=2 .. p2 pD
+ [+ (1 + LYYV + L(1 + LB ) b=V 2
+ L2(1 + LB )i Dpen=2m=3) 4y 1731 4 LbI™) Bl Dpim=2) . p@ P
+L"2(1+ L) b D=2 . b@ D] wy, |
]+ D (1 L) [ |
+ cf;“*z)L(l +Lb;”>)b m=1) ||v<m 2 r”
AL (1 + LB B Db ||y |
+o+ DL (14 LB )bn’”‘”bﬁj”‘z) s
L1+ LB DD ] 42 [ o]

=(1- )\b;m) + 275 [l — 7
+ATILBI[(1 + D)BI™ + (1 + L)(1 + LB )b
+L(1+L)(1 + LY )bV plm=2
+ L2 (1 + L)(1 + Lo b=V plm=2 plm=3
+o+ L3+ L)1+ LBY) b Vplm=2 . p?)
+L"2(1 + L)(1 + LbI™) b Dplm=2 .. p@p1)

n

n n

+ [ + (1 + L)Y +L(1 + Lb{™)plm D clm=2)
+ L2(1 + Lbﬁlm))b;m’l) bﬁ,’”’z)c;m’g’)
bt Lm—3(1 + LbE«:H))bfqm_l)b;m_Z) . b512)6512)

+ L2 (14 LB b Vb2 p D D] sy, — 1|

n
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# 7 (L L) [V |+ €O L (L LB B D |
DAL (1 LB [ |
o AT (14 IO BBV pB) |2 |
AL (L LB VB 2 |

< [1-BU[A = AL + LB + (1 + LB + L(1 + L)* BV pm-2

+ D21+ L2 Vpm=2p0m=3) o4 [m=3(1 4 L)2pmDpin=2 .. p2

n n

+ L7721+ LBV b P

n
+ CSI'”) +(1+ L)c(n’”_l) +L(1+ L)bi,”’_l)c(n’”‘z)

+ L2(1 + L)bImDplm=2m=3) oy 31 4 L) DpmD L pB )
n

n

+L"72(1 + L)bglm’l)bﬁlm’z)b(n’”’e’) e b(z)cnl)] - )C16,,]] Ity — ]|

n

,1(1+Lb£lm))[chm) ”qum) _q” +C§lm 1 ”Vm 1) r”
(D 2 pn D | on2) _ | lom-3) 3pom pfomDon2) [ fon3) _ |

o cw-w BB D ]
+ Cgll)Lm—1b£Im)bglm—1)b2m-2) o hff) ”VE}) _ r”]
< (1—(919 )||u,,—r|| +27Y 1+ L) [ " ”v q” +c’" 1Lb ||v”’ 1 r”
m 2) LZb ||Vm 2) _ }”“ + Cm 3)L3b bilm—l)b;m—Z) ||V§lm—3) _ }"“
+oe Z)L’” 2 bVl 3 |y |
DL ) ]
< (1-9bf;ﬂ>)||un—r|| +8, A7 (L + L)BYA[1 + LB DD + L2pm plm D pln?
+L3b bm )bm Z)b(m3 4 [ Zh bm l)bm2 bf)]
+ L pim pm-Dpm=2) . p(2)], (3.17)

n n

Now, if we put

oy = ”un —V||,

W, = Obim),

y = 078,07 (1 + L)bIA[L + Lb™ bV
+ L2BB Vb 4 LBV b2 pi Y
+ [ 2b b m— l)b(m 2) b(B Lm—lbilm)bilm—l)bglm—Z) . b£l2)]’

Yn = 0,

in (3.17), then, by condition (3), we observe that

Wyl = (1 - wn)an + wnﬁn + Yns n= 0,

with {@,}52, C [0,1], Y02 g @, = 00, Y e ¥u < 00 and lim,_, o B, = 0.
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Hence, from Lemma 2.4, we have

lim «, = 0.
n—0o0

That is lim, o || tt,, — 7| =

This ensures that the sequence {1, };°, of the MMNIPE given by (1.5) converges strongly
to the common fixed r of T and S.

(ii) From the first equation of (3.1), we get

Xy = af,m)wn + bﬁ,’”) Txi,m_l) + cilm)viqm)

= (1=, = (1 (1 -1 )x, + bI(I - T - M)x, (3.18)

+b" (T, - Tx;””l)) —cm (V(”‘) - Wy).

n

Now, for all # > 0 combining (3.5) and (3.18), we obtain

(L= wy =l = | (1= @ = 2)bY) (e = 1) + BY (I = T = M), = 7)||

o Toen = T = o = w|
b(WI)
—rt— (I -T-A)(x,—7)
1— (1= )™

bﬁlm) || Tx, — Tx;"”l) || - cglm) ||v£lm) — Wy, H

= (1 (1L-1)b") |x,

> (1 -(1- k)b(,,m)) 1, = 7]l = b;’”) || Tx, — Txﬁ,"’_l) || - cﬁlm) ||v§l’”) - Wy, ”

( _b(m)) b(m)
n —
=l = rll < e W = |+ | Tty — T
(1- (1 =2)b)") (11 =2)by")
(m)

e I

HTETEp T

< (1 - Ab(m)) lw, —r| + )ClLbil”’) ||x,, — xm=D || + )Clc;’”) || vilm) - Wy H

n n

=W

< (1= 2b) w7l + A7 LB [, — V)|
w2 (v = v + liwa = rl)
= (1 - Ab(m +271 C )) lw, — 7|l + )\,_lLbfqm) ”xn _xsl,m_l) ”

+ A7 || x| (3.19)

But, applying the second equation of (3.1), we have

- 540]
W) 4000 )
o o= ) = Gl )|

<b£lm) Hw Tx(”‘ b || +c ||vm - Wy || +b§1m_1> ||wn— Txﬁlm"z) ||
D |

< B (o=l + [ T ) e (12 =+ =)
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+

BV (w = ril+ [ = T2 ) + =D (v = v+ w = rl)
=0 (Iwn =il + L =) + 7 (v —r||+llwn—rll)
0w =i+ L = r ) + D (v = |+ llw =)
<[b0 + b0 + I 4 D] |lw, — 1| + LI |4l —r |

+Lb£,’”’1 ||xm 2 —r|| +c ||v r|| +c(’” b ||vm b rH (3.20)
But after a simple calculation we get

0 =]

<|w,-r| + Lb;”’_l) ||xff”_2) - r|| + b;m_l)llwn —rl + c(n'”‘l) ||qum_l) - r||
(3.21)

1)
|

+c wy, —r||

[1 + b +c(m b ]||wn -7 +Lb(’” b ||x(’” 2 r|| + chm’l) Hvﬁlm’l) —r||.

Substituting (3.21) in (3.20), we have

< [bn’”) + bn’”_l) + cgl’”) + c;’”_l)] lw, —rll

+ L [[1+ 507 + D] flwy — rll + LBY 672 —r | + V|| —r ]
+ LoV a2 — || 4 I vl — r|| +cm D[y | (3.22)

=[@+ Db + (1 + LB + ¢ + (1 + LB )" V] |y, — 7|
+Lb(m’l)(1 + L) |22 — 7| + U [ —r |

V(1 + Lbi" )||V£,m_ -r|.
Now, from the third equation of (3.1), we get

|2 =
< lwy —rll + LB 2|6 — || + 602 |y, — | + 02 W02 — |

(3.23)

2)
2

+c wy —r||

=[1+ b2 4 c;"‘_z)] Wy, — || + LB ||x(nm_3) -r|+ cm=2) ”VE,"‘_Z) -r|.
Substituting (3.23) in (3.22), we have

0 =2

<[@+L)BY + (1 + LBU)BU + ¢l + (1 + L) "] || w, —
+Lbﬁlm’1)(1 +me) [1+b(”‘ D g ]||w,,—r|| + Lb"- )||xm 3 -
we DD =]+ P o =+ e (L Loy v -
n n n

1+L +(1+L 1+Lb BV 4 L(1 + Lo Vpm=2) 4 ¢
[( ) m ( )( ) (m-1) ( m) m-1) 1 (m-2) (m)
(

+ (14 LBU) " + L(1 + LB )bV 2] ||, — 1

n
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+L2(1 +Lb(”’))bfqm_l)b£lm 2 ||x("’ 3) r|| +c ||V r||

n
+ (1 +Lb£lm))c£lm’l) HvE,’”‘l - r|| +L(1 +Lbn"’ )b(n’”_l c(n’" 2 ||v”’ -2 r”
Continuing the above procedure up to second iterative step of (3.1), we obtain

[ =]

<[@+L0)b + @ +L)(1 + LBU)p" D + L(1 + L)(1 + LbI™) b Vb

n
+L2(1 + LB )b Dpim=2pm=3) 4 4 L7731+ LB b~ Ub m-2)pm=3) .. p?
+ [cE,’”) + (1 + Lbf{"))ch'"_l) + L(l + Lb )b(’" D lm=2)
+ L2(1 + Lb;"‘))b;’”’l) bﬁ,’”’z)c(”"S)
+L"3(1+ L) b Vb2 . p@ O] |lw,, — |
(1)

1)

e R e

+ (14 LBY) DoY) — r|| + L(1 + LB )bVl — x|

+L"2(1+ Lb0) b Vplm Db . p2) |

+L2(1 + LB )bV pim=2) m=3)|| m=3) _y |
o L3 (1 4+ L) BV L pB D |2 r|]- (3.24)

Now, from the last equation of (3.1), we have

nl)vnl) - V”

[ =l = a5 w + b3S + ¢
< =+ B 1w =l + B i =l + ¢ llw = 4 € A =
= (14 B + <) lwy — ]l + B 1Sw, — 7l + DD 7] (3.25)
W+

< (1 +b 4 ¢ 1))||wn |+ bPLw, = 7| + Y HVS) - rH

=(1+@ + L)BD + <Y wy, =)l + ¢V ||v£11) -r|.
Combining (3.24) and (3.25), we obtain

|0 =60

<[@+L0)BY" + (1 +L)(1 +LbY)BY" D + L(1 + L)(1 + LbZ™) bV
Elm—Z) th—S)

+L2(L+L)(1 + LB Dp

i Lm—S(l ¥ L)(]. i Lb(m))b(m—l)b(m72)b(m*3) .. b(2)

n n n n n

(1)

n

+ 1721+ D) (1 + LB b Vb2 bl - bPb

+ [C;’”) + (1 + Lb(n’"))cﬁlm_l) + L(l + Lh(”’))b(”’_l)c(m_z)

+L2(1+ LB )b b2 m) o 1773 (14 Lo B Db pB) P
+L"72(1 + L) bl Dpm=2pm=3) . p@ W], - 7|
+[c"’”v r”+(1+Lb )("’1”1/”‘ b rH

+L(1 +Lb™ )b”’ 1) glm= ||V(’" 2) r||
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+L2(1 + LB ) im0 pn=2) lm=3)|| im=3) _ |
RN S (1+ Lbi,’”))b;’”’l)bﬁlm’z) e ||V§,2) - r||

+ L2 (1 + Lb0) b2 b p2 DD —r ] (3.26)
Inserting (3.26) in (3.19), we find

lloen =7
< [1-2ab0 + 271 4+ AT LBIP[(1L+ LB + (1 + L) (1 + LB )bV
+ LU+ D) (1 + LE™) b Vb2 4 [2(1 4 L)(1 + LbI) b pln=2 pn=2)
+oo+ L3+ L)(1+ L) Dplm-Dpim=3) . p@
+L"2(1 + L)(1 + Lo )bV plm=2pm=3) .. p@ 1)
+ [l + (1 +LBY) =Y + L(1 + LB ) b=V =2
+L2(1+ LbI™)bim-Dplm=2cm=3) 4y [m73(1 +Lb(’" )bV L pB) @

+Lm—2(1 +Lb£l’"))b(m l)bm 2)b(m 3) b(2 (1) ]]]lan —7|

n
+ ALLBY [ || — r|| + (L + L) D=1 — |
+L(1+ L) b=V =2 _ |
+L*(1+ Lbﬁlm))b;m’l)bﬁlm’z I3 |
+o+ L3 (14 Lb;’"))bim_l)bfq’”_z) D vaf) -7
R L L X M | RER A i
=[1-b0[h = 27IL[(1+ L)BY™ + (1 + L) (1 + LbI™ )bV
+ L1+ L)(1+ LBy 6V + L2 (1 + L) (1 + Lby™ )b D b2 b
+ L7314+ L) (1 + L) pim-Dplm-2pm=3) ... p@
+ Lm—2(1 +L)(1 +LbEIM))bE’lm_l)biqm_Z)b;m_S) . 'bng)biql)
+ [cﬁ,"’) + (1 +Lb(n’"))c(n’"_1) + L(l + Lb " )b(”’ 1) m=2)
+ L2(1 +Lb5,m))b§1m_l)b£,m_2)05, o I 3(1 + Lb(m )b m— 1)b£lm—2) .. 'bf)cf)
+L"2(1+ LbI) b DpmDpm3) . p D] — 1718, ]]Ilwn — 7
_1(1 +Lb£’lm))cf’lm) ”qum) _ r” + A_IL(I +Lbnm )bnm Cnm—l) ||V§1m—1) _ r||
+ A7 L2 (1 + LbI™) b m=2) ||y |
+ AP (1+Lb m))b’” (=1 p(m=2) lm=3) 1 im=3) _ |
+e A AT (14 L™ )b "‘)b(”’ Dpm=2) .. p® @ ||v§12) -7
+ 27 (1 + LB bbb 2B - PP WY — |
< [1-8Y[x=27"L[(1 + L)bY™ + (1 + L)*b0" Y
+L(1+L)*b0" Vb2 + L2(1 + L)* bV plm=2 pm)

+ Lm—3(1 + L)Zbilm—l)bilm—Z)b;m—ii) L. b512)
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+ [ 2(1+L)2bm l)bm2 mB . bZ)b(l
+ [ + (1 + L)V + L1 + L)l =2
+L2(1+L)bm l)bm -2) (m 3) + LM 3(1+L)bm 1 m 2) ~~b(3)C$12)

n

F L1 + LB DpmDpm=3 - p@ D] = 315, 1] w7l
37 L) [ — ]+ 7L+ LB [y |
+ A7+ L)bﬁ{”’b;% )= om=2) _ |

# AT+ LB B DB 3) |

b AT (14 L)bﬁj”)b(nm*1>b§1%2) B v |

+ 271+ LBV pm-2 3 pA DD |

< (1-0b0) |y~

+ 2711+ L) [ ”v —r|| +L[b£, ||vm D rH
+L[b§1m)b§lm 1) (m -2) ”Vm 2) r” +L[b(m)bm lb(m 2) ||V(m 3) 7'“
oot L[bg,’")b(nm_l)bg"_z) P ||v;2) -7 (3.27)

LB b2 ) = ] -]
Now, using (3.27), we obtain

Wi =l

< W1 =%l + [l — 7l

< (1=6b0")llw, — 7
F AN+ L) [V — | + LB D [ymD |

< (1=-080") Wy —rll + A7 (L + L)[YA + L[I" "V A

LBV cm=D 4 4 L[ pn-1plm-2)(m-3) 4
4 L[ B I L p 2 A

%MWMWWWWMW&WHJMM

=(1- eb“”)) Wy —7ll + 2711 + L)ABI[8, + L[~V

n

+ L[b (m 2) +L[b;m—l)b£lm—2)cﬁlm—3) +- [b(m 1) b m=2) 'bi,?’)cf)
¢ L[B DB B0 O] ]+ 10, (328)

(iii) If we put

o =Wy —rll,

W, = ObEIm),



Asaduzzaman Fixed Point Theory Algorithms Sci Eng (2021) 2021:6 Page 20 of 30

Bn=0""A"N(1+L)A[S, + L[ch’”_l) + L[bfq’”_l)ch’”_z) + L[b(’”_l)b(”’_z)c

n n

(m-3)
n
b L[BIB O 4 LB D] ]],

n n

Vn = Mm Vl’l Z 0;
in (3.28), then we obtain
Upr1 < (1= wy)ot, + 0, By + Vs n=0,

where {0,}22, C[0,1], Y02y wn =00, > e vn < 00 and lim,,_, o0 By = 0.

Hence, from Lemma 2.4, we have lim,,_, o, o, = 0.

That is lim,_, « [|w, — || = 0. Hence, lim,_, o, w, = r and this ensures that {uﬁ,m) 0 1s
almost common-stable on B.

(iv) Considering lim,_, oo W, = r, we have lim,,_, oo Wy41 = 7.

Now, using (3.27), we get

Mn = ||Wn+1 —xn” =< ||Wn+1 _r” + ”xn _r”
< Wy =7l + (1 =060 lw,, 7|

+A711+ L)Abﬁ,"’) [8,, + L[cglm_l) + L[b(”’_l)c(”’_z) + L[b(m_l)b(m_z)cglm_s)

n n

+oo 4 LBV pB @ g D plmDpm=3) L p2 (DNT].. ]] — o,

as n — 00, this means that lim,,_, o, ,, = 0.
This completes the proof. g

Theorem 3.2 Let B, X, T, S, 6, {,) 0, (24} 220, (Wi} 200 V'), (), and {10,)22, be
as in Theorem 3.1 and {ai,i)}, {bff)}, {cg)}for each i € {1,2,...,m} be any appropriate real
sequences in [0, 1] satisfying the conditions (1), (3), (4), (5) of Theorem 3.1 with the following
property:

Then the results of Theorem 3.1 hold.

Proof The proof of this theorem is similar to the proof of Theorem 3.1, so here we omit
it. O

Theorem 3.3 Let B, X, T, S, 0, {14,) 20, (6} 200 (Wn}20) (V') -, IVI™Y, and {11,)22, be
as in Theorem 3.1 and {aff)}, {bff)}, {cg)}for each i€ {1,2,...,m} be any appropriate real
sequences in [0, 1] satisfying the conditions (1), (3) and (5) of Theorem 3.1 with the following
property:

lim ¢ =0, and b(n’”) >h>0, Vn>0,

n—00 n

where h is a constant.
Then



Asaduzzaman Fixed Point Theory Algorithms Sci Eng (2021) 20216

Page 21 of 30

(i) the iterative sequence {u,}5°, given by (1.5) converges strongly to the common fixed r
of T and S and the following inequality holds:

lttner —rll = (X =OM)|un =1l + D, Vn=0,

where

D=x7'(1 +L)[sup{cf4'”) [[vim) — r|} + LH™ sup{ m=D) || fm=1) -/}
n>0
+ L2 pm- sup{ D=2 | }
n>0

+L3b b )b(’” 2 sup{ (m=3) ||v’” -3) r||}
n>0

v -}

# LB D supl el [0 - o]

+ Lm—Zb(nm)bi[m—l)b;m—Z) . bE,lB) Sug{ (2
n=

(i)

[IWps1 =l

< (L= 0h)wy —rll + A7 @+ L)[4 |07 — 7| + L[V v

L[ [ =+ L v o]

-

o [cn2 v 7| +L[C,,1)HVHD =r[]1]]--

']]+:u'm VHZO,

(iti) limy,— 0o Wy, = r, if and only if lim,_, oo p, = 0.
Proof (i) Following the proof of Theorem 3.1, we have

i1 =7l
< (L =08 Yty — 7l + 271 + L) [V — 7| + A71L(L + LB D || |
+ A1+ D)BIpI D D |

VI

+ A7LL3 (1 + L)BI plmV) pm=2 =) v —r|

n n

+oo+ ATLA(L 4+ LB B IB D B @ V2 |

ol

<A =0M|lu,—rll + 2711+ L)[ ||V r|| + Lb(’” c’”‘l) ||V(W’_1
+L2bnm bnm—l cnm—2 anm—Q

27N+ DB B DB R D WD

)—W

—7| + L3pim pm=1) plm=2) (= ”V r”
+ Lm—ZbLm)bilm—l)bglm—Z) . quS)CEqZ) ||Vn _ V”

W =rl]

<1 -0n)|luy -7l + 271 +L) [sup{cﬁf”) [V —r|} + Lb% sup{cmD vl 7|}
n>0 n>0

+ Lm—lbglm)bilm—l)bglm—Z)bilm—?)) . b£l2)cill) || v

L2b b’” D sup{ ||v r||}
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# BB b supl el | )
-
L2V Y suple? v ]
e
LB Y supl Y |}
=(1-6h)||u,-r||+D, n=>0.
Now, putting
oy = u,—rl, n=1-6k and
R B R R el el
-
A il |
+ LB D suple = v -
o LMD i) ) sup{ 2 -}

+ L1 pm plm =D pn=2)ym=3) . p(2) sup{cE,”HvE,l)—r*H}], V>0,
n>0

we get 0 < < 1and lim,_,« B, = 0. Hence, by an application of Lemma 2.5, we obtain
lim ||u,—r| =0
n—00

This ensures that the sequence {u,};2, converges strongly to the common fixed r of T
and S.
(ii) Again, from (3.27), we find

”Wn+1 - }"||
< (1 - Qbfq”’)) lw, —rll + 2711 + L)[cilm) H vilm) — r|| + L[b(m)ch’”‘l) ||qu”’_1) - r||

A ] 4 L e
A T AR

+ L[B b0 prn=2 53 p@ D [y 1]]]--- 1] + 1

< (L= Om)llwy—rll + 271 L+ D[ v = 7| + L[ v — p|

L[ [ <]+ L[ o o]

+ot LD VD = o+ L[6P [V =[]0 1] + s

n

(iii) Considering lim,,_, oo W), = r, we have lim,,_, oo Wy41 = 7.
Now, using (3.27), we get

M = [ Wis1 = Xl
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S MW =7l + e =7l

S Mwper —rll + (X =0h)|lw,, — |
+271 1+ L)bﬁlm) [6,, ||v£lm) - r|| + L[CEI"‘_D ”V(nm_l) - r”
+L[b m —2) ”Vm 2) V“ +L[b(m lbglm 2) m— 3)||V(m 3) 7‘”
- L[bn’”‘”bf{”‘z) OV ]

A LA L 11 B |

as n — 00, this means that lim,,_, o, ,, = 0.

Conversely, suppose that lim,_, » i, = 0. Now, by setting

o, =|wy=r|, n=1-6h and
Bu =37 (L 1) sup{e [ [} + L sup{e [
n>0
+ L2\ plm-1) sup{ D=2 |}

+ L3b£1m)b;m—l)b£lm—2) sup{chm‘?’) H VE{[m—S) _ ” }

n>0

T B Iy LY YC R
n>0

+ L 1b b )b’” 2)19'” 3 b(2 sup{ ”v(nl) —r*”}] + Uy Yn>0,

we get 0 < < 1 and lim,_, o B, = 0. Hence, by an application of Lemma 2.5, we obtain
lim [lw, —r| =
n—0o0

This completes the proof. d

The following corollaries show the convergence, almost common-stability and common-
stability for the corresponding modified multi-step Noor iterative procedure without er-
rors for two Lipschitz strictly hemicontractive-type mappings in arbitrary Banach spaces.

Corollary 3.4 Let B be a nonempty closed convex subset of X and T and S be two Lipschitz
strictly hemicontractive-type mappings from B into itself. Suppose that {a,(q or 1Bn 9 oo
foreachie {1,2,...,m} are any appropriate real sequences in [0, 1] satisfying the followmg
conditions:

©6) ol + BV = 1, for each i € {1,2,3,...,m},

@ >0 a,(,’) =00 foreachj€{2,3,...,m},

(8)

L[ +L)BY + 1+ L?*[Br Y + L1 + L)* UV pim=2 4 L2 gIm=1) plm=2 glm=3)

Lm 3’3}71 l)ﬂflm—z) . ﬂ Lm Zﬂm l)lB(m 2) ,B(Zﬂ ]]
<MAMAr-0), n>0,

where 6 is a constant in (0,\) and X € (0,1).
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For uy € B, we assume an iterative sequence {u,}°, defined by
Ut = " = oy + B Tuy" ™Y,
u&[m—l) _ o[}(q}«n—l)u;” + ﬂém—l) Tuglm—Z)’
...... (3.29)

u? = aPu, + P Tu,

ui,l)—ot,, U, + ,B Sun, n=>0

and let {w,}2, be any sequence in B and {j1,};°, be a sequence defined by
M = W1 —x4ll, n>=0,

where
X, =20 = oy, +,3,, ) Tylm=1)
xE’lm 1) }({ﬂ l)wn +,Bnm 1) Tx(m 2),
...... (3.30)

o =l ST,

xS,) —Ot,,, w,, +ﬁ,, Sw,,, n=>0.
Then
(i) the iterative sequence {u,}°, given by (3.29) converges strongly to the common fixed
rof T and S,
(i) Y02 tn < 00 implies that lim,,_, o Wy, =1, S0 that {u,
on B,

(iil) lim,— oo wy, = r, implies that lim,_, 5, u,, = 0.

o o0 Is almost common-stable

Proof The proof follows from the proof of Theorem 3.1 and, for brevity, here we omit it. (]

Corollary 3.5 Let B, X, T, S, {u,}:20, (X} 0, {w,,} 0 and {2, be as in Corollary 3.4
and 0 be as in Theorem 3.1. Suppose that {a,, o 1Bn 2o for each ie{l,2,...,m} are
any appropriate real sequences in [0, 1] satisfying the szmzlar condition of condition (3) of
Theorem 3.1 and the conditions (6), (7) and (8) of Corollary 3.4 along with the following

property:
B >n>0, VYn=>0,

where h is a constant.
Then
(i) the iterative sequence {u,};°, given by (3.29) converges strongly to the common fixed
rof T and S and the following inequality holds:

i1 —rll = (L= OM)un —rl, Vn=0,

(i) [Wur =7l = (1= OB) Wy =7l + pn, Y1 = 0,

(ili) limy— 0o Wy = r, if and only if lim,_, o0 pty, = 0.
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Proof The proof follows from the proof of Theorem 3.3 and, for brevity, here we omit it. (]

Remark 3.6

(@)

If we put m = 2 in our Theorem 3.1, Theorem 3.2 and Theorem 3.3, then we can easily
establish Theorem 9, Theorem 10 and Theorem 11 of Hussain et al. [1], respectively.
Therefore, we can comment that the results of Hussain et al. [1] are special case of
our results.

Since the MIP given by Mann [28], the IIP given by Ishikawa [29], the NIP given by Xu
and Noor [30], the MIPE given in Liu [31] and Xu [32], the IIPE given by Liu [31] and
Xu [32] and the TIPE given by Cho et al. [33] are all special cases of our newly pro-
posed MMNIPE given by (1.5), by setting the appropriate values of m and ¢ in our
Theorem 3.1, Theorem 3.2 and Theorem 3.3, we can easily obtain the convergence,
almost common-stability and common-stability criteria of the above-mentioned it-
erative procedures for two Lipschitz strictly hemicontractive-type mappings in arbi-
trary Banach spaces.

4 Examples
In this section, we provide a numerical example to verify our analytical results and to show

a numerical comparison between our newly proposed MMNIPE given by (1.5) and some

other most analogous iterative procedures with errors.

Example 4.1 Consider B is a nonempty subset of an arbitrary Banach space X with the

usual norm and let B = R. Suppose that T and S are two self-maps on B which are defined

as follows:

1 2
Tu==sin>u, and Su==u’.
3 3

Now, if welet L = 2,0 = 2,0 = 5L, then it is obvious that F7 N Fs = {0}, A = &1 = 3271 =
% €(0,1) and

= 300’ o 3/2

1,. . 2. . . .
| Tuy — Tus| = §|51n2u1 —sin®u,| < §|s1nu1 —sinuy|| sinu; + sinuy| < L|ug — uz),

2 2
|Suy — Suy| = §|u% —u§| = §|u1 —up||luy + uy| < Lluy —uy|, Yui,up; €R.

Hence, both T and S are Lipschitzian mappings on B.

Likewise, using (1.1) we have

|(1+¢)(g-r)-t6(Tg - Tr)|
>(1+¢)lg-rl-t't|Tg - Tr|
=lg-rl+¢(lqg-r|-t|Tq - Tr|)
>lg-rl+t(lg-rl-tLlg—rl) = (1 +£' (1 —£L))lg—r|

= llg -l

for any g, € R and ¢’ > 0. Therefore, T is strongly pseudocontractive and hence

Lemma 2.8 confirms that T is strictly hemicontractive on B. Also, the similar arguments
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hold for the mapping S. Hence both T and S are Lipschitz strictly hemicontractive map-
pings on B.
Now, if we consider

1 1

5

b(m)=—~7; C(m)=—’ (,z(m)Zl— b(m)"'c(WI)?
"9 /n+100 " (Yn+100) ! b+
o031 : ), ol

bl=cl=z o0 al=1-(b)+c)),

wherej=1,2,...,m—1, and Vn > 0.
Then, for n = 0, m = 10, we obtain

LI+ L)BY" + (1 + L)*b0" Y + L(1 + L)*b{" Vb0

n

+ L2(1 + L)Zb;m—l)b;m—2)b£lm—3) I Lm—S(l + L)Zbglm—l)bglm—mbﬁlm—?)) L bf)

+ Lm—Z(l + L)2b§[m_l)b51m_2)b£lm_3) . bEzZ)b(l)

n
+ [ + (1 + L)V + L1 + L)b D =2

+L%(1+ L)b(nm’l)b(””z)c(m’g’) $o-+ L3+ L)b;’”’l)b(’”’z) S

n Cn n n Cn
m-2 T

+ L1+ Db Vb, - b P ] + s <0.042231081 < 0.11.

p

Therefore, by an application of Theorem 3.1, we can say that the iterative sequence {u,}5°,

defined by (1.5) converges strongly to the common fixed 0 of T and S in B and the cor-

responding MMNIPE given by (1.5) is common-stable as well as almost common-stable

on B.

Analogously, by applying Theorem 3.2 and Theorem 3.3, we can easily prove that the
iterative sequence {u, ]}, defined by (1.5) converges strongly to the common fixed 0 of
T and S in B and the corresponding MMNIPE given by (1.5) is common-stable as well as
almost common-stable on B.

For the numerical experiment, here we consider our newly proposed MMNIPE given by
(1.5) for m = 10, and compared it with the STIIPE given by Hussain et al. [1], the IIPE given

Table 1 Numerical results corresponding to ug = 0.5 for 1000 iterative steps

Step no. Our proposed MMNIPE STIIPE of Hussain et al. IIPE of Liu TIPE of Cho et al.
1 0.5 05 0.5 0.5

2 0.497667276003391 0497668105410462 0.998544685005923 0497667277380927
3 0.495335888378632 0.495337523105695 1.328130014700319 0.495335891074855
4 0.493012550083953 0.493014966750906 1.572697385396054 0.493012554043365
5 0.490699600582596 0.490702776576019 1.765873713917432 0.490699605752504
25 0.446858824895112 0.446873361526477 3.033120278084475 0.446858846100032
50 0.397841478361139 0.397863341508779 3.297911825793324 0.397841507128528
100 0.315560781936281 0.315586416536455 3.153669674069195 0.315560811436780
500 0.049930372833121 0.049936108842272 1.278420609396875 0.049930378403359
1000 0.005520028104577 0.005520671212411 0.526921124813466 0.005520028727839
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Figure 1 Convergence behavior corresponding to ug = 0.5 for 1000 iterative steps

by Liu [31], and the TIPE given by Cho et al. [33]. By using MATLAB programming lan-
guage, we computed the different iterative steps and the numerical comparison is shown in
Table 1. Furthermore, the convergence behaviors of these iterative procedures with errors
are shown in Fig. 1. For all iterative procedure, we take the initial approximation #, = 0.5.
For our proposed MMNIPE given by (1.5), we consider v = ﬁ, where i=1,2,3,...,10
and

po_2 L o LI
" T 9 n+ 100 " T (Jn+ 100)

 9n+1795/71 + 89,491

10y _ (10) (10)
a "’ =1-(b" +c
( ) 9(y/n + 100)2

n n

’

301 » oy 5n+494
=2, 4 o) 4 () = DAt
5 n+100 " (br'+ ) 5(n + 100)

wherej=1,2,3,...,9and Vrn > 0.
For the STIIPE given by Hussain et al. [1], we consider vff) = ﬁ, where i = 1,2 and
o 2 1 __ 1

=< T = C - T = a7
" 79 /n+100 " (Jn+100)2
91 +1795./71 + 89,491

’

af) =1- (bg,z) + c(z))

" 9(/7 + 100)?
3 1 51 + 494
pO =22 , W1V +cW)y=——— and Vn>0.
R T (B +c) 5(n+100) ¢ M=

For the IIPE given by Liu [31], we consider v = n—il, where i = 1,2 and

B0 _ 5 1 SO 1 9./n + 895
9 /n+100 " " 9(/n+100)
v = 3 1 aV=1-pW = on +497 and Vn=>0.

"5 n+100° T T (4 100)
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For the TIPE given by Cho et al. [33], we consider v\ = -, where i = 1,2,3 and

n+l’?

b(?’) = E . 71 5 C(S) = 71 ,
"9 Jn+100 "7 (Jn+ 100)2

_n+ 1795/n + 89,491

a® =1 (b9 +c9)

" 9(/m+100)2 '
. 3 1 ; . ) 5n + 494
B =) =2 a1 (B0 4y 2 AT
"5 p+100 " (" ") 5(n + 100)

where j=1,2 and Vn > 0.

The comparison table (Table 1) confirms that the rate of convergence of our proposed
MMNIPE given by (1.5) is better than that of the STIIPE given by Hussain et al. [1], the
IIPE given by Liu [31] and the TIPE given by Cho et al. [33].

5 Conclusion

In this study, we established the convergence, almost common-stability and common-
stability criteria of our proposed MMNIPE given by (1.5) for two Lipschitz strictly
hemicontractive-type mappings in arbitrary Banach spaces. The obtained results of this
paper provided easy and straightforward techniques for proving the convergence, almost
common-stability and common-stability criteria of the proposed MMNIPE given by (1.5).
Furthermore, the results of this paper extended the corresponding results of Hussain et al.
[1, 7-9], Zegeye et al. [2], Meche et al. [3], Chidume and Osilike [4], Chidume [5], Liu et
al. [12], Zeng [13], Yu et al. [11], Yang [25], Chidume [36], Deng [37, 38] and Liu [39]. Ac-
cording to the Remark 3.6, our results generalized and unify the corresponding results of
Hussain et al. [1], Mann [28], Ishikawa [29], Xu and Noor [30], Liu [31] and Xu [32] and
Cho et al. [33] in the case of establishing the fixed-point theorem-based iterative proce-
dures for two Lipschitz strictly hemicontractive-type mappings. At the end of this work,
we discussed a computational numerical example which verify our main results and com-
pare the performance of our proposed MMNIPE given by (1.5) with other most analogous
iterative procedures with errors. From the comparison table (Table 1), we conclude that
our proposed MMNIPE given by (1.5) superior over the STIIPE given by Hussain et al.
[1] and the TIPE given by Cho et al. [33] in the case of convergence at the common fixed
point of two Lipschitz strictly hemicontractive-type mappings.
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