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Abstract
Let H be a real Hilbert space. Let F : H → 2H and K : H → 2H be two maximal
monotone and bounded operators. Suppose the Hammerstein inclusion 0 ∈ u + KFu
has a solution. We construct an inertial-type algorithm and show its strong
convergence to a solution of the inclusion. As far as we know, this is the first
inertial-type algorithm for Hammerstein inclusions in Hilbert spaces. We also give
numerical examples to compare the new algorithm with some existing ones in the
literature.
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1 Introduction
Let � be a measurable bounded subset of Rn. A nonlinear integral equation of Hammer-
stein type is of the form

u(x) +
∫

�

k(x, y)f
(
y, u(y)

)
dy = w(x), (1.1)

where dy is a σ -finite measure. The function k : � × � → R is the kernel of the equation,
and f : �×R →R is a measurable real-valued function. The function w and the unknown
function u lie in a suitable Banach space of measurable real-valued functions, say, F (�,R).
If we define the operators F : F (�,R) →F (�,R) and K : F (�,R) →F (�,R) by

Fu(x) = f
(
x, u(x)

)
and Kv(x) =

∫
�

k(x, y)v(y) dy, x ∈ �, (1.2)

then (1.1) can be easily written as the abstract Hammerstein equation

u + KFu = 0, (1.3)

where, without loss of generality, we have taken w to be the zero map in F (�,R). Inter-
est in Hammerstein equations stems mainly from their applications in various fields. For
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instance, (1.1) can be used to describe the final state of a spatially distributed population
(see, e.g., [30] and [42]). Consider also the following nonlinear boundary value problem:

⎧⎨
⎩

–�u = f (x, u(x)), x ∈ �,

u(x) = 0, x ∈ ∂�,
(1.4)

where � is a smooth subset of Rn. Define the operator K : F (�,R) →F (�,R) by Kg = u,
where u is the unique solution of the corresponding linear boundary value problem

⎧⎨
⎩

–�u = g,

u(x) = 0, x ∈ ∂�.
(1.5)

Then (1.4) can be written in the form (1.3), where F is as defined in (1.2). Other areas
of application of Hammerstein integral equations include differential equations (see, e.g.,
Pascali [38]), optimal control system, automation and network theory, and many other
areas (see, e.g., Doležal [31]). If the operator F in (1.3) is multivalued and defined by

Fu(y) =
{

v(y) : v is a selection of f
(·, u(·))},

then (1.3) becomes the Hammerstein inclusion

u + KFu � 0. (1.6)

Hammerstein inclusions are closely related to nonsmooth calculus of variations. For in-
stance, consider the energy functional given by

Ju =
∫

�

(
h
(
u(t)

)
– f

(
s, u(s)

))
ds, (1.7)

where h denotes the kinetic energy of the system, and f is the potential energy generator of
the superposition operator. In general, the functional J is not differentiable in the classical
sense. However, it admits generalized gradient or subgradient in the sense of, for instance,
Clarke’s generalized gradient (see, e.g., [29]). Consequently, the problem of minimizing
the energy functional J leads to the Euler–Lagrange inclusion

Lu ∈ ∂Fu, (1.8)

where L is a linear operator, and ∂F is the generalized Clarke gradient. Equation (1.8), in
turn, is equivalent to (1.6) defined on a suitable Banach space of measurable real-valued
functions. Let H be a Hilbert space. A map A : H → 2H is called monotone if for all x, y ∈ H ,

〈η – ν, x – y〉 ≥ 0, ∀η ∈ Ax,ν ∈ Ay. (1.9)

Several existence results have been proved for (1.3) when the operators F and K are
monotone. (See, e.g., Brézis and Browder [4–6], Browder [7, 8, 10, 11], Browder and De
Figueiredo [11, 12], Chepanovich [14], Appel et al. [3], and Cardinali and Papageorgiou
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[13]). In general, there is no closed-form solution for Hammerstein integral equations.
Therefore developing algorithms for approximating such solutions is of great interest. Let
A : H → H be a nonlinear operator. Then A is said to be angle bounded with angle β > 0 if

〈Ax – Ay, z – y〉 ≤ β〈Ax – Ay, x – y〉 (1.10)

for all x, y, z ∈ H . For y = z, inequality (1.10) implies the monotonicity of A. A monotone
linear operator A : H → H is said to be angle bounded with angle α > 0 if

∣∣〈Ax, y〉 – 〈Ay, x〉∣∣ ≤ 2α〈Ax, x〉 1
2 〈Ay, y〉 1

2 (1.11)

for all x, y ∈ H . Brézis and Browder [5] proved the following theorem for the approxima-
tion of solutions of Hammerstein equations with angle-bounded operators using a suitably
defined Galerkin method.

Theorem 1.1 (Brézis and Browder [5]) Let H be a separable Hilbert space, and let C be a
closed subspace of H . Let K : H → C be a bounded continuous monotone operator, and let
F : C → H be an angle-bounded and weakly compact mapping. For a given f ∈ C, consider
the Hammerstein equation

(I + KF)u = f (1.12)

and its nth Galerkin approximation given by

(I + KnFn)un = P∗f , (1.13)

where Kn = P∗
nKPn : H → C and Fn = PnFP∗

n : Cn → H , with the symbols having their usual
meanings (see, e.g., Pascali [38, Chap., p. 202]. Then, for each n ∈ N, the Galerkin approx-
imation (1.13) admits a unique solution un in Cn, and {un} converges strongly in H to the
unique solution u ∈ C of equation (1.12).

Attempts have been made to develop iterative algorithms for approximating solutions
of (1.3) (see, e.g., Mann [21, 35] and the references therein). However, most of these re-
sults require the inverse of the operator K not only to exist but also to be strongly mono-
tone. These requirements do not only limit the class of operators involved but are also not
convenient for implementation. The first satisfactory result for approximating solution of
Hammerstein equation was given by Chidume and Zegeye [26–28]. They considered the
product space E = H × H and defined the auxiliary operator T : E → E by

T[u, v] = [Fu – v, Kv + u], u, v ∈ E. (1.14)

We can easily see that u∗ solves (1.3) if and only if T[u∗, v∗] = 0 with v∗ = Fu∗. The auxiliary
operator T gave an insight on how to develop a coupled algorithm for computing solutions
of (1.3). The same authors (see [28]) defined the following coupled algorithm: for u0, v0 ∈
X, define the sequences {un} and {vn} recursively by

un+1 = un – αn(Fun – vn), n ≥ 0, (1.15)
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vn+1 = vn – αn(Kvn + un), n ≥ 0, (1.16)

where {αn} is a sequence in (0, 1) satisfying appropriate conditions. Many strong conver-
gence results have been proved in Banach spaces by many authors using the coupled algo-
rithm. (See, e.g., Chidume and Djitte [17–19], Chidume and Ofeodu [20], Chidume and
Shehu [23], Chidume and Osilike [22], and Chidume and Bello [15].) Recently, Minjibir
and Muhammad [36] proved a strong convergence result for Hammerstein inclusion un-
der the setting of Hilbert spaces. They proved the following theorem with the sequences
{αn}, {θn} ⊂ (0, 1) satisfying some appropriate conditions.

Theorem 1.2 (Minjibir and Mohammad [36]) Let H be a real Hilbert space, and let F , K :
H → CB(H) be maps with D(F) = D(K) = H such that the following conditions hold:

(i) F is monotone, continuous (relative to h), and bounded;
(ii) K is monotone, continuous (relative to h), and bounded.

Let {un} and {vn} be sequences generated iteratively from arbitrary u1, v1 ∈ H by

un+1 = un – λn(ξn – vn) – λnθn(un – u1), ξn ∈ Fun, n ≥ 0,

vn+1 = vn – λn(ηn + un) – λnθn(vn – v1), ηn ∈ Kvn, n ≥ 0.
(1.17)

Suppose that the inclusion 0 ∈ u + KFu has a solution in H. Then there exists a real constant
γ0 > 0 such that if λn ≤ γ0θn for some n0 ≥ 1, and then the sequence {un} converges strongly
to u∗, a solution of 0 ∈ u + KFu.

The need to speed up the convergence of iterative algorithms has always been of great
interest. One of the recent methods of speeding up the convergence is via addition of iner-
tial terms to algorithms. The use of the term “inertial” can be traced back, at least, to Poljak
[39], where he considered the following second-order system of differential equations:

ω′′ + γω′ + ∇f (ω) = 0, γ > 0, (1.18)

in the context of optimization. In two-dimensional case, system (1.18) describes, roughly,
the motion of a heavy ball that rolls under its own inertial over the graph of f until it is
impeded by friction. For results concerning inertial algorithms, see, for instance, Moudafi
[37], Alvarez [2], and Maingé and Merabet [32]. In this paper, we introduce an inertial
algorithm for approximating solution of Hammerstein inclusion in Hilbert spaces. As far
as we know, this is the first inertial algorithm involving Hammerstein inclusions. Our al-
gorithm converges much faster than the existing noninertial algorithms for Hammerstein
inclusions. We give numerical examples to support this claim. Moreover, in our theorem,
we make no assumption of continuity of the operators.

2 Preliminaries
In this section, we present some definitions and lemmas used in the proof of the main
theorem. We further assume that H is a real Hilbert space and E = H × H is the Cartesian
product of H . We define the norm ‖ · ‖E on E by

‖a‖E =
(‖a1‖2

H + ‖a2‖2
H
) 1

2 , ∀a = (a1, a2) ∈ E. (2.1)
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Let W be any nonempty subset of H , and let x ∈ H be fixed. Then the distance between x
and W is given as dist(x, W ) = inf{‖x – y‖ : y ∈ W }.

Definition 2.1 Let CB(H) denote the set of closed bounded subsets of H . Then the Haus-
dorff distance between two nonempty closed bounded subsets V and W of H is given as

D(V , W ) = max
{

sup
x∈V

dist(x, W ), sup
y∈W

dist(y, V )
}

.

It is well known that D is a metric on CB(H). A multivalued mapping T : D(T) ⊂ H −→
CB(H) with domain D(T) = {x ∈ H : Tx �= ∅} and range R(T) = ∪{Tx : x ∈ H} is monotone
if

〈u – v, x – y〉H ≥ 0, ∀x, y ∈ D(T), u ∈ Tx, v ∈ Ty,

where the function 〈·, ·〉H is the inner product on H . A monotone map T is maximal mono-
tone if its graph Gr(T) = {(x, y) ∈ E : x ∈ D(T), y ∈ Tx} is not properly contained in the graph
of any other monotone map. It is well known that if T is maximal monotone, then the range
R(I + λT) = H for λ > 0. For λ > 0, the resolvent operator is given by Jλ = (I + λT)–1, where
I is the identity map on H . The operator Jλ is always single-valued. (See, e.g., Browder
[9, 33] for more detail.) The following inequality, which characterizes the monotone maps
in Hilbert spaces, was given by Kato in [34]:

‖x – y‖ ≤
∥∥x – y + r(u – v)

∥∥ (2.2)

for all x, y ∈ D(T), u ∈ Tx, v ∈ Ty, and r > 0 if and only if T is monotone. In what follows, we
present the lemmas used in the proof of the main theorem.

Lemma 2.2 (Xu [43]) Let {an} be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1 – αn)an + αnσn + γn, n ≥ 0,

where (i) {αn} ⊂ (0, 1),
∑

αn = ∞; (ii) lim supσn ≤ 0; and (iii) γn ≥ 0, n ≥ 0,
∑∞

n=0 γn < ∞.
Then an → 0 as n → ∞.

Lemma 2.3 (Reich [40]) Let H be a real Hilbert space, and let A : D(A) ⊂ H −→ 2H be
maximal monotone. If 0 ∈ R(A), then for each x ∈ H , the strong limit limt→∞ Jtx exists and
belongs to A–10, that is, 0 ∈ A(limt→∞ Jtx).

Lemma 2.4 Let H be a real Hilbert space, and let F : H → CB(H), K : H → CB(H) be two
maximal monotone and bounded multivalued maps. Then T : E → CB(E) defined by

Tw = (Fu – v) × (Kv + u) =
{

(ξ – v,η + u) : ξ ∈ Fu,η ∈ Kv
}

(2.3)

is also maximal monotone and bounded.

Proof The boundedness of T follows from the boundedness of F and K . Likewise, the
maximal monotonicity of T follows from that of F and K (see Alber and Ryazantseva [1,
p. 280]). �
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3 Main theorem
Theorem 3.1 Let H be a real Hilbert space, and let F , K : H → CB(H) be maximal mono-
tone and bounded maps. For arbitrary u1, v1, u2, v2 ∈ H , define the sequences {hn}, {pn},
{un}, and {vn} by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hn = un + cn(un–1 – un),

pn = vn + cn(vn–1 – vn),

un+1 = hn – λn(ξn – pn) – λnθnhn, ξn ∈ Fhn, n ≥ 2,

vn+1 = pn – λn(ηn + hn) – λnθnpn, ηn ∈ Kpn, n ≥ 2,

(3.1)

where {θn} and {λn} are sequences in (0, 1), and {cn} is a sequence in [0, 1) satisfying the
following conditions:

(i) lim
n→∞ θn = 0, lim

n→∞
λn

θn
= 0, (ii)

∞∑
n=1

λnθn = ∞,

(iii) lim
n→∞

( θn–1
θn

– 1
λnθn

)
= 0 and (iv)

∞∑
n=1

cn < ∞.

Suppose that the inclusion 0 ∈ u + KFu has a solution in H. Then there exists a real con-
stant γ0 such that λn ≤ γ0θn for all n ≥ n0, for some n0 ≥ 2, and the sequence {un} converges
strongly to u∗, a solution of 0 ∈ u + KFu.

Proof Consider the inner product on E = H × H defined by

〈a, b〉E = 〈a1, b1〉H + 〈a2, b2〉H , ∀a = (a1, a2), b = (b1, b2) ∈ E.

The norm induced by this inner product is given by (2.1). We define two sequences {wn}
and {rn} in E by wn := (un, vn) and rn := (hn, pn) for n ∈ N. Let u∗ ∈ H be a solution of the
inclusion u + KFu � 0 with v∗ ∈ Fu∗ such that u∗ ∈ –Kv∗. Now set w∗ = (u∗, v∗). To show
that {un} and {vn} converge strongly to u∗ and v∗, respectively, it suffices to show that {wn}
converges strongly to w∗ in E. For any w ∈ E and t > 0, we define the closed ball in E with
center w and radius t as B(w, t) = {x ∈ E : ‖x – w‖E ≤ t}. Let r > 0 be such that

w∗ ∈ B
(

0,
r
2

)
and wi ∈ B

(
w∗, r

)
, ∀1 ≤ i ≤ n0, (3.2)

where n0 is as defined in the theorem. Let

M1 := sup

{(
‖ξ – y‖H +

7r
2

)2

: ξ ∈ Fx, (x, y) ∈ B
(
w∗, r

)}
< ∞,

M2 := sup

{(
‖η + x‖H +

7r
2

)2

: η ∈ Ky, (x, y) ∈ B
(
w∗, r

)}
< ∞,

and M := M1 + M2. By the boundedness of F and K , M1, M2, and M are all finite. The first
step is showing that {wn} is bounded, and then {un} and {vn} will be necessarily bounded.
By construction, wi ∈ B(w∗, r), 1 ≤ i = 1, 2, . . . , n0. We now show that wn ∈ B(w∗, r) for all
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n ≥ n0. To do this, we proceed by induction. Supposing that wn ∈ B(w∗, r) up to some n ≥ n0,
we show that wn+1 ∈ B(w∗, r). Using (2.1), we have

∥∥wn+1 – w∗∥∥2
E =

∥∥un+1 – u∗∥∥2
H +

∥∥vn+1 – v∗∥∥2
H .

Now

∥∥un+1 – u∗∥∥2
H

=
∥∥hn – u∗ – λn(ξn – pn) – λnθnhn

∥∥2
H

=
∥∥hn – u∗∥∥2

H – 2λn
〈
ξn – pn + θnhn, hn – u∗〉

H + λ2
n‖ξn – pn + θnhn‖2

H . (3.3)

Since v∗ ∈ Fu∗, ξn ∈ Fhn, and F is monotone, we get that

〈
ξn – pn + θnhn, hn – u∗〉

H

=
〈
ξn – v∗ + v∗ – pn + θnhn, hn – u∗〉

H

=
〈
ξn – v∗, hn – u∗〉

H +
〈
v∗ – pn, hn – u∗〉

H + θn
〈
hn – u∗ + u∗, hn – u∗〉

H

≥ –
〈
pn – v∗, hn – u∗〉

H + θn
〈
u∗, hn – u∗〉

H + θn
∥∥hn – u∗∥∥2

H . (3.4)

Also,

‖ξn – pn + θnhn‖2
H ≤

(‖ξn – pn‖H + θn
∥∥un + cn(un–1 – un)

∥∥
H

)2

≤
(‖ξn – pn‖H + (1 + cn)

∥∥un – u∗∥∥
H +

∥∥u∗∥∥
H + cn

∥∥un–1 – u∗∥∥
H

)2

≤
(‖ξn – pn‖H + 2

∥∥un – u∗∥∥
H +

∥∥u∗∥∥
H +

∥∥un–1 – u∗∥∥
H

)2

≤
(

‖ξn – pn‖H +
7
2

r
)2

≤ M1. (3.5)

Substituting (3.4) and (3.5) into (3.3), we obtain

∥∥un+1 – u∗∥∥2
H

≤ (1 – 2λnθn)
∥∥hn – u∗∥∥2

H + 2λn
〈
pn – v∗, hn – u∗〉 – 2λnθn

〈
u∗, hn – u∗〉 + λ2

nM1. (3.6)

Similarly,

∥∥vn+1 – v∗∥∥2
H

=
∥∥pn – v∗ – λn(ηn + hn) – λnθnpn

∥∥2
H

=
∥∥pn – v∗∥∥2

H – 2λn
〈
ηn + hn + θnpn, pn – v∗〉

H + λ2
n‖ηn + hn + θnpn‖2

H , (3.7)

where

‖ηn + hn + θnpn‖2
H ≤

(‖ηn + hn‖H + θn
∥∥vn + cn(vn–1 – vn)

∥∥
H

)2

≤
(‖ηn + hn‖H + (1 + cn)

∥∥vn – v∗∥∥
H +

∥∥v∗∥∥
H + cn

∥∥vn–1 – v∗∥∥
H

)2
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≤
(‖ηn + hn‖H + 2

∥∥vn – v∗∥∥
H +

∥∥v∗∥∥
H +

∥∥vn–1 – v∗∥∥
H

)2

≤
(

‖ηn + hn‖H +
7
2

r
)2

≤ M2. (3.8)

Applying inequality (3.8) in (3.7), we have

∥∥vn+1 – v∗∥∥2
H ≤

∥∥pn – v∗∥∥2
H – 2λn

〈
ηn + hn + θnpn, pn – v∗〉

H + λ2
nM2. (3.9)

Since K is monotone, u∗ ∈ –Kv∗, and ηn ∈ Kpn, we have

〈
ηn + hn + θnpn, pn – v∗〉

H

=
〈
ηn + u∗, pn – v∗〉

H +
〈
hn – u∗, pn – v∗〉

H + θn
〈
pn – v∗ + v∗, pn – v∗〉

H

≥
〈
hn – u∗, pn – v∗〉

H + θn
〈
v∗, pn – v∗〉

H + θn
∥∥pn – v∗∥∥2

H . (3.10)

Using inequality (3.10) in (3.9), we get

∥∥vn+1 – v∗∥∥2
H

≤ (1 – 2λnθn)
∥∥pn – v∗∥∥2

H – 2λn
〈
pn – v∗, hn – u∗〉

H

– 2λnθn
〈
v∗, pn – v∗〉

H + λ2
nM2. (3.11)

Adding (3.6) and (3.11), we obtain

∥∥wn+1 – w∗∥∥2
E ≤ (1 – 2λnθn)

∥∥rn – w∗∥∥2
E – 2λnθn

〈
w∗, rn – w∗〉

E + λ2
nM

≤ (1 – 2λnθn)
∥∥rn – w∗∥∥2

E – 2λnθn
〈
w∗, rn – w∗〉

E + λ2
nM. (3.12)

Observe that

–2
〈
w∗, rn – w∗〉

E ≤ 2
∥∥w∗∥∥

E

∥∥rn – w∗∥∥
E ≤

∥∥w∗∥∥2
E +

∥∥rn – w∗∥∥2
E . (3.13)

Substituting (3.13) into (3.12), we see that

∥∥wn+1 – w∗∥∥2
E ≤ (1 – λnθn)

∥∥rn – w∗∥∥2
E + λnθn

∥∥w∗∥∥2
E + λ2

nM. (3.14)

Furthermore, we have the following estimate:

∥∥rn – w∗∥∥
E =

∥∥(1 – cn)wn + cnwn–1 – w∗∥∥
E

=
∥∥(1 – cn)

(
wn – w∗) – cn

(
w∗ – wn–1

)∥∥
E ≤ r. (3.15)

Now taking γ0 = r2

4M and using the assumption that λn ≤ γ0θn, by (3.15) we have that

∥∥wn+1 – w∗∥∥2
E = (1 – λnθn)r2 +

1
4
λnθnr2 +

1
4
λnθnr2

=
(

1 –
λnθn

2

)
r2 ≤ r2. (3.16)

Thus {wn} is bounded, which implies that {un} and {vn} are bounded.
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The next step is showing that there exists a sequence {zn}, zn := (xn, yn) ∈ E, n ≥ 1, such
that

θnxn + x̂n – yn = 0, x̂n ∈ Fxn,

θnyn + ŷn + xn = 0, ŷn ∈ Kyn,

xn → x∗, yn → y∗ with y∗ ∈ Fx∗, and 0 ∈ x∗ + KFx∗. By Lemma 2.4 the map T defined in
(1.14) is maximal monotone. Moreover, since θn → 0, by Lemma 2.3 we get that

lim
n→∞

(
I +

1
θn

T
)–1

(0, 0) ∈ T–1(0, 0). (3.17)

Setting (xn, yn) := (I + 1
θn

T)–1(0, 0) for n ≥ 1, we have

(0, 0) ∈
(

I +
1
θn

T
)

(xn, yn), ∀n ≥ 1.

Thus we have

(xn, yn) +
1
θn

(x̂n – yn, ŷn + xn) = (0, 0)

for some x̂n ∈ Fxn and ŷn ∈ Kyn. This implies that

⎧⎨
⎩

xn + 1
θn

(x̂n – yn) = 0, x̂n ∈ Fxn, n ≥ 1,

yn + 1
θn

(ŷn + xn) = 0, ŷn ∈ Kyn, n ≥ 1.

Consequently,

⎧⎨
⎩

θnxn + x̂n – yn = 0, x̂n ∈ Fxn, n ≥ 1,

θnyn + ŷn + xn = 0, ŷn ∈ Kyn, n ≥ 1.
(3.18)

Using (3.17), we have zn → z∗ = (x∗, y∗) ∈ T–1(0, 0). However, we have that

(
x∗, y∗) ∈ T–1(0, 0) ⇔ (0, 0) ∈ T

(
x∗, y∗)

⇔ (0, 0) ∈
(
Fx∗ – y∗) × (

Ky∗ + x∗)

⇔ y∗ ∈ Fx∗ and 0 ∈ x∗ + Ky∗

⇒ 0 ∈ x∗ + KFx∗.

Thus xn → x∗ and yn → y∗ with y∗ ∈ Fx∗, and 0 ∈ x∗ + KFx∗.
The final step is showing that wn → (u∗, v∗), where 0 ∈ u∗ + KFu∗ and v∗ ∈ Fu∗. Hence it

suffices to show that wn+1 – zn → 0 as n → ∞. Now

‖un+1 – xn‖2
H =

∥∥hn – xn – λn(ξn – pn) – λnθnhn
∥∥2

H

= ‖hn – xn‖2
H – 2λn〈ξn – pn + θnhn, hn – xn〉H + λ2

n‖ξn – pn + θnhn‖2
H .
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Since, by (3.18), θnxn = yn – x̂n, we observe that

〈ξn – pn + θnhn, hn – xn〉
=

〈
ξn – x̂n + x̂n – pn + θn(hn – xn + xn), hn – xn

〉

= 〈ξn – x̂n, hn – xn〉 + 〈x̂n – pn, hn – xn〉 + θn〈hn – xn + xn, hn – xn〉
= 〈ξn – x̂n, hn – xn〉 + 〈x̂n – pn, hn – xn〉 + 〈yn – x̂n, hn – xn〉 + θn‖hn – xn‖2

H

= 〈ξn – x̂n, hn – xn〉 + 〈yn – pn, hn – xn〉 + θn‖hn – xn‖2
H

for ξn ∈ Fhn and some x̂n ∈ Fxn, so that

‖un+1 – xn‖2
H = (1 – 2λnθn)‖hn – xn‖2

H – 2λn〈ξn – x̂n, hn – xn〉
– 2λn〈yn – pn, hn – xn〉 + λ2

n‖ξn – pn + θnhn‖2
H .

Using the monotonicity and boundedness of F and employing the boundedness of the
sequences {un} and {vn}, we get that there exists M3 > 0 such that

‖un+1 – xn‖2
H ≤ (1 – 2λnθn)‖hn – xn‖2

H – 2λn〈yn – pn, hn – xn〉 + λ2
nM3. (3.19)

From (3.18) we get that θnyn = –(xn + ŷn). Applying similar arguments, we obtain

‖vn+1 – yn‖2
H ≤ (1 – 2λnθn)‖pn – yn‖2

H + 2λn〈yn – pn, hn – xn〉 + λ2
nM4 (3.20)

for some constant M4 > 0. Consequently, adding (3.19) and (3.20), we have

‖wn+1 – zn‖2
E ≤ (1 – 2λnθn)‖rn – zn‖2

E + λ2
nMo, (3.21)

where Mo := M3 + M4. Using the monotonicity of T and the Kato inequality (2.2), we have

‖zn–1 – zn‖2
E ≤

∥∥xn–1 – xn + θ–1
n (x̂n–1 – yn–1 – x̂n + yn)

∥∥2
H (3.22)

+
∥∥yn–1 – yn + θ–1

n (ŷn–1 + xn–1 – ŷn – xn)
∥∥2

H ,

where x̂n–1 ∈ Fxn–1, x̂n ∈ Fxn, ŷn–1 ∈ Kyn–1, and ŷn ∈ Kyn. Using (3.18), we have that

xn–1 – xn + θ–1
n (x̂n–1 – yn–1 – x̂n + yn) =

θn – θn–1

θn
xn–1, x̂n–1 ∈ Fxn–1, x̂n ∈ Fxn (3.23)

and

yn–1 – yn + θ–1
n (ŷn–1 + xn–1 – ŷn – xn) =

θn – θn–1

θn
yn–1, ŷn–1 ∈ Kyn–1, ŷn ∈ Kyn. (3.24)

Substituting (3.23) and (3.24) into (3.22), we have

‖zn–1 – zn‖E ≤ θn–1 – θn

θn
‖zn–1‖E . (3.25)
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From (3.21) we have

‖wn+1 – zn‖2
E

≤ (1 – 2λnθn)‖rn – zn‖2
E + λ2

nMo

≤ (1 – λnθn)‖rn – zn‖2
E + λ2

nMo

= (1 – λnθn)
∥∥wn – zn + cn(wn–1 – wn)

∥∥2
E + λ2

nMo

= (1 – λnθn)
[‖wn – zn‖2

E + 2cn〈wn – zn, wn–1 – wn〉E + c2
n‖wn–1 – wn‖2

E
]

+ λ2
nMo

≤ (1 – λnθn)‖wn – zn‖2
E + 2cn‖wn – zn‖E‖wn–1 – wn‖E + c2

n‖wn–1 – wn‖2
E + Moλ

2
n

= (1 – λnθn)
[‖wn – zn–1‖2

E + 2〈wn – zn–1, zn–1 – zn〉E + ‖zn–1 – zn‖2
E
]

+ 2cn‖wn – zn‖E‖wn–1 – wn‖E + c2
n‖wn–1 – wn‖2

E + Moλ
2
n

≤ (1 – λnθn)‖wn – zn–1‖2
E + 2‖wn – zn–1‖E‖zn–1 – zn‖E + ‖zn–1 – zn‖2

E

+ cn
(
2‖wn – zn‖E‖wn–1 – wn‖E + ‖wn–1 – wn‖2

E
)

+ Moλ
2
n. (3.26)

Using inequality (3.25) in (3.26), we have that

‖wn+1 – zn‖2
E

≤ (1 – λnθn)‖wn – zn–1‖2
E + cn

(
2‖wn – zn‖E‖wn–1 – wn‖E + ‖wn–1 – wn‖2

E
)

+
(

θn–1 – θn

θn

)(
2‖wn – zn–1‖E‖zn–1‖E +

(
θn–1 – θn

θn

)
‖zn–1‖2

E

)
+ Moλ

2
n. (3.27)

Thus by the boundedness of {wn}, {zn}, and {((θn–1 – θn)/θn)} there exist C, Ĉ > 0 such that

‖wn+1 – zn‖2
E ≤ (1 – λnθn)‖wn – zn–1‖2

E + λnθnL
[ ( θn–1

θn
– 1)

λnθn
+

λn

θn

]
+ Ĉcn, (3.28)

where L = max{C, Mo}. By Lemma 2.2 it follows that wn+1 – zn → 0. This implies that un →
u∗ and vn → v∗, where u∗ = x∗ and v∗ = y∗. This completes the proof. �

Corollary 3.2 Let H be a real Hilbert space, and let F : H → CB(H), K : H → H be maxi-
mal monotone and bounded maps. For arbitrary u1, v1, u2, v2 ∈ H , define the sequences {hn},
{pn}, {un}, and {vn} by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hn = un + cn(un–1 – un),

un+1 = hn – λn(ξn – pn) – λnθnhn, ξn ∈ Fhn, n ≥ 2,

pn = vn + cn(vn–1 – vn),

vn+1 = pn – λn(Kpn + hn) – λnθnpn, n ≥ 2,

(3.29)

where {θn} and {λn} are sequences in (0, 1), and {cn} is a sequence in [0, 1) satisfying the
conditions of Theorem 3.1. Suppose that the inclusion 0 ∈ u + KFu has a solution in H.
Then there exists a real constant γ0 such that λn ≤ γ0θn for all n ≥ n0, for some n0 ≥ 2, and
the sequence {un} converges strongly to u∗, a solution of 0 ∈ u + KFu.
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Proof It follows from the proof of Theorem 3.1 when K is single-valued. �

Corollary 3.3 Let H be a real Hilbert space, and let F , K : H → H be maximal monotone
and bounded maps. For arbitrary u1, v1, u2, v2 ∈ H , define the sequences {hn}, {pn}, {un},
and {vn} by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hn = un + cn(un–1 – un),

un+1 = hn – λn(Fhn – pn) – λnθnhn, n ≥ 2,

pn = vn + cn(vn–1 – vn),

vn+1 = pn – λn(Kpn + hn) – λnθnpn, n ≥ 2,

(3.30)

where {θn}, {λn}, and {cn} are sequences in (0, 1) satisfying the conditions of Theorem 3.1.
Suppose that the inclusion 0 ∈ u + KFu has a solution in H. Then there exists a real con-
stant γ0 such that λn ≤ γ0θn for all n ≥ n0, for some n0 ≥ 2, and the sequence {un} converges
strongly to u∗, a solution of 0 ∈ u + KFu.

Proof It follows from the proof of Theorem 3.1 when F and K are single-valued. �

Definition 3.4 (Hemicontinuity) An operator A : H −→ H is said to be hemicontinuous
at a point x0 if for all x ∈ H , A(x0 + tnx) ⇀ A(x0) as tn → 0+.

Theorem 3.5 ([1, p. 29]) Let X be a reflexive Banach space, and let X∗ be its dual space.
Then every monotone hemicontinuous operator A : X −→ X∗ is maximal monotone.

Corollary 3.6 Let H be a real Hilbert space, and let F , K : H → H be hemicontinuous,
monotone, and bounded maps. For arbitrary u1, v1, u2, v2 ∈ H , define the sequences {hn},
{pn}, {un}, and {vn} by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hn = un + cn(un–1 – un),

un+1 = hn – λn(Fhn – pn) – λnθnhn, n ≥ 2,

pn = vn + cn(vn–1 – vn),

vn+1 = pn – λn(Kpn + hn) – λnθnpn, n ≥ 2,

(3.31)

where {θn} and {λn} are sequences in (0, 1), and {cn} is a sequence in [0, 1) satisfying the
conditions of Theorem 3.1. Suppose that the inclusion 0 ∈ u + KFu has a solution in H.
Then there exists a real constant γ0 such that λn ≤ γ0θn for all n ≥ n0, for some n0 ≥ 2, and
the sequence {un} converges strongly to u∗, a solution of 0 ∈ u + KFu.

Proof The maps F and K are maximal monotone by Theorem 3.5. The rest of the proof
follows from Corollary 3.3. �

Remark 1 Note that if 0 < b < a and a+b < 1, then for each natural number n, λn = (n+1)–a

and θn = (n + 1)–b satisfy the hypotheses of Theorem 3.1 (see [16]).

4 Algorithms for comparison
Mainly for numerical comparison, we present the following algorithms.



Bello et al. Fixed Point Theory Algorithms Sci Eng          (2021) 2021:8 Page 13 of 22

Theorem 4.1 (Chidume and Shehu (CS12) [24]) Let H be a real Hilbert space, and let
F , K : H → H be bounded, continuous, and monotone mappings. Let {un} and {vn} be se-
quences defined iteratively from arbitrary u1, v1 ∈ H by

un+1 = un – βn(Fun – vn) – βn(un – u1), n ≥ 0,

vn+1 = vn – βn(Kvn + un) – βn(vn – v1), n ≥ 0,
(4.1)

where {βn}∞n is a real sequence in (0, 1) such that
∑∞

n=0 β2
n < ∞ and

∑∞
n=0 βn = ∞. Then the

sequence {un} converges strongly to u∗, a solution of u + KFu = 0.

Theorem 4.2 (Chidume and Shehu (CS13) [25]) For q > 1, let E be a q-uniformly smooth
real Banach space. For each i = 1, 2, . . . , m, let Fi, Ki : E → E be bounded and accretive map-
pings. Let {un} and {vi,n}∞n=1, i = 1, 2, . . . , m, be sequences defined iteratively from arbitrary
u1, vi,1 ∈ E by

un+1 = un – λnαn

(
un +

m∑
i=1

Kivi,n

)
– λnθn(un – u1),

v1,n+1 = v1,n – λnαn(F1un – v1,n) – λnθn(v1,n – v1,1),

v2,n+1 = v2,n – λnαn(F2un – v2,n) – λnθn(v2,n – v1,1),

...

vm,n+1 = vm,n – λnαn(Fmun – vm,n) – λnθn(vm,n – vm,1), n ≥ 0,

(4.2)

where {λn}∞n , {αn}∞n , {θn}∞n are real sequences in (0, 1) such that λn = o(θn),αn = o(θn),
and

∑∞
n=0 λnθn = ∞. Then the sequence {un} converges strongly to u∗, a solution of u +∑m

i=1 KiFiu = 0.

Theorem 4.3 (Shehu (S14) [41]) Let H be a real Hilbert space, and let F : H → H be a
bounded, coercive, and maximal monotone mapping. Let F : H → H be a bounded and
maximal monotone mapping. Suppose that both maps satisfy the range condition. Let {un}
and {vn} be sequences defined iteratively from arbitrary u1, v1 ∈ H by

un+1 = un – β2
n(Fun – vn) – βn(un – u1), n ≥ 0,

vn+1 = vn – β2
n(Kvn + un) – βn(vn – v1), n ≥ 0,

(4.3)

where {βn}∞n is a real sequence in (0, 1) such that limn→∞ βn = 0,
∑∞

n=0 β2
n < ∞, and∑∞

n=0 βn = ∞. Suppose that u∗ is a solution of u + KFu = 0. Then the sequence {un} con-
verges strongly to u∗.

5 Numerical examples
In this section, we present some numerical examples illustrating the advantages of the
present algorithm (3.1) over MM (1.17), CS12 (4.1), CS13 (4.2), and S14 (4.3). We construct
these examples on R

p, p ≥ 1, �2(R), and L2
R

(�), where � is a closed bounded interval of
R. Numerical experiments were carried out on MATLAB R2013a and R2020 versions.
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Table 1 Parameters used during numerical experiment

BOY (3.1) MM (1.17) CS12 (4.1) CS13 (4.2) S14 (4.3)

λn = (n + 1)–
1
4 λn = (n + 1)–

1
4 βn = (n + 1)–1 λn = (n + 1)–

1
4 βn = (n + 1)–1

θn = (n + 1)–
1
5 θn = (n + 1)–

1
5 θn = (n + 1)–

1
5

αn = (n + 1)–
1
4

Table 2 Numerical results for Example 1

p N BOY (3.1) MM (1.17) CS12 (4.1) CS13 (4.2) S14 (4.3)

50 100 1.615651e–01 3.685202e+00 6.321833e+00 3.329286e+01 7.225393e+00
50 1000 9.002337e–02 2.254541e+00 6.321075e+00 1.821770e+01 7.099678e+00
50 10000 5.025679e–02 1.029760e+00 6.321068e+00 1.184520e+01 7.075314e+00

500 100 1.615651e–01 1.430221e+01 2.161299e+01 9.710598e+01 2.293779e+01
500 1000 9.002337e–02 1.023801e+01 2.161070e+01 5.319094e+01 2.246502e+01
500 10000 5.025679e–02 6.733823e+00 2.161068e+01 3.458890e+01 2.237599e+01

5000 100 1.615651e–01 4.787614e+01 6.996787e+01 2.989008e+02 7.262474e+01
5000 1000 9.002337e–02 3.548396e+01 6.996075e+01 1.637860e+02 7.105451e+01
5000 10000 5.025679e–02 2.477166e+01 6.996068e+01 1.065108e+02 7.076099e+01

Table 3 Computation times for all algorithms in Table 2

p N BOY (3.1) MM (1.17) CS12 (4.1) CS13 (4.2) S14 (4.3)

50 100 1.562500e–02 0 0 1.562500e–02 0
50 1000 7.812500e–02 9.375000e–02 1.406250e–01 1.093750e–01 1.406250e–01
50 10000 2.593750e+00 2.546875e+00 2.656250e+00 2.515625e+00 2.578125e+00

500 100 1.562500e–02 0 1.562500e–02 0 1.562500e–02
500 1000 4.218750e–01 2.656250e–01 3.593750e–01 3.593750e–01 3.281250e–01
500 10000 4.878125e+01 4.646875e+01 4.451563e+01 4.451563e+01 4.439063e+01

5000 100 2.500000e–01 1.562500e–01 1.406250e–01 2.031250e–01 1.093750e–01
5000 1000 5.875000e+00 6.359375e+00 6.890625e+00 6.406250e+00 6.437500e+00
5000 10000 4.935313e+02 4.780469e+02 4.635000e+02 4.800625e+02 4.840781e+02

Table 4 Numerical results for different choices of {cn} for BOY (3.1) in Example 1

p N cn = 0 cn = n–3 cn = n–
3
2 cn = n–2

50 100 1.615480e–01 1.615482e–01 1.615497e–01 1.615651e–01
50 1000 9.002328e–02 9.002328e–02 9.002328e–02 9.002337e–02
50 10000 5.025678e–02 5.025678e–02 5.025678e–02 5.025679e–02

500 100 1.615480e–01 1.615482e–01 1.615497e–01 1.615651e–01
500 1000 9.002328e–02 9.002328e–02 9.002328e–02 9.002337e–02
500 10000 5.025678e–02 5.025678e–02 5.025678e–02 5.025679e–02

All programs were run on PCs with Intel(R) Core(TM)2 Duo CPU and 3 GB RAM and
Intel(R) Core(TM) i5-1035G1 CPU@1.00 GHz with 12 GB RAM.

The accompanying parameters of the aforementioned methods employed in the exper-
iments are presented in Table 1, whereas their numerical results and computation times
are illustrated in Tables 2–9 and Figs. 1–7 in loglog plots. In these tables, p represents the
dimension of the real line in Example 1, s denotes the index defined in the sequences given
in Example 2 (see, e.g., Eq. (5.2)), N is the maximum number of iterations, and n is the in-
dex of each sequence. For experimental purpose, n is looped from 0 to N . The term ‖un‖2

denotes the second norm at index n. In Example 3, j represents the number of partitions
on [0, 1].
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Table 5 Computation times for BOY (3.1) in Table 4

p N cn = 0 cn = n–3 cn = n–
3
2 cn = n–2

50 100 1.562500e–02 0 0 0
50 1000 6.250000e–02 6.250000e–02 1.250000e–01 1.875000e–01
50 10000 3.968750e+00 2.843750e+00 3.406250e+00 3.796875e+00

500 100 0 0 1.562500e–02 1.562500e–02
500 1000 4.218750e–01 4.218750e–01 3.906250e–01 3.906250e–01
500 10000 5.395313e+01 5.226563e+01 5.281250e+01 5.184375e+01

Table 6 Numerical results for Example 2

s N BOY (3.1) MM (1.17) CS12 (4.1) CS13 (4.2) S14 (4.3)

50 10 3.192044e–01 5.330595e–01 4.163250e–01 3.814988e+00 1.151610e+00
50 100 1.615651e–01 2.501438e–04 3.994505e–01 6.786458e+00 1.252605e+00
50 1000 9.002337e–02 9.722273e–02 3.992966e–01 3.599628e+00 1.271957e+00
50 10000 5.025679e–02 5.025675e–02 3.992950e–01 2.246459e+00 1.274467e+00

500 10 3.192128e–01 5.262828e–01 4.241019e–01 3.875973e+00 1.159661e+00
500 100 1.615651e–01 1.332668e–02 4.071295e–01 6.837405e+00 1.259847e+00
500 1000 9.002337e–02 2.171271e–01 4.069747e–01 3.628486e+00 1.278969e+00
500 10000 5.025679e–02 5.025675e–02 4.069731e–01 2.267003e+00 1.281438e+00

5000 10 3.192135e–01 5.256572e–01 4.248883e–01 3.882197e+00 1.160474e+00
5000 100 1.615651e–01 1.443111e–02 4.079060e–01 6.842619e+00 1.260576e+00
5000 1000 9.002337e–02 2.170950e–01 4.077510e–01 3.631443e+00 1.279676e+00
5000 10000 5.025679e–02 5.025675e–02 4.077495e–01 2.269110e+00 1.282140e+00

Table 7 Computation times for all algorithms in Table 6

s N BOY (3.1) MM (1.17) CS12 (4.1) CS13 (4.2) S14 (4.3)

50 10 0 0 0 4.687500e–02 0
50 100 0 0 0 1.562500e–02 0
50 1000 6.250000e–02 6.250000e–02 1.406250e–01 1.406250e–01 1.406250e–01
50 10000 2.890625e+00 2.656250e+00 2.890625e+00 2.656250e+00 3.078125e+00

500 10 0 0 0 0 0
500 100 3.125000e–02 1.562500e–02 0 1.562500e–02 0
500 1000 3.125000e–01 2.500000e–01 2.343750e–01 2.656250e–01 2.343750e–01
500 10000 4.171875e+01 3.965625e+01 3.954688e+01 3.937500e+01 3.950000e+01

5000 10 9.375000e–02 0 7.812500e–02 0 3.125000e–02
5000 100 2.187500e–01 2.343750e–01 1.875000e–01 1.562500e–01 1.406250e–01
5000 1000 1.184375e+01 5.156250e+00 5.312500e+00 5.453125e+00 5.640625e+00
5000 10000 4.465469e+02 4.397813e+02 4.288750e+02 4.372031e+02 4.359844e+02

Table 8 Numerical results for Example 3

j N BOY (3.1) MM (1.17) CS12 (4.1) CS13 (4.2) S14 (4.3)

10 10 1.152918e–02 2.319396e–01 3.186175e–01 3.490227e–01 6.480232e–01
10 100 3.296270e–24 1.579375e–01 3.235187e–01 3.741739e–01 7.676897e–01
10 1000 6.196310e–136 1.045951e–01 3.234724e–01 4.003847e–01 7.960680e–01

100 10 1.167714e–02 2.315197e–01 3.183921e–01 3.487705e–01 6.480069e–01
100 100 1.547816e–24 1.577588e–01 3.232611e–01 3.739162e–01 7.679286e–01
100 1000 1.917870e–136 1.044657e–01 3.232151e–01 4.001309e–01 7.963726e–01

Table 9 Computation times for all algorithms in Table 8

j N BOY (3.1) MM (1.17) CS12 (4.1) CS13 (4.2) S14 (4.3)

10 10 0 0 0 0 0
10 100 0 0 0 0 0
10 1000 0 1.562500e–02 1.562500e–02 1.562500e–02 3.125000e–02

100 10 0 0 0 0 0
100 100 0 0 0 0 0
100 1000 6.250000e–02 3.125000e–02 4.687500e–02 4.687500e–02 4.687500e–02
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Figure 1 Strong convergence of un in R
p

Figure 2 Strong convergence of un in R
p

Example 1 Let f : Rp −→ R : x �→ ‖x‖. Then the subdifferential of f at x (see, e.g., [36]) is
given by

∂f (x) =

⎧⎨
⎩

{ x
‖x‖ }, x �= 0,

{x ∈R
p : ‖x‖ ≤ 1}, x = 0.

(5.1)

It is well known that F = ∂f defined in (5.1) is maximal monotone. Also, define K : Rp −→
R

p by Kx = x for all x ∈ R
p. Clearly, K is maximal monotone. Moreover, the only solution

of the inclusion 0 ∈ u + KFu is u∗ = 0. For BOY, the present algorithm, the initial points in
R

p are u1, v1, u2, v2 = (1, 1, . . . , 1), whereas u1, v1 = (1, 1, . . . , 1) in the other algorithms.
As tabulated in Table 2 and illustrated in Figs. 1–3, the present algorithm appears to be

more efficient at approximating the zero of Eq. (5.1) as compared to others. In loops the
presence of an inertial term leads to more computational time. However, as depicted in
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Figure 3 Strong convergence of un in R
p

Figure 4 Comparison of cn for BOY algorithm in R
p

Table 3, the present algorithm—containing two inertial terms—still competes favorably
with others.

Example 2 Define a map f : �2(R) −→ R by f (x) = ‖x‖ for all x ∈ �2(R). Then the subdif-
ferential of f at x ∈ �2(R) is given by

∂f (x) =

⎧⎨
⎩

{ x
‖x‖ }, x �= 0,

B(0, 1), x = 0.

It is well known that F := ∂f is maximal monotone. Also, define the map K : �2(R) → �2(R)
by Kx = 2x for all x ∈ �2(R). Obviously, K is monotone and bounded. Consider the points
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Figure 5 Strong convergence of un in l2(R)

Figure 6 Strong convergence of un in l2(R)

u1 := {u1,j}∞j=1, v1 := {v1,j}∞j=1, u2 := {u2,j}∞j=1, and v2 := {v2,j}∞j=1 defined by

u1,j =

⎧⎨
⎩

1
j 1 ≤ j ≤ s,

0 otherwise,
v1,j =

⎧⎨
⎩

1
j+1 1 ≤ j ≤ s,

0 otherwise,
(5.2)

u2,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
j+sin2 j 1 ≤ j ≤ � s

2�,
1

j(j+1) � s
2� < j ≤ s,

0 otherwise,

v2,j =

⎧⎪⎪⎨
⎪⎪⎩

1
j ln j 3 ≤ j ≤ � s

2�,
1

j2+cos j � s
2� < j ≤ s,

0 otherwise,

(5.3)

where s > 6, j ∈ N, and the ceiling �x� = min{z ∈ Z|z ≥ x}. Algorithm (3.1) uses the initial
points defined in (5.2) and (5.3), whereas other algorithms are initialized by (5.2) only. Ob-
viously, u1, u2, v1, and v2 are elements of �2(R). Numerical results are displayed in Tables 6
and 7, whereas graphical illustrations are presented in Figs. 9–7. During the experiment,
the algorithm MM (1.17) becomes unstable, as this can be seen from its results in Table 6
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Figure 7 Strong convergence of un in l2(R)

Figure 8 Strong convergence of un in L2([0, 1])

and the figures. However, BOY (3.1) remains stable and competes favorably against others
in terms of computational time (see Table 7), thus gaining advantage over others.

Example 3 In this example, we set � = [0, 1]. Define F , K : LR

2 ([0, 1]) −→ LR

2 ([0, 1]) by
(Fu)(t) = (t + 1)u(t) and (Ku)(t) = u(t) for all t ∈ [0, 1]. Then

〈u, Fu〉 =
∫ 1

0
u(t)(Fu)(t) dt =

∫ 1

0
(t + 1)u2(t) dt ≥ 0 and

〈u, Ku〉 =
∫ 1

0
u(t)(Ku)(t) dt =

∫ 1

0
u2(t) dt ≥ 0.

Therefore F and K are monotone. It is also clear that F and K are linear and bounded.
Thus by Theorem 3.5 they are maximal monotone. In this example, we choose u1 = (1 +
x2)–1, v1 = x2, u2 = x3, and v2 = sin x. For the purpose of experiment, the interval [0, 1] is
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Figure 9 Strong convergence of un in L2([0, 1])

Figure 10 Strong convergence of un in L2([0, 1])

partitioned into j subintervals. The numerical output and computational time for different
number of iterations N and subintervals j can be seen in Tables 8 and 9, respectively. As
illustrated in those tables and Figs. 8–10, the sequence produced by BOY (3.1) evidently
converges faster than its pairs.

6 Conclusion
In this paper, we introduced a novel inertial algorithm for approximating solutions of
Hammerstein inclusions 0 ∈ u + KFu in Hilbert spaces. We also proved the strong con-
vergence of the proposed scheme. Furthermore, we made no assumption of continuity in
the main theorem. Moreover, the following observations were made:

1. The Inertial algorithm seems to display its efficiency when compared to the
Noninertial algorithms, which perform poorly as the dimension and number of
iterations increase.
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2. Convergence of the Inertial algorithm seems to be independent of the choice of u2

and v2.
3. In sequence and function spaces the Inertial algorithm appears to be more effective

and accurate.
4. On R

p, p ≥ 1, the optimal choice of cn appears to be zero.
From the results obtained, the inertial algorithm would, perhaps, be preferred to the non-
inertial algorithms in any possible application.
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