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Abstract
In this paper, we propose an iteration algorithm for finding a split common fixed
point of an asymptotically nonexpansive mapping in the frameworks of two real
Banach spaces. Under some suitable conditions imposed on the sequences of
parameters, some strong convergence theorems are proved, which also solve some
variational inequalities that are closely related to optimization problems. The results
here generalize and improve the main results of other authors.
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1 Introduction
Since 1994, the split feasibility problem (SFP) [1–3] has received much attention, owing
to its applications in many optimization problems, signal processing and medical image
reconstruction with special progress in intensity-modulated radiation therapy [4–6]. Let
us recall the SFP: to find a point q ∈ B1 such that

q ∈ C such that Aq ∈ Q, (1.1)

where A : B1 −→ B2 is a bounded linear operator, C and Q are nonempty closed convex
subsets of two real Hilbert spaces B1 and B2, respectively.

It is easy to see that problem (1.1) is equivalent to the following fixed point equation:

u = PC
(
I – δA∗(I – PQ)A

)
u, u ∈ C, (1.2)

where A∗ is the corresponding adjoint operator of A, the stepsize δ is a properly chosen
real number, and PC and PQ are the metric projections from B1 and B2 onto C and Q, re-
spectively. If δ ∈ (0, 2

‖A‖2 ), then the CQ algorithm converges to a solution of (1.1), whenever
the solution set is nonempty. However, in order to actualize the CQ algorithm, computing
the operator norm of A is a very complicated work in practice.
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As a prolongation of problem (1.1), the split common fixed point problem (SCFPP) has
been extensively researched in recent years. The SCFPP is an inverse problem, which aims
to find an element in a fixed point set so that the image under a bounded linear operator
belongs to another fixed point set. More specifically, the SCFPP is looking for a q ∈ B1

such that

q ∈ F(U) such that Aq ∈ F(T), (1.3)

where A : B1 −→ B2 is the bounded linear operator, and U : B1 −→ B1, T : B2 −→ B2 are
the two nonlinear operators. We denote by F(U) and F(T) the sets of fixed points of U
and T , respectively. � denotes the set of solutions of SCFPP, that is,

� =
{

q ∈ F(U) : Aq ∈ F(T)
}

.

In particularly, if T and U are both the identity operator, then the SCFPP is clearly changed
to the SFP.

A typical method for solving the SCFPP is to use the following iterative algorithm:

un+1 = U
(
I – δA∗(I – T)A

)
un, n ≥ 0. (1.4)

It is shown in [7] that, if the stepsize δ ∈ (0, 2
‖A‖2 ) and the operators in (1.3) are directed,

then the sequence generated by algorithm (1.4) converges weakly to a solution of the
SCFPP whenever such a solution exists.

Moudafi [8] introduced an iteration scheme for demicontractive mappings and obtained
a weak convergence theorem for the SCFPP in Hilbert spaces. Since then, many authors
have studied the SCFPP of other mappings in the frameworks of two Hilbert spaces (see,
for instance, [9–13])

In 2015, Tang et al. [14] obtained a weak convergence theorem of the SCFPP for the
asymptotically nonexpansive mapping S in Banach spaces of the following algorithm:

⎧
⎨

⎩
zn = un + δJ–1

1 A∗J2(T – I)Aun,

un+1 = (1 – αn)zn + αnSnzn.
(1.5)

They showed that the sequence {un} generated by (1.5) converges weakly to a q ∈ �.
Recently, Tang et al. [15] studied and proved a strong convergence theorem for the

SCFPP (1.3) in infinite dimensional real Hilbert spaces based on the viscosity approxi-
mation, a single-step regularized method working as follows:

un+1 = αnun + βnh(un) + γnS
(
I – ξnA∗(I – T)A

)
un, n ≥ 0, (1.6)

where S and T are firmly nonexpansive mappings for which both I – S and I – T are demi-
closed at zero, and h : H −→ H is an α-contraction mapping with α ∈ (0, 1).

In this article, inspired by the above results, we consider and study the SCFPP for asymp-
totically nonexpansive mappings in the frameworks of two real Banach spaces. That is, we
present an iterative algorithm to approximate a solution of the SCFPP and show some
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strong convergence theorems under appropriate conditions, which also solve some vari-
ational inequalities. Therefore, we extend the main results of Tang et al. [14] and Hong
et al. [16] from Hilbert spaces to Banach spaces and from firmly nonexpensive mappings
to asymptotically nonexpansive mappings. In some cases, some other results are also im-
proved (see [8, 15, 17, 18]).

2 Preliminaries
The following are some definitions and lemmas that will be used in the proof of the main
results in the next section.

Throughout this paper, let B be a real Banach space and B∗ be the dual space of B. The
normalized duality mapping J : B → 2B∗ is defined by

J(x) =
{

f ∈ B∗ : 〈x, f 〉 = ‖x‖‖f ‖,‖x‖ = ‖f ‖}, ∀x ∈ B,

where 〈�, �〉 denotes the duality pairing. As is well known (see e.g. [6]), the operator J is well
defined and J is multiple-valued and nonlinear in general. And J is an identity mapping if
and only if B is a Hilbert space.

A Banach space B is said to be strictly convex if ‖u+v‖
2 < 1 for ‖u‖ = ‖v‖ = 1 and u 
= v.

The modulus of convexity of B is defined by

δB(ε) = inf

{
1 –

∥
∥∥
∥

1
2

(u + v)
∥
∥∥
∥ : ‖u‖,‖v‖ ≤ 1,‖u – v‖ ≥ ε

}
,

for all 0 ≤ ε ≤ 2. B is called uniformly convex, if for all 0 < ε ≤ 2 such that δB(0) = 0 and
δB(ε) > 0.

Let ρB : [0, +∞) −→ [0, +∞) be the modulus of smoothness of B which is defined by

ρB(s) = sup

{
1
2
(‖u + v‖ + ‖u – v‖) – 1 : ‖u‖ = 1,‖v‖ ≤ s

}
.

A Banach space B is called uniformly smooth if ρB(s)
s → 0 as s → 0. Then a Banach space

B is called q-uniformly smooth, if, for all s > 0, there exists a constant c > 0 such that
ρB(s) ≥ csq. It is known that every q-uniformly smooth Banach space is uniformly smooth.

Definition 2.1 Let C be a nonempty closed convex subset of a Banach space B and T :
C −→ C be a mapping, then

• T is called a contraction if there exists a constant k ∈ (0, 1) satisfying

∥
∥T(u) – T(v)

∥
∥ ≤ k‖u – v‖, ∀u, v ∈ C.

• T is called a nonexpansive mapping if the above inequality is also true for k = 1.
• T is called a firmly nonexpansive mapping if

‖Tu – Tv‖2 ≤ 〈Tu – Tv, u – v〉.

• T is called an asymptotically nonexpansive mapping, if, for all u, v ∈ C, there exists a
sequence {kn} with limn→∞ kn = 1 such that

∥
∥Tnu – Tnv

∥
∥ ≤ kn‖u – v‖.
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It is easy to see that every nonexpansive mapping is an asymptotically nonexpansive
mapping.

Definition 2.2 Let C be a nonempty closed convex subset of a real Banach space B, map-
ping U : C −→ B is said to be uniformly regular if

lim
n→∞ sup

u∈C

∥∥Un+1u – Unu
∥∥ = 0.

Lemma 2.1 ([19]) If B is a 2-uniformly smooth Banach space with the best smoothness
constant t > 0, we have the relation

‖u + v‖2 ≤ ‖u‖2 + 2〈v, Ju〉 + 2‖tv‖2.

Lemma 2.2 ([20]) Let {wn} and {zn} be bounded sequences in a Banach space B and
{αn} be a sequence in [0, 1] with 0 < lim infn→∞ αn ≤ lim supn→∞ αn < 1. Suppose that
wn+1 = (1 – αn)wn + αnzn for all n ≥ 0 and lim supn→∞(‖zn+1 – zn‖ – ‖wn+1 – wn‖) ≤ 0.
Then limn→∞ ‖zn – wn‖ = 0.

Lemma 2.3 ([21]) Let C be a nonempty bounded and closed convex subset of a reflexive
smooth Banach space B and J be a weakly sequential continuous normal duality mapping
T : C → C be an asymptotical nonexpansive mapping. Then I – T is demiclosed at zero,
i.e., if un ⇀ u weakly and un – Tun → 0 strongly, then u ∈ F(T).

Lemma 2.4 ([22]) Assume {pn} is a sequence of nonnegative real numbers such that

pn+1 ≤ (1 – σn)pn + ξn, n ≥ 0,

where {σn} is a sequence in (0, 1) and {ξn} is a real sequence such that

(1) lim
n→∞σn = 0 and

∞∑

n=0

σn = ∞;

(2) lim sup
n→∞

ξn

σn
≤ 0 or

∞∑

n=1

|ξn| < ∞.

Then limn→∞ pn = 0.

3 Main results
Theorem 3.1 Let B1 be a real strictly convex and 2-uniformly smooth Banach space with
the best smoothness constant t satisfying 0 < t < 1√

2 and a weakly sequential continuous
normal duality mapping J , B2 be a real smooth Banach space. Suppose that h : B1 −→ B1 is
a contraction mapping with contractive coefficient k ∈ (0, 1) and A : B1 −→ B2 is a bounded
linear operator and A∗ is the adjoint of A. Let T : B2 −→ B2 be a nonexpansive mapping and
U : B1 −→ B1 be an asymptotically nonexpansive mapping with asymptotical coefficient
sequence {kn} and F(U) 
= ∅. Assume that the SCFPP (1.3) has a nonempty solution set �
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and U is uniformly regular in �. Let {un} be a sequence generated by

⎧
⎪⎪⎨

⎪⎪⎩

u1 ∈ B1,

vn = un – δJ–1
B1

A∗JB2 (I – T)Aun,

un+1 = αnun + γnh(un) + ζnUnvn,

(3.1)

where {αn}, {γn}, {ζn} ⊂ (0, 1), satisfying the following conditions:

(i) αn + γn + ζn = 1, 0 < lim inf
n→∞ αn ≤ lim sup

n→∞
αn < 1;

(ii) lim
n→∞γn = 0,

∞∑

n=0

γn = ∞, ηγn = kn – 1, 0 < η < 1 – k;

(iii) δ ∈
(

0,
1 – 2t2

‖A‖2

)
.

Then the sequence {un} generated by (3.1) converges strongly to a point q = P�h(q) ∈ �,
which also solves the variational inequality:

〈
(I – h)q, j(q – w)

〉 ≤ 0, ∀w ∈ �.

Proof Since P�h is a contraction on B1, there exists an unique element q ∈ B1 such that
q = P�h(q) by the Banach contraction principle. So there is a q ∈ �. Now, we split the
proof into five steps.
Step 1 First we show that the sequence {un} is bounded. For any given q ∈ �, it follows

from (3.1), condition (iii) and Lemma 2.1 that

‖vn – q‖2 =
∥
∥(un – q) + δJ–1

B1 A∗JB2 (T – I)Aun
∥
∥2

≤ δ2∥∥J–1
B1 A∗JB2 (T – I)Aun

∥
∥2 + 2δ

〈
un – q, A∗JB2 (T – I)Aun

〉

+ 2t2‖un – q‖2

≤ δ2‖A‖2∥∥(T – I)Aun
∥
∥2 + 2t2‖un – q‖2

+ 2δ
〈
Aun – Aq, JB2 (T – I)Aun

〉

= δ2‖A‖2∥∥(T – I)Aun
∥
∥2 + 2t2‖un – q‖2 – 2δ

∥
∥(T – I)Aun

∥
∥2

+ 2δ
〈
TAun – Aq, JB2 (T – I)Aun

〉

≤ (
δ2‖A‖2 – 2δ

)∥∥(T – I)Aun
∥
∥2 + 2t2‖un – q‖2

+ δ
(‖TAun – Aq‖2 +

∥∥(T – I)Aun
∥∥2)

≤ 2t2‖un – q‖2 +
(
δ2‖A‖2 – δ

)∥∥(T – I)Aun
∥∥2 + δ‖Aun – Aq‖2

≤ (
2t2 + δ‖A‖2)‖un – q‖2 – δ

(
1 – δ‖A‖2)∥∥(T – I)Aun

∥∥2

≤ ‖un – q‖2.

(3.2)

Because 0 ≤ k < 1, by (3.1), (3.2) and condition (ii), we have

‖un+1 – q‖ =
∥∥αnun + γnh(un) + ζnUnvn – q

∥∥
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= ‖αn(un – q) + γn(h(un) – h(q) + γn
(
h(q) – q

)
+ ζn

(
Unvn – q

)‖
≤ αn‖un – q‖ + kγn‖un – q‖ + γn

∥
∥h(q) – q

∥
∥ + knζn‖vn – q‖

≤ (αn + kγn + knζn)‖un – q‖ + γn
∥∥h(q) – q

∥∥ (3.3)

=
(
1 –

(
γn(1 – k) – ζn(kn – 1)

))‖un – q‖ + γn
∥∥h(q) – q

∥∥

≤ (
1 –

(
γn(1 – k) – ηγn

))‖un – q‖ + γn
∥
∥h(q) – q

∥
∥

=
(
1 – γn(1 – k – η)

)‖un – q‖ + γn(1 – k – η)
‖h(q) – q‖
1 – k – η

≤ max

{
‖un – q‖,

‖h(q) – q‖
1 – k – η

}
.

By induction, we readily obtain

‖un+1 – q‖ ≤ max

{
‖u0 – q‖,

‖h(q) – q‖
1 – k – η

}
.

This implies that {un} is bounded, and so are {vn}, {h(un)}, {Unvn}.
Step 2 We show that limn→∞ ‖un+1 – un‖ = 0 and limn→∞ ‖vn+1 – vn‖ = 0. To see this,

we set zn = un+1–αnun
1–αn

, ∀n ≥ 0. We have

zn+1 – zn =
un+2 – αn+1un+1

1 – αn+1
–

un+1 – αnun

1 – αn

=
γn+1h(un+1) + ζn+1Un+1vn+1

1 – αn+1
–

γnh(un) + ζnUnvn

1 – αn

=
γn+1h(un+1) + (1 – αn+1 – γn+1)Un+1vn+1

1 – αn+1
–

γnh(un) + (1 – αn – γn)Unvn

1 – αn

=
γn+1

1 – αn+1

[
h(un+1) – h(un)

]
+

(
γn+1

1 – αn+1
–

γn

1 – αn

)
h(un)

–
(

γn+1

1 – αn+1
–

γn

1 – αn

)
Unvn +

(
1 –

γn+1

1 – αn+1

)(
Un+1vn+1 – Unvn

)

=
γn+1

1 – αn+1

[
h(un+1) – h(un)

]
+

(
γn+1

1 – αn+1
–

γn

1 – αn

)(
h(un) – Unvn

)

+
(

1 –
γn+1

1 – αn+1

)
(
Un+1vn+1 – Un+1vn

)
+

(
1 –

γn+1

1 – αn+1

)
(
Un+1vn – Unvn

)
.

This implies that

‖zn+1 – zn‖ ≤ kγn+1

1 – αn+1
‖un+1 – un‖ +

∣
∣∣∣

γn+1

1 – αn+1
–

γn

1 – αn

∣
∣∣∣
∥∥h(un) – Unvn

∥∥

+ sup
v∈�

∥∥Un+1v – Unv
∥∥ + kn+1

(
1 –

γn+1

1 – αn+1

)
‖vn+1 – vn‖.

(3.4)

By Lemma 2.1 and condition (iii), we can get

‖vn+1 – vn‖2 =
∥
∥(un+1 – un) –

(
δJ–1

B1 A∗JB2 (I – T)Aun+1 – δJ–1
B1 A∗JB2 (I – T)Aun

)∥∥2

≤ δ2‖A‖2∥∥(I – T)Aun+1 – (I – T)Aun
∥∥2 + 2δ2‖un+1 – un‖2
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– 2δ
〈
Aun+1 – Aun, JB2 (I – T)Aun+1 – JB2 (I – T)Aun

〉

= δ2‖A‖2∥∥(I – T)Aun+1 – (I – T)Aun
∥∥2 + 2δ2‖un+1 – un‖2

– 2δ
∥
∥(I – T)Aun+1 – (I – T)Aun

∥
∥2

+ 2δ
〈
TAun+1 – TAun, JB2 (I – T)Aun+1 – JB2 (I – T)Aun

〉
(3.5)

≤ (
δ2‖A‖2 – 2δ

)∥∥(I – T)Aun+1 – (I – T)Aun
∥
∥2 + 2δ2‖un+1 – un‖2

+ δ
(‖TAun+1 – TAun‖2 +

∥∥(I – T)Aun+1 – (I – T)Aun
∥∥2)

≤ (
δ2‖A‖2 – δ

)∥∥(I – T)Aun+1 – (I – T)Aun
∥∥2 + 2δ2‖un+1 – un‖2

+ δ‖A‖2‖un+1 – un‖2

=
(
2δ2 + δ‖A‖2)‖un+1 – un‖2 – δ

(
1 – δ‖A‖2)∥∥(I – T)(Aun+1 – Aun)

∥
∥2

≤ ‖un+1 – un‖2.

Thus, we have ‖yn+1 –yn‖ ≤ ‖xn+1 –xn‖. Then, from (3.4), (3.5) and condition (ii), it follows
that

‖zn+1 – zn‖ ≤
(

kγn+1

1 – αn+1
+ kn+1

(
1 –

γn+1

1 – αn+1

))
‖un+1 – un‖

+
∣
∣∣∣

γn+1

1 – αn+1
–

γn

1 – αn

∣
∣∣∣
∥∥h(un) – Unvn

∥∥ + sup
v∈�

∥∥Un+1v – Unv
∥∥

=
kγn+1 + kn+1ζn+1

1 – αn+1
‖un+1 – un‖

+
∣∣
∣∣

γn+1

1 – αn+1
–

γn

1 – αn

∣∣
∣∣
∥
∥h(un) – Unvn

∥
∥ + sup

v∈�

∥
∥Un+1v – Unv

∥
∥

≤
(

1 –
(1 – k – η)γn+1

1 – αn+1

)
‖un+1 – un‖

+
∣∣
∣∣

γn+1

1 – αn+1
–

γn

1 – αn

∣∣
∣∣
∥
∥h(un) – Unvn

∥
∥ + sup

v∈�

∥
∥Un+1v – Unv

∥
∥.

Therefore, by condition (ii), we have

lim sup
n→∞

(‖zn+1 – zn‖ – ‖un+1 – un‖
) ≤ 0.

It follows form Lemma 2.2 and condition (i) that

lim
n→∞‖zn – un‖ = 0.

Note that zn = un+1–αnun
1–αn

, it is easy to see that

lim
n→∞‖un+1 – un‖ = 0. (3.6)

Clearly, from (3.5) we obtain

lim
n→∞‖vn+1 – vn‖ = 0.
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Step 3 We prove that ‖un – Uun‖ → 0, as n → ∞. We have

∥∥un+1 – Unvn
∥∥ =

∥∥Unvnun + γnh(un) – αnUnvn – γnUnvn
∥∥

=
∥∥αn

(
un – Unvn

)
+ γn

(
h(un) – Unvn

)∥∥

≤ αn‖un – un+1‖ + αn
∥∥un+1 – Unvn

∥∥ + γn
∥∥h(un) – Unvn

∥∥.

We can get

∥
∥un+1 – Unvn

∥
∥ ≤ αn

1 – αn
‖un+1 – un‖ +

γn

1 – αn

∥
∥h(un) – Unvn

∥
∥.

By (3.6) and condition (ii), we have

lim
n→∞

∥
∥un+1 – Unvn

∥
∥ = 0. (3.7)

By (3.2) and condition (iii), we obtain

‖un+1 – q‖2 =
∥∥αnun + γnh(un) + ζnUnvn – q

∥∥2

≤ αn‖un – q‖2 + γn
∥
∥h(un) – q

∥
∥2 + ζn

∥
∥Unvn – q

∥
∥2

≤ αn‖un – q‖2 + γn
∥
∥h(un) – q

∥
∥2 + ζnk2

n‖vn – q‖2

≤ αn‖un – q‖2 + γn
∥
∥h(un) – q

∥
∥2

+ ζnk2
n
[(

2t2 + δ‖A‖2)‖un – q‖2 – δ
(
1 – δ‖A‖2)∥∥(T – I)Aun

∥
∥2]

≤ (
αn + ζnk2

n
)‖un – q‖2 + γn

∥
∥h(un) – q

∥
∥2

– ζnk2
nδ

(
1 – δ‖A‖2)‖TAun – Aun‖2.

By the last inequality and condition (i) we can get

‖TAun – Aun‖2 ≤ (αn + ζnk2
n – 1)‖un – q‖2 + γn‖h(un) – q‖2

ζnk2
nδ(1 – δ‖A‖2)

+
(‖un – q‖ + ‖un+1 – q‖)‖un+1 – un‖

ζnk2
nδ(1 – δ‖A‖2)

=
(ζn(k2

n – 1) – γn)‖un – q‖2 + γn‖h(un) – q‖2

ζnk2
nδ(1 – δ‖A‖2)

+
(‖un – q‖ + ‖un+1 – q‖)‖un+1 – un‖

ζnk2
nδ(1 – δ‖A‖2)

.

By condition (ii) and applying Step 2, we have

lim
n→∞‖TAun – Aun‖ = 0. (3.8)

Considering the bounded sequence {un}, it must have a convergent subsequence {unk }.
There exists a subsequence {unkj

} of {unk } such that unkj
⇀ w ∈ B1. Without loss of gener-

ality, we assume that unk ⇀ w as k → ∞. Therefore, Aunk ⇀ Aw as k → ∞ and

lim
n→∞‖TAunk – Aunk ‖ = 0.
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Since vn = un – δJ–1
B1

A∗JB2 (I – T)Aun, ‖un – vn‖ = ‖δJ–1
B1

A∗JB2 (I – T)Aun‖, we can get

lim
n→∞‖un – vn‖ = 0. (3.9)

Moreover, we have

∥∥un – Unun
∥∥ ≤ ‖un – un+1‖ +

∥∥un+1 – Unvn
∥∥ +

∥∥Unvn – Unun
∥∥

≤ ‖un+1 – un‖ +
∥
∥un+1 – Unvn

∥
∥ + kn‖vn – un‖.

In view of Step 2 and (3.7), (3.9), we obtain

lim
n→∞

∥∥un – Unun
∥∥ = 0. (3.10)

Furthermore, we have

‖un – Uun‖ =
∥
∥un – un+1 + un+1 – Un+1un+1 + Un+1un+1 – Un+1unUn+1un – Uun

∥
∥

≤ ‖un+1 – un‖ +
∥
∥un+1 – Un+1un+1

∥
∥ +

∥
∥Un+1un+1 – Un+1un

∥
∥

+
∥
∥Un+1un – Uun

∥
∥

≤ ‖un+1 – un‖ +
∥
∥un+1 – Un+1un+1

∥
∥ + kn+1‖un+1 – un‖ + k1

∥
∥Unun – un

∥
∥

= (1 + kn+1)‖un+1 – un‖ +
∥
∥un+1 – Un+1un+1

∥
∥ + k1

∥
∥Unun – un

∥
∥.

By (3.6) and (3.10), we can get

lim
n→∞‖un – Uun‖ = 0. (3.11)

Step 4 Since B1 is a reflexive Banach space and {un} is bounded, there exists a subse-
quence unk ⇀ w ∈ B1 as n → ∞. And

lim
n→∞

〈
(I – h)q, j(q – unk )

〉
= lim sup

n→∞

〈
(I – h)q, j(q – un)

〉
.

By Step 3, we know Aun ⇀ Aw. Because B1 and B2 are reflexive smooth Banach spaces, it
follows from Step 3 and Lemma 2.3, that Aw ∈ F(T). That is, w ∈ �.

On the other hand, since q ∈ � satisfies

〈
(I – h)q, j(q – w)

〉 ≤ 0, ∀w ∈ �,

and because J is a weakly sequential continuous duality mapping, we obtain

lim sup
n→∞

〈
(I – h)q, j(q – un)

〉
= lim

k→∞
〈
(I – h)q, j(q – unk )

〉

=
〈
(I – h)q, j(q – w)

〉 ≤ 0.
(3.12)
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Step 5 Finally, we prove that {un} converges strongly to q ∈ �. We have

‖un+1 – q‖2 =
〈
αnun + γnh(un) + ζnUnvn – q, j(un+1 – q)

〉

= αn
〈
un – q, j(un+1 – q)

〉
+ γn

〈
h(un) – q, j(un+1 – q)

〉

+ ζn
〈
Unvn – q, j(un+1 – q)

〉

≤ αn
〈
un – q, j(un+1 – q)

〉
+ γn

〈
h(un) – h(q), j(un+1 – q)

〉

+ γn
〈
h(q) – q, j(un+1 – q)

〉
+ ζn

〈
Unvn – q, j(un+1 – q)

〉

≤ αn‖un – q‖‖un+1 – q‖ + kγn‖un – q‖‖un+1 – q‖
+ γn

〈
h(q) – q, j(un+1 – q)

〉
+ knζn‖vn – q‖‖un+1 – q‖

≤ (αn + kγn + knζn)‖un – q‖‖un+1 – q‖ + γn
〈
h(q) – q, j(un+1 – q)

〉

≤ αn + kγn + knζn

2
‖un – q‖2 +

αn + kγn + knζn

2
‖un+1 – q‖2

+ γn
〈
h(q) – q, j(un+1 – q)

〉
.

This implies that

(
1 –

αn + kγn + knζn

2

)
‖un+1 – q‖2 ≤ αn + kγn + knζn

2
‖un – q‖2

+ γn
〈
h(q) – q, j(un+1 – q)

〉
.

That is,

‖un+1 – q‖2 ≤ αn + kγn + knζn

2 – (αn + kγn + knζn)
‖un – q‖2

+
2γn

2 – (αn + kγn + knζn)
〈
h(q) – q, j(un+1 – q)

〉

≤
(

1 –
2γn(1 – k – η)

2 – (αn + kγn + knζn)

)
‖un – q‖2

+
2γn

2 – (αn + kγn + knζn)
〈
h(q) – q, j(un+1 – q)

〉
.

(3.13)

Let

σn =
2γn(1 – k – η)

2 – (αn + kγn + knζn)
, ξn =

2γn

2 – (αn + kγn + knζn)
〈
h(q) – q, j(un+1 – q)

〉
.

By conditions (i) and (ii), we know that

lim
n→∞σn = 0 and σn =

2γn(1 – k – η)
2 – (αn + kγn + knζn)

≥ γn(1 – k – η).

Because
∑∞

n=0 γn = ∞,
∑∞

n=0 σn = ∞. In addition, by (3.12) we have

lim sup
n→∞

ξn

σn
= lim sup

n→∞
〈h(q) – q, j(un+1 – q)〉

1 – k – η
≤ 0.
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Thus, applying Lemma 2.4 and (3.13), we conclude that

lim
n→∞‖un – q‖ = 0.

This completes the proof. �

Remark 3.1 We know that each firmly nonexpansive mapping is a nonexpansive mapping
and every nonexpansive mapping is an asymptotically nonexpansive mapping. In this pa-
per, we research the SCFPP for asymptotically nonexpansive mappings in 2-uniformly
Banach space. So there are five features to explain in detail:

1 If γn = 0 in Theorem 3.1, then {un} converges strongly to a fixed point of U . It is the
main result of Tang et al. [14].

2 Since Hilbert space, Lp(1 < p ≤ 2) space, etc. are 2-uniformly convex spaces, if U is a
firmly nonexpansive mapping and B1, B2 are Hilbert spaces in Theorem 3.1, then we
obtain the main results of Tang et al. [15].

3 If g(un) = c, U is a firmly nonexpansive mapping and B1, B2 are Hilbert spaces in the
iterative sequence {un} in Theorem 3.1, then we obtain the main results of Hong et al.
[16].

4 If U is a nonexpansive mapping and B1 is a Hilbert space in Theorem 3.1, then we
obtain the main results of Tang et al. [17].

5 It is well known that a firmly nonexpansive mapping includes resolvents and
projection operators. Let C, D be nonempty closed convex subsets of B1, B2,
respectively. When Un = PC , T = PQ, then (3.1) can also solve the split feasibility
problem. That is, our Theorem 3.1 generalizes and improves the main results of
Deepho J and Kuman P [18].
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