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1 Introduction and preliminaries
A contractive condition in terms of a measure of noncompactness, firstly used by Darbo
[1], is one of the fruitful tools to obtain fixed point and common fixed point theorems.
There are many extensions of this condition which are known as generalizations of Darbo’s
fixed point theorem; see for example [2–11] and the references therein.

In recent papers, Hajji–Hanebaly [6] and Hajji [7] proved some fixed point theorems for
a pair of commuting operators, generalizing Darbo’s, Sadovski’s and Markov–Kakutani’s
fixed point theorems. In [8], Khodabakhshi obtained some new common fixed point re-
sults using the technique associated with a measure of noncompactness for two commut-
ing operators.

In the present paper, we make use of some properties of measure of noncompactness
to establish new contraction conditions giving rise to common fixed point theorems for
two and three commuting mappings. The obtained results can be seen as specific gener-
alizations of Darbo’s fixed point theorem. For illustration, we provide in Sect. 3 a concrete
example for which both the classical Darbo’s theorem and its generalization due to Hajji
[7] are not applicable. This example shows the powerfulness of the obtained results.

To this end, we begin by fixing some notations, definitions and auxiliary facts which
will be needed in the sequel. Let X be a given Banach space. If B is a subset of X then
the symbols B and conv(B) stand for the closure and the convex hull of B, respectively.
Moreover, we denote by MX the family of all nonempty and bounded subsets of X and by
NX its subfamily consisting of all relatively compact sets.

From [12], we recall the definition of the measure of noncompactness.
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Definition 1.1 A mapping μ : MX → [0,∞) is said to be a measure of noncompactness
in X if it satisfies the following conditions:

(i) The family kerμ = {A ∈MX : μ(A) = 0} is nonempty and kerμ ⊆NX .
(ii) A ⊆ B ⇒ μ(A) ≤ μ(B).

(iii) μ(A) = μ(A).
(iv) μ(conv(A)) = μ(A).
(v) μ(λA + (1 – λ)B) ≤ λμ(A) + (1 – λ)μ(B), for any λ ∈ [0, 1].

(vi) If (An)n is a sequence of closed sets from MX such that An+1 ⊆ An for n = 1, 2, . . . ,
and if limn→+∞ μ(An) = 0, then the set A∞ =

⋂∞
n=1 An is nonempty.

The family kerμ defined in axiom (i) is called the kernel of the measure of noncompact-
ness.

One of the well-known fixed point theorems is due to Schauder. It can be stated as fol-
lows [13].

Theorem 1.2 (Schauder’s fixed point theorem) Let Ω be a nonempty, compact and convex
subset of a Banach space X. Then each continuous map T : Ω → Ω has at least one fixed
point in Ω .

As a generalization of the above result, we have Darbo’s fixed point theorem [12].

Theorem 1.3 (Darbo’s fixed point theorem) Let Ω be a nonempty, bounded, closed and
convex subset of a Banach space X and let T : Ω → Ω be a continuous mapping. Assume
that there exists a constant k ∈ [0, 1) such that

μ(TA) ≤ kμ(A) (1.1)

for any subset A of Ω . Then T has a fixed point in Ω .

Definition 1.4 ([14]) A mapping T on a convex set A is said to be affine if it satisfies the
identity

T
(
kx + (1 – k)y

)
= kTx + (1 – k)Ty,

whenever 0 < k < 1, and x, y ∈ A.

Recently, Hajji obtained in [7] a common fixed point theorem for commuting operators,
generalizing Darbo’s fixed point theorem. Namely, we assert the following.

Theorem 1.5 ([7]) Let Ω be a nonempty, bounded, closed and convex subset of a Banach
space X and let T and S be two continuous mappings from Ω into Ω such that

(a) TS = ST .
(b) T is affine.
(c) There exists k ∈ [0, 1) such that, for any A ⊆ Ω , we have

μ
(
TS(A)

) ≤ kμ(A). (1.2)

Then the set {x ∈ Ω : Tx = Sx = x} is nonempty and compact.
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2 Main results
In this section, we state and prove our main results on common fixed point theorems
for two commuting mappings. We also extend the obtained results to the case of three
mappings.

Theorem 2.1 Let Ω be a nonempty, bounded, closed and convex subset of a Banach space
X and let T and S be two continuous mappings from Ω into Ω such that

(a) TS = ST .
(b) For any nonempty subset A of Ω , we have

σ (A) ≤ ϕ(SA) – ϕ
(
S
(
conv(TA)

))
, (2.1)

where σ ,ϕ : P(Ω) → [0, +∞) are mappings such that σ satisfies axioms (i), (ii) and
(vi) in Definition 1.1.

Then
(1) T has at least one fixed point in Ω .
(2) If for any nonempty subset A of Ω we have S(conv(A)) ⊆ conv(S(A)), then S has at

least one fixed point in Ω .
(3) If S is affine, then S and T have a common fixed point in Ω .

Remark 2.2 We recover Darbo’s fixed point theorem by specifying S, σ and ϕ, for instance,
by letting S be the identity mapping, and taking σ = μ and ϕ = ( 1

1–k )μ, μ being a measure
of noncompactness and k ∈ [0, 1).

Proof (1) We define the sequence {Ωn} as follows:

⎧
⎨

⎩

Ω0 = Ω ,

Ωn = conv(TΩn–1), n = 1, 2, . . . .

For n = 1, we have Ω1 ⊆ Ω0. Suppose that Ωn ⊆ Ωn–1 is true for some n ≥ 1. Then

Ωn+1 = conv
(
T(Ωn)

) ⊆ conv
(
T(Ωn–1)

)
= Ωn.

By induction, we get Ωn ⊆ Ωn–1 for every n ≥ 1.
Now, let us consider an = ϕ(SΩn). From inequality (2.1), we have

ϕ(SΩn) – ϕ
(
S
(
conv(TΩn)

)) ≥ 0, for all n ∈N∪ {0}.

It follows that

an+1 = ϕ(SΩn+1) = ϕ
(
S
(
conv(TΩn)

)) ≤ ϕ(SΩn) = an, for all n ∈N∪ {0}.

Hence, {an} is a positive non-increasing sequence of real numbers, and therefore there
exists a ≥ 0 such that an → a as n → ∞. Using inequality (2.1) again, we obtain

σ (Ωn) ≤ ϕ(SΩn) – ϕ
(
S
(
conv(TΩn)

))
= an – an+1,
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which implies that

lim
n→+∞σ (Ωn) = 0.

From (vi) of Definition 1.1, we deduce that the set Ω∞ =
⋂∞

n=1 Ωn is nonempty. The fact
that Ω∞ ⊆ Ωn, for every n ∈N, as well as (ii) of Definition 1.1 infer

σ (Ω∞) ≤ σ (Ωn), for all n ∈ N.

Passing to the limit, we get σ (Ω∞) = 0. Thus, by using (i) of Definition 1.1, we conclude
that Ω∞ = Ω∞ is compact. Moreover, Ω∞ is convex since each Ωn is convex. Note also
that

T(Ωn) ⊆ conv(TΩn) = Ωn+1 ⊆ Ωn, n = 0, 1, 2, . . .

Then T(Ω∞) ⊆ Ω∞. By Theorem 1.2, T has a fixed point in Ω .
(2) Here we use Theorem 1.2 again. From part (1), we have Ω∞ is nonempty, com-

pact and convex. So it remains to prove S(Ω∞) ⊆ Ω∞. To do this, it suffices to show that
S(Ωn) ⊆ Ωn for every n = 1, 2, . . .

For n = 1, we have

S(Ω1) = S
(
conv(TΩ0)

) ⊆ conv
(
S(TΩ0)

)
= conv

(
T(SΩ0)

) ⊆ Ω1.

Assuming now that S(Ωn) ⊆ Ωn is true for some n ≥ 1. Then

S(Ωn+1) = S
(
conv(TΩn)

) ⊆ conv
(
S(TΩn)

) ⊆ Ωn+1.

By induction, we get S(Ωn) ⊆ Ωn for every n ≥ 1. We can deduce that S(Ω∞) ⊆ Ω∞. By
Theorem 1.2, S has a fixed point in Ω .

(3) The set F = {x ∈ Ω : S(x) = x} is bounded since F ⊆ Ω and Ω is bounded, closed by
the continuity of S and convex since S is affine. On the other hand, we can see that S(F) ⊆ F
and by commutativity of the operators T and S, we get

S
(
T(x)

)
= T

(
S(x)

)
= T(x).

This to say that T(x) is a fixed point of S for any x ∈ F . Thus T(F) ⊆ F and

σ (A) ≤ ϕ(SA) – ϕ
(
S
(
conv(TA)

))
, for every A ⊆ F .

Then by part (1), T has a fixed point in F and therefore S and T have a common fixed
point. �

Theorem 2.3 Let Ω be a nonempty, bounded, closed and convex subset of a Banach space
X and let T and S be two continuous mappings from Ω into Ω such that

(a) S is affine.
(b) TS = ST .
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(c) For any nonempty subset A of Ω , we have

σ (SA) ≤ ϕ(A) – ϕ
(
conv(TA)

)
, (2.2)

where σ ,ϕ : P(Ω) → [0, +∞) are mappings such that σ satisfies axioms (i), (ii), (iii)
and (vi) in Definition 1.1.

Then
(1) T and S have a fixed point in Ω .
(2) T and S have a common fixed point in Ω .

Proof (1) We proceed in a similar way to the proof of (1) in the previous theorem. Thus,
for given sequence {Ωn} as in the proof of Theorem 2.1, inequality (2.2) yields

ϕ(Ωn) – ϕ
(
conv(TΩn)

) ≥ 0, for all n ∈N∪ {0}.

Let bn = ϕ(Ωn), we obtain

bn+1 = ϕ(Ωn+1) = ϕ
(
conv(TΩn)

) ≤ ϕ(Ωn) = bn, for all n ∈ N∪ {0}.

Therefore, {bn} is a positive non-increasing sequence of real numbers, then there exists
b ≥ 0 such that bn → b as n → ∞. Moreover, from inequality (2.2), we have

σ (SΩn) ≤ ϕ(Ωn) – ϕ
(
conv(TΩn)

)
= bn – bn+1.

This implies that limn→+∞ σ (SΩn) = 0. Define Ω ′
n = S(Ωn), from (iii) of Definition 1.1, we

get

σ
(
Ω ′

n
)

= σ
(
S(Ωn)

)
= σ

(
S(Ωn)

)
,

so limn→+∞ σ (Ω ′
n) = 0. Since the sequence {Ωn} is nested, we have Ω ′

n+1 ⊆ Ω ′
n for all n ∈N.

In view of property (vi) of Definition 1.1, Ω ′∞ =
⋂∞

n=1 Ω ′
n is nonempty. As Ω ′∞ ⊆ Ω ′

n, for
every n ∈N, from (ii) of Definition 1.1, we obtain

σ
(
Ω ′

∞
) ≤ σ

(
Ω ′

n
)

for all n ∈N.

As n tends t*o infinity, we obtain σ (Ω ′∞) = 0. It follows that Ω ′∞ = Ω ′∞ is compact by means
of (i) of Definition 1.1. Moreover, Ω ′∞ is convex since S is affine. On the other hand, we
have T(Ωn) ⊆ Ωn and S(Ωn) ⊆ Ωn which were proved in Theorem 2.1. So we get

T
(
Ω ′

n
) ⊆ T

(
S(Ωn)

) ⊆ T
(
S(Ωn)

) ⊆ S
(
T(Ωn)

) ⊆ S(Ωn) = Ω ′
n

and

S
(
Ω ′

n
) ⊆ S

(
S(Ωn)

) ⊆ S(Ωn) ⊆ S(Ωn) = Ω ′
n, n = 0, 1, 2, . . . .

This shows that the set Ω ′∞ is invariant under the operators T and S. Thus, applying The-
orem 1.2, S and T have a fixed point in Ω .
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(2) In the same way as in part (3) of the proof of Theorem 2.1, we see that F = {x ∈ Ω :
S(x) = x} is convex, closed and bounded subset of Ω , T(F) ⊆ F and S(F) ⊆ F . In addition,
from inequality 2.2, we have

σ (SA) ≤ ϕ(A) – ϕ
(
conv(TA)

)
, for every A ⊆ F .

Part (1) shows that T has a fixed point in F and therefore S and T have a common fixed
point in Ω . �

Now, motivated by the last two results, we establish the following common fixed point
theorem for three mappings.

Theorem 2.4 Let Ω be a nonempty, bounded, closed and convex subset of a Banach space
X and let T , S and H be three continuous mappings from Ω into Ω such that

(a) H and S are affine.
(b) TS = ST , TH = HT , SH = HS.
(c) For any nonempty subset A of Ω , we have

σ (HA) ≤ ϕ(SA) – ϕ
(
S
(
conv(TA)

))
, (2.3)

where σ ,ϕ : P(Ω) → [0, +∞) are mappings such that σ satisfies axioms (i), (ii), (iii)
and (vi) in Definition 1.1.

Then
(1) T , S and H have a fixed point in Ω .
(2) T , S and H have a common fixed point in Ω .

Proof (1) Again, we consider the sequence {Ωn} defined in the proof of Theorem 2.1 and
let cn = ϕ(SΩn). From inequality (2.3), we have

ϕ(SΩn) – ϕ(S
(
conv(TΩn)

) ≥ 0, for all n ∈N∪ {0}.

This implies that

cn+1 = ϕ(SΩn+1) = ϕ
(
S
(
conv(TΩn)

)) ≤ ϕ(SΩn) = cn, for all n ∈N∪ {0}.

Therefore, {cn} is a positive non-increasing sequence of real numbers, then there exists
c ≥ 0 such that cn → c as n → ∞. Also, from inequality (2.3), we have

σ (HΩn) ≤ ϕ(SΩn) – ϕ
(
S
(
conv(TΩn)

))
= cn – cn+1,

so limn→+∞ σ (HΩn) = 0. Now, if we set Ω ′′
n = H(Ωn), we can make use of (iii) of Defini-

tion 1.1, to show

σ
(
Ω ′′

n
)

= σ
(
H(Ωn)

)
= σ

(
H(Ωn)

)
,

so that one can conclude limn→+∞ σ (Ω ′′
n ) = 0. Since the sequence {Ωn} is nested, we have

Ω ′′
n+1 ⊆ Ω ′′

n for all n ∈ N. Therefore, by the property (vi) of Definition 1.1 Ω ′′∞ =
⋂∞

n=1 Ω ′′
n
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is nonempty. Moreover, by using (ii) of Definition 1.1, we get

σ
(
Ω ′′

∞
) ≤ σ

(
Ω ′′

n
)

for all n ∈N.

Therefore, σ (Ω ′′∞) = 0, with n tending to infinity. This when combined with (i) of Defini-
tion 1.1 give rise to that Ω ′′∞ = Ω ′′∞ is compact and convex since H is affine. On the other
hand, making use of T(Ωn) ⊆ Ωn and S(Ωn) ⊆ Ωn (see Theorem 2.1), we obtain

T
(
Ω ′′

n
)

= T
(
H(Ωn)

) ⊆ T
(
H(Ωn)

) ⊆ H
(
T(Ωn)

) ⊆ H(Ωn) = Ω ′′
n

and

S
(
Ω ′′

n
)

= S
(
H(Ωn)

) ⊆ H
(
S(Ωn)

) ⊆ H(Ωn) = Ω ′′
n , n = 0, 1, 2, . . . .

Similarly to S, in the proof of Theorem 2.1, we can prove H(Ωn) ⊆ Ωn. So

H
(
Ω ′′

n
)

= H
(
H(Ωn)

) ⊆ H
(
H(Ωn)

) ⊆ H(Ωn) = Ω ′′
n , n = 0, 1, 2, . . . .

Hence, the set Ω ′′∞ is invariant under the operators T , S and H . Thus, Theorem 1.2 implies
that S, T and H have a fixed point.

(2) By the same argument as in part (3) of the proof of Theorem 2.1, we see that F =
{x ∈ Ω : H(x) = x} is convex, closed and bounded subset of Ω , S(F) ⊆ F and H(F) ⊆ F .
Moreover, from inequality 2.4, we have

σ (HA) ≤ ϕ(SA) – ϕ
(
S
(
conv(TA)

))
, for every A ⊆ F .

Then by part (1), the mapping S has a fixed point in F and therefore S and H have a com-
mon fixed point. In a similar way, we can prove that T has a fixed point in K = {x ∈ Ω :
S(x) = H(x) = x}. Therefore S, H and T have a common fixed point. �

An immediate consequence of the previous theorem is the following.

Corollary 2.5 Let Ω be a nonempty, bounded, closed and convex subset of a Banach space
X and let T , S and H be continuous mappings from Ω into Ω such that

(a) H and S are affine.
(b) TS = ST , TH = HT , SH = HS.
(c) For all x, y ∈ Ω

d(Hx, Hy) ≤ β(Sx, Sy) – β(STx, STy), (2.4)

where d is a metric on X and β : Ω × Ω → R
+ is a mapping. Then the set {x ∈ Ω : Tx =

Sx = Hx = x} is nonempty.

Proof Let μ : MX → [0,∞) be the mapping defined by the formula

σ (A) = diam(A),
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where diam(A) = sup{d(x, y) : x, y ∈ A} stands for the diameter of A. It is easily seen that σ

is a measure of noncompactness in a space X. In view of (2.4), we have

inf
x,y∈A

β(STx, STy) ≤ inf
x,y∈A

β(Sx, Sy) – sup
x,y∈A

d(Hx, Hy).

This yields

sup
x,y∈A

d(Hx, Hy) ≤ inf
x,y∈A

β(Sx, Sy) – inf
x,y∈A

β(STx, STy).

Set ϕ(A) = infx,y∈A β(x, y), we obtain

diam
(
H(A)

) ≤ ϕ
(
S(A)

)
– ϕ

(
ST(A)

)
.

Since ST(A) ⊆ S(conv(T(A))), we get

ϕ
(
S
(
conv(TA)

)) ≤ ϕ
(
ST(A)

)
.

So

σ (HA) ≤ ϕ(SA) – ϕ
(
S
(
conv(TA)

))
.

The application of Theorem 2.4 completes the proof. �

To support our results, we give an illustrative example. Precisely, we show that Corol-
lary 2.5 can be used to cover this example while the results due to Darbo [1] and Hajji [7]
are not applicable.

3 Example
Let X = L1(R+) be the space of Lebesgue integrable functions on the measurable subset
R+ of R with the standard norm

‖x‖ =
∫ +∞

0

∣
∣x(t)

∣
∣dt.

Let k ∈ L1(R+) defined in [7] by

k(t) =

⎧
⎨

⎩

e–t , t ∈ [0, 1],

0, t > 1.

For any A > 0 and for all t1, t2 ∈R+, the following condition is satisfied (see [7]):

t1 < t2 �⇒
∫ A

0
k(t2 – s) ds ≤

∫ A

0
k(t1 – s) ds.

Then, using Krzyz’s theorem (see [15]), the linear integral operator

(Kx)(t) =
∫ ∞

0
k(t – s)x(s) ds
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transforms the set of non-increasing functions from L1(R+) into itself. Furthermore, the
norm of the convolution operator K satisfies (see [7])

‖K‖ ≤ 1 – e–1.

Now, let us consider the three operators defined by

Tx(t) = 2e–1(1 – e–1)x(t) + e–t ,

Sx(t) =
e

e – 1
Kx(t),

Hx(t) =
B

(1 – e–1)3 K3(x
(
φ(t)

))
,

for any x ∈ L1(R+), where b > 0, the function φ : R+ → R+ is increasing and absolutely
continuous such that φ′(t) ≥ B for some constant B > 0 and for almost all t ∈ R+ and b

B (1 –
e–1)3 ≤ 1. For any x ∈ L1(R+), we have

‖Tx‖ ≤
∫ ∞

0
e–t dt + 2e–1(1 – e–1)‖x‖ ≤ 1 + 2e–1(1 – e–1)‖x‖.

Hence, for ‖x‖ ≤ r, we have

‖Tx‖ ≤ 1 + 2e–1(1 – e–1)r,

and if we take

1 + 2e–1(1 – e–1)r = r,

then

r =
1

1 – 2e–1(1 – e–1)
.

Moreover, for ‖x‖ ≤ r, we have

‖Sx‖ ≤ e
e – 1

‖K‖‖x‖ ≤ 1
1 – e–1

(
1 – e–1)‖x‖ = ‖x‖ ≤ r

and

‖Hx‖ ≤ b‖K‖3

B
‖x‖ ≤ b

B
(
1 – e–1)3‖x‖ ≤ ‖x‖ ≤ r.

This implies that T , S and H map Br into Br , where r = 1
1–2e–1(1–e–1) . Further, let Ω = Qr be

the subset of the ball Br consisting of all functions that are a.e positive and non-increasing
on R+, which is nonempty, bounded, closed and convex subset of L1(R+) (see [16]). Thus,
since T , S and H are positive and non-increasing on R+, T , S and H map Qr into Qr .
Whence, for any A ⊆ Qr , we have

σ (SA) ≤ σ (A),
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σ (HA) ≤ σ (A),

σ (HSA) ≤ σ (A),

where σ (A) = sup{‖x – y‖ : x, y ∈ A}. Observe that S, H and SH are σ -non-expansive. Then
neither Darbo’s fixed point theorem [1] nor Hajji’s fixed point theorem [7] can be applied.
On the other hand, for x, y ∈ Qr , we have

‖Hx – Hy‖ ≤ b
B

(
1 – e–1)2‖Kx – Ky‖

≤ b
B

[(
1 + e–2)‖Kx – Ky‖ – 2e–1‖Kx – Ky‖]

≤ b
B

[
e

e – 1
‖Kx – Ky‖ – 2e–1‖Kx – Ky‖

]

≤ b
B

[

‖Sx – Sy‖ – 2e–1 e – 1
e

e
e – 1

‖Kx – Ky‖
]

≤ b
B

[‖Sx – Sy‖ – 2e–1(1 – e–1)‖Sx – Sy‖]

≤ b
B

‖Sx – Sy‖ –
b
B

∥
∥2e–1(1 – e–1)(Sx – Sy)

∥
∥.

Therefore

‖Hx – Hy‖ ≤ b
B

‖Sx – Sy‖ –
b
B

‖TSx – TSy‖.

Taking β(x, y) = b
B‖x – y‖, we get

d(Hx, Hy) = ‖Hx – Hy‖ ≤ β(Sx, Sy) – β(STx, STy).

Moreover, S and H commute and, since the function e–t for any t ∈ R+ is a fixed point of
K , we have TS = ST and TH = HT (see [7]). Finally, since S and H are affine, we conclude
from Corollary 2.4 that T , S and H have a common fixed point L1(R+).
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