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Abstract
An inertial iterative algorithm for approximating a point in the set of zeros of amaximal
monotone operator which is also a common fixed point of a countable family of
relatively nonexpansive operators is studied. Strong convergence theorem is proved in
a uniformly convex and uniformly smooth real Banach space. This theorem extends,
generalizes and complements several recent important results. Furthermore, the
theorem is applied to convex optimization problems and to J-fixed point problems.
Finally, some numerical examples are presented to show the effect of the inertial term
in the convergence of the sequence of the algorithm.
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1 Introduction
An inertial-type algorithm was first introduced and studied by Polyak [35], as a method of
speeding up the convergence of the sequence of an algorithm. This algorithm is a two step
iterative procedure in which the successive iterates are obtained by using two previous
iterates. Numerical experiments have shown that an algorithm with an inertial extrapo-
lation term converges faster than an algorithm without it. Thus, one can see an increas-
ing interest in the class of inertial-type algorithms (see, for example, the following papers
[12, 26, 44] and the references therein).

Let X be a real normed space with dual space X∗. Let T : X → 2X∗ , be a set-valued
operator with domain D(T) := {p ∈ X : Tp �= ∅}, range R(T) :=

⋃
p∈D(T){Tp} and graph

G(T) := {(p, p∗) : p∗ ∈ Tp}. Then T is called monotone if

〈
p – q, p∗ – q∗〉 ≥ 0, ∀p∗ ∈ Tp, q∗ ∈ Tq. (1.1)

T is said to be maximal monotone if G(T) is not properly contained in the graph of any
other monotone operator. Monotone maps were first introduced by Minty [29] to aid in
the abstract study of electrical networks and later studied by Browder [4] in the setting
of partial differential equations. Later, Kačurovskii [19], Minty [30], Zarantonello [48] and
many other authors studied this class of operators in Hilbert spaces. Interest in monotone
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operators stems mainly from their various applications (see e.g., the following monographs
[2, 5, 17] and the references therein).

A fundamental problem of interest in the study of monotone operators in Banach spaces
is the following:

Find p ∈ X such that 0 ∈ Tp. (1.2)

For the prove of existence of solutions of (1.2) see, for example, Browder [3], and Martin
[27]. Many problems in applications can be transformed into the form of the inclusion
(1.2). For example, problems arising from convex minimization, variational inequality,
Hammerstein equations, and evolution equations can be transformed into the form of
the inclusion (1.2) (see, e.g., Chidume et al. [8, 14], Rockafellar [37]).

Iterative methods for approximating solutions of the inclusion (1.2) have been studied
extensively by various authors in Hilbert spaces and in more general Banach spaces. One
of the classical methods for approximating solution(s) of (1.2) in Hilbert spaces is the cel-
ebrated proximal point algorithm (PPA) introduced by Martinet [28] and studied exten-
sively by Rockafellar [37] and a host of other authors. Concerning the iterative approxi-
mation of solution(s) of (1.2) in more general Banach space, see, e.g., [6, 11, 14, 20, 32].

Let S : X → X be a map and let p ∈ X, p be called an asymptotic fixed point of S if X
contains a sequence {pn} which converges weakly to p and limn→∞ ‖pn – Spn‖ = 0. We
denote the set of asymptotic fixed points of S by F̂(S). The map S is said to be relatively
nonexpansive if F̂(S) = F(S) �= ∅ and ψ(p, Sq) ≤ ψ(p, q), for all p ∈ F(S) and q ∈ X, where
F(S) = {p ∈ X : Sp = p} and ψ is the Lyapunov function (see, e.g., Alber [1]).

One of the motivations for the study of relatively nonexpansive self or nonself mappings
in Banach spaces is the fact that they are an extension of nonexpansive mappings with
nonempty fixed point sets in Hilbert spaces. In 2018, Chidume et al. [12] introduced and
studied an inertial-type algorithm in a uniformly convex and uniformly smooth real Ba-
nach space. They proved the following theorem.

Theorem 1.1 Let B be a uniformly convex and uniformly smooth real Banach space. Let
Ti : B → B, i = 1, 2, 3, . . . be a countable family of relatively nonexpansive maps such that
⋂∞

i=1 F(Ti) �= ∅. Suppose {ηi} ⊂ (0, 1) and {βi} ⊂ (0, 1) are sequences such that
∑∞

i=1 ηi = 1
and T : B → B is defined by Tp = J–1(

∑∞
i=1 ηi(βiJp + (1 – βi)JTip)) for each p ∈ B. Let {xn} be

generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = B,

wn = xn + αn(xn – xn–1),

yn = J–1((1 – β)Jwn + βJTwn),

Cn+1 = {z ∈ Cn : ψ(z, yn) ≤ ψ(z, wn)},
xn+1 = ΠCn+1 x0,

(1.3)

n ≥ 0, where αn ∈ [0, 1), β ∈ (0, 1). Then {xn} converges strongly to p = ΠF(T)x0.

Several iterative algorithms for approximating fixed points of self maps satisfying certain
contractive conditions and zeros of monotone and monotone type operators has recently
been studied extensively by various authors; see e.g., [24, 33, 34, 39–42]. In 2009, Inoue et
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al. [18] introduced and studied a hybrid algorithm in a uniformly convex and uniformly
smooth Banach space. They proved the following theorem.

Theorem 1.2 Let B be a uniformly convex and uniformly smooth Banach space and let
C be a nonempty closed and convex subset of B. Let A : B → 2B∗ be a maximal monotone
operator satisfying D(A) ⊂ C and let Jr = (J + rA)–1J for all r > 0. Let S : C → C be a rela-
tively nonexpansive mapping such that F(S) ∩ A–10 �= ∅. Let {xn} be a sequence generated
by x0 = x ∈ C and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = J–1(βnJxn + (1 – βn)JSJrn xn),

Cn = {z ∈ C : ψ(z, un) ≤ ψ(z, xn)},
Qn = {z ∈ C : 〈xn – z, Jx0 – Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn x,

(1.4)

for all n ∈N∪ {0}, where J is the duality mapping on B, {βn} ⊂ [0, 1], and {rn} ⊂ [a,∞) for
some a > 0. If lim infn→∞(1 – βn) > 0, then {xn} converges strongly to ΠF(S)∩A–10x0.

In 2009, Klin et al. [21] extended the results of Inoue et al. [18]. They proved the follow-
ing theorem.

Theorem 1.3 Let B be a uniformly convex and uniformly smooth Banach space and let
C be a nonempty closed and convex subset of B. Let A : B → 2B∗ be a maximal monotone
operator satisfying D(A) ⊂ C and let Jr = (J + rA)–1J for all r > 0. Let S and T be relatively
nonexpansive mappings from C into itself such that Ω = F(S) ∩ F(T) ∩ A–10 �= ∅. Let {xn}
be a sequence generated by x0 ∈ C and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = J–1(αnJxn + (1 – αn)JTzn),

zn = J–1(βnJxn + (1 – βn)JSJrn xn),

Cn = {z ∈ C : ψ(z, un) ≤ ψ(z, xn)},
Qn = {z ∈ C : 〈xn – z, Jx0 – Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qn x0,

(1.5)

for all n ∈N∪{0}, where J is the duality mapping on B, {αn}, {βn} ⊂ [0, 1], and {rn} ⊂ [a,∞)
for some a > 0. If lim infn→∞(1 – αn) > 0 and lim infn→∞(1 – βn) > 0, then {xn} converges
strongly to ΠΩx0.

Motivated by the results of Chidume et al. [12] and Klin et al. [21], in this paper we
introduce and study an inertial iterative algorithm in a uniformly convex and uniformly
smooth real Banach space and prove a strong convergence theorem for approximating a
common element in the set of zeros of a maximal monotone operator and the sets of fixed
points of countable family of relatively nonexpansive mappings. Furthermore, we give ap-
plications of our theorem to convex optimization and J-fixed point. Finally, we present
numerical examples to demonstrate the effect of the inertial term on the convergence of
the sequence of our algorithm.



Chidume et al. Fixed Point Theory and Applications         (2020) 2020:12 Page 4 of 17

2 Preliminaries
The following definitions and lemmas will be needed in the sequel.

Definition 2.1 Let X be a real normed space. The normalized duality map J from X to
2X∗ is defined by Jp := {p∗ ∈ X∗ : 〈p, p∗〉 = ‖p‖2 = ‖p∗‖2,∀p ∈ X}, where 〈·, ·〉 denotes the
value of p∗ at p and X∗ is the dual space of X. It is well known that if X is smooth then J
is single-valued and if X is uniformly smooth, then J is uniformly continuous on bounded
subsets of X.

Definition 2.2 Let B be a smooth real Banach space; the Lyapunov functional ψ : B×B →
R is defined by

ψ(p, y) = ‖p‖2 – 2〈p, Jy〉 + ‖y‖2. (2.1)

The mapping ψ was introduced by Alber [1]. Since its introduction, one can notice an
increasing interest in the functional see e.g., [7, 10, 38, 43, 45, 46, 49]. Observe that, in a
real Hilbert space H , Eq. (2.1) reduces to ψ(p, y) = ‖p – y‖2, ∀p, y ∈ H . Furthermore, the
following properties of ψ can be verified easily from its definition:

(P1) (‖p‖ – ‖q‖)2 ≤ ψ(p, q) ≤ (‖p‖ + ‖q‖)2,
(P2) ψ(p, q) = ψ(p, z) + ψ(z, q) + 2〈p – z, Jz – Jq〉,
(P3) ψ(p, q) ≤ ‖p‖‖Jp – Jq‖ + ‖q – p‖‖q‖,

for all p, q, z ∈ B.

Definition 2.3 Let B be a strictly convex, smooth and reflexive real Banach space and let C
be a nonempty, closed and convex subset of B. The map ΠC : B → C defined by t̃ := ΠC(t)
such that ψ(t̃, t) = infy∈C ψ(y, t) is called the generalized projection of t onto C. Observe
that in a real Hilbert space, the generalized projection ΠC and the metric projection PC

are equivalent.

Lemma 2.4 (Rockafellar, [36]) Let B be a smooth, strictly convex and reflexive real Banach
space and A : B → 2B∗ be a monotone mapping. Then A is maximal if and only if R(J +rA) =
B∗, ∀r > 0.

Lemma 2.5 (Alber, [1]) Let C be a nonempty closed and convex subset of a smooth, strictly
convex and reflexive real Banach space B. Then:

(1) given t ∈ B and y ∈ C, t̃ = ΠCt if and only if 〈t̃ – y, Jt – J t̃〉 ≥ 0, for all y ∈ C,
(2) ψ(y, t̃) + ψ(t̃, t) ≤ ψ(y, t), for all t ∈ B, y ∈ C.

Lemma 2.6 (Nilsrakoo and Saejung, [31]) Let B be a smooth Banach space. Then

ψ
(
u, J–1[βJt + (1 – β)Jy

]) ≤ βψ(u, t) + (1 – β)ψ(u, y), ∀β ∈ [0, 1], u, t, y ∈ B.

Remark 1 Let B be a smooth, strictly convex and reflexive real Banach space, let C be a
nonempty closed and convex subset of B and let A : B → 2B∗ be a monotone operator
satisfying

D(A) ⊂ C ⊂ J–1
(⋂

r>0

R(J + rA)
)

. (2.2)
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Then we can define the resolvent Jr : C → D(A) of A by

Jrt =
{

y ∈ D(A) : Jt ∈ (Jy + rAy)
}

, ∀t ∈ C.

It is well known that Jrt is single-valued. For r > 0, the Yosida approximation Ar : C → B∗

is defined by Art = (Jt – JJrt)/r for all t ∈ C.

Lemma 2.7 (Kohsaka and Takahashi, [22]) Let B be a smooth, strictly convex and reflexive
real Banach space, let C be a nonempty closed convex subset of B and let A : B → 2B∗ be
a monotone operator satisfying (2.2). Let r > 0 and let Jr and Ar be the resolvent and the
Yosida approximation of A, respectively. Then the following hold:

(i) ψ(u, Jrt) + ψ(Jrt, t) ≤ ψ(u, t), ∀t ∈ C, u ∈ A–10;
(ii) (Jrt, Art) ∈ A, ∀t ∈ C, where (t, t∗) ∈ A denotes the value of t∗ at t (t∗ ∈ At).
(iii) F(Jr) = A–10.

Lemma 2.8 (Xu, [47]) Let B be a uniformly convex Banach space and let r > 0. Then there
exists a strictly increasing, continuous, and convex function g : [0,∞) → [0,∞) such that
g(0) = 0 and

∥
∥τ t + (1 – τ )y

∥
∥2 ≤ τ‖t‖2 + (1 – τ )‖y‖2 – τ (1 – τ )g

(‖t – y‖),

for all t, y ∈ Br(0) and τ ∈ [0, 1].

Lemma 2.9 (Kamimura and Takahashi, [20]) Let B be a uniformly convex and smooth real
Banach space, and let {xn} and {yn} be two sequences of B. If either {xn} or {yn} is bounded
and ψ(xn, yn) → 0, then ‖xn – yn‖ → 0.

Lemma 2.10 (Kohsaka and Takahash, [23]) Let C be a closed convex subset of a uniformly
smooth and uniformly convex Banach space B and let (Si)∞i=1, Si : C → B, for each i ≥ 1, be
a family of relatively nonexpansive maps such that

⋂∞
i=1 F(Si) �= ∅. Let (ηi)∞i=1 ⊂ (0, 1) and

(μi)∞i=1 ⊂ (0, 1) be sequences such that
∑∞

i=1 ηi = 1. Consider the map T : C → B defined
by

Tt = J–1

( ∞∑

i=1

ηi
(
μiJt + (1 – μi)JSit

)
)

for each t ∈ C. (2.3)

Then T is relatively nonexpansive and F(T) =
⋂∞

i=1 F(Si).

3 Main result
Theorem 3.1 Let B be a uniformly convex and uniformly smooth real Banach space. Let A :
B → 2B∗ be a maximal monotone operator and let Jr = (J +rA)–1J , for all r > 0. Let S : B → B
and T : B → B be relatively nonexpansive mappings such that Ω = F(S) ∩ F(T) ∩ A–10 �= ∅.
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Define inductively the sequence {xn} by: x0, x1 ∈ B

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = B,

wn = xn + αn(xn – xn–1),

zn = J–1((1 – β)Jwn + βJSJrn wn),

un = J–1((1 – γ )Jwn + γ JTzn),

Cn+1 = {z ∈ Cn : ψ(z, un) ≤ ψ(z, wn)},
xn+1 = ΠCn+1 x0,

(3.1)

for all n ∈ N ∪ {0}, {αn} ⊂ [0, 1), β ,γ ∈ (0, 1) and {rn} ⊂ [a,∞), for some a > 0. Then {xn}
converges strongly to ΠΩx0.

Proof We divide the proof into four steps.
Step 1. We show that {xn} is well defined and Ω ⊂ Cn, ∀n ≥ 0. Observe that by definition,

Cn+1 is closed and convex, ∀n ≥ 0. We now show that Ω ⊂ Cn. Let yn = Jrn wn and u ∈ Ω .
Using Lemma 2.6, the fact that S is relatively nonexpansive and Lemma 2.7(i), we obtain

ψ(u, zn) = ψ
(
u, J–1((1 – β)Jwn + βJSyn

))

≤ (1 – β)ψ(u, wn) + βψ(u, Syn)

≤ (1 – β)ψ(u, wn) + βψ(u, yn) (3.2)

= (1 – β)ψ(u, wn) + βψ(u, Jrn wn)

≤ (1 – β)ψ(u, wn) + βψ(u, wn)

= ψ(u, wn). (3.3)

Similarly, using Lemma 2.6, the fact that T is relatively nonexpansive and inequality (3.3),
we have

ψ(u, un) = ψ
(
u, J–1((1 – γ )Jwn + γ JTzn

))

≤ (1 – γ )ψ(u, wn) + γψ(u, Tzn)

≤ (1 – γ )ψ(u, wn) + γψ(u, zn)

≤ (1 – γ )ψ(u, wn) + γψ(u, wn) = ψ(u, wn), (3.4)

which implies u ∈ Cn+1. So, by induction, Ω ⊂ Cn, ∀n ≥ 0. Thus, {xn} is well defined.
Step 2. We show that {xn}, {wn}, {zn}, {un} are bounded and {xn} is Cauchy. We observe

that xn = ΠCn x0 and Cn+1 ⊂ Cn, ∀n ≥ 0. So, by Lemma 2.5(2)

ψ(xn, x0) ≤ ψ(xn+1, x0).

Thus, {ψ(xn, x0)} is nondecreasing. Furthermore, we have

ψ(xn, x0) = ψ(ΠCn x0, x0) ≤ ψ(u, x0) – ψ(u, xn) ≤ ψ(u, x0),
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which implies that {ψ(xn, x0)} is bounded and by (P1), {xn} is also bounded. Since
{ψ(xn, x0)} is nondecreasing, {ψ(xn, x0)} is convergent. Furthermore, {xn} bounded implies
{wn} is bounded which also imply that {zn} and {un} are bounded (by using inequalities
(3.3) and (3.4), respectively and (P1)).

Next we show that {xn} is Cauchy. Using Lemma 2.5(2)

ψ(xm, xn) = ψ(xm,ΠCn x0) ≤ ψ(xm, x0) – ψ(xn, x0) → 0, as n, m → ∞.

Hence, {xn} is Cauchy and this implies that ‖xn+1 – xn‖ → 0, as n → ∞.
Step 3. We show the following:
• limn→∞ ‖xn – wn‖ = 0, limn→∞ ‖xn – un‖ = 0,
• limn→∞ ‖zn – Tzn‖ = 0, limn→∞ ‖yn – Syn‖ = 0.

Using the definition of wn, we have

‖xn – wn‖ =
∥
∥αn(xn – xn–1)

∥
∥ ≤ ‖xn – xn–1‖ → 0, as n → ∞.

Now, using the fact that {wn} is bounded, we have ψ(xn, wn) → 0, as n → ∞. Since xn+1 ∈
Cn, it follows that

0 ≤ ψ(xn+1, un) ≤ ψ(xn+1, wn) → 0.

Thus, limn→∞ ψ(xn+1, un) = 0, which implies that limn→∞ ‖xn+1 – un‖ = 0. Hence,
limn→∞ ‖xn – un‖ = 0. By the uniform continuity of J on bounded sets, we have

lim
n→∞‖Jxn+1 – Jxn‖ = lim

n→∞‖Jxn+1 – Jun‖ = lim
n→∞‖Jxn – Jun‖ = 0.

Observe that

‖Jxn+1 – Jun‖ =
∥
∥Jxn+1 – (1 – γ )Jwn – γ JTzn

∥
∥

=
∥
∥(1 – γ )(Jxn+1 – Jwn) + γ (Jxn+1 – JTzn)

∥
∥

=
∥
∥γ (Jxn+1 – JTzn) – (1 – γ )(Jwn – Jxn+1)

∥
∥

≥ γ ‖Jxn+1 – JTzn‖ – (1 – γ )‖Jwn – Jxn+1‖, (3.5)

which implies

‖Jxn+1 – JTzn‖ ≤ 1
γ

(‖Jxn+1 – Jun‖ + (1 – γ )‖Jwn – Jxn+1‖
)
.

Thus, limn→∞ ‖Jxn+1 – JTzn‖ = 0. By the uniform continuity of J–1 on bounded sets, we
have limn→∞ ‖xn+1 – Tzn‖ = 0. Furthermore,

‖wn – Tzn‖ ≤ ‖wn – xn+1‖ + ‖xn+1 – Tzn‖ ⇒ lim
n→∞‖wn – Tzn‖ = 0.
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Next we show that limn→∞ ‖zn – Tzn‖ = limn→∞ ‖yn – Syn‖ = 0. Using Lemma 2.8 we have

ψ(u, zn) = ψ
(
u, J–1((1 – β)Jwn + βJSyn

))

= ‖u‖2 – 2
〈
u, (1 – β)Jwn + βJSyn

〉
+

∥
∥(1 – β)Jwn + βJSyn

∥
∥2

≤ ‖u‖2 – 2
〈
u, (1 – β)Jwn

〉
– 2〈u,βJSyn〉 + (1 – β)‖wn‖2 + β‖Syn‖2

– β(1 – β)g
(‖Jwn – JSyn‖

)

= (1 – β)ψ(u, wn) + βψ(u, Syn) – β(1 – β)g
(‖Jwn – JSyn‖

)

≤ ψ(u, wn) – β(1 – β)g
(‖Jwn – JSyn‖

)
.

This implies that

β(1 – β)g
(‖Jwn – JSyn‖

) ≤ ψ(u, wn) – ψ(u, zn). (3.6)

Let {‖wnk – Synk ‖} be an arbitrary subsequence of {‖wn – Syn‖}. Since {wnk } is bounded,
there exists a subsequence {wnkj

} of {wnk } such that

lim
j→∞ψ(u, wnkj

) = lim sup
k→∞

ψ(u, wnk ) = a.

Using (P2), (P3) and the fact that T is relatively nonexpansive, we obtain

ψ(u, wnkj
) = ψ(u, Tznkj

) + ψ(Tznkj
, wnkj

) + 2〈u – Tznkj
, JTznkj

– Jwnkj
〉

≤ ψ(u, znkj
) + ‖Tznkj

‖‖JTznkj
– Jwnkj

‖ + ‖Tznkj
– wnkj

‖‖wnkj
‖

+ 2‖u – Tznkj
‖‖JTznkj

– Jwnkj
‖. (3.7)

Since limn→∞ ‖wn – Tzn‖ = 0 and hence limn→∞ ‖Jxn – JTzn‖ = 0 we obtain

a = lim
j→∞ψ(u, wnkj

) ≤ lim inf
j→∞ ψ(u, znkj

).

We also have from inequality (3.3)

lim sup
j→∞

ψ(u, znkj
) ≤ lim sup

j→∞
ψ(u, wnkj

) = a,

and hence

lim
j→∞ψ(u, wnkj

) = lim
j→∞ψ(u, znkj

) = a.

Thus, it follows from inequality (3.6) that limj→∞ g(‖Jwnkj
– JSynkj

‖) = 0. By the properties
of g , we have limj→∞ ‖Jwnkj

– JSynkj
‖ = 0. By the uniform continuity of J–1 on bounded

sets, we obtain limj→∞ ‖wnkj
– Synkj

‖ = 0. Hence, limn→∞ ‖wn – Syn‖ = 0. So, we have
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limn→∞ ‖Jwn – JSyn‖ = 0. Observe that

‖Jzn – Jwn‖ =
∥
∥(1 – β)Jwn + βJSyn – Jwn

∥
∥

= β‖JSyn – Jwn‖
≤ ‖JSyn – Jwn‖.

This implies that limn→∞ ‖Jzn – Jwn‖ = 0, and hence limn→∞ ‖wn – zn‖ = 0. Furthermore,
from inequality (3.2), we have

1
β

(
ψ(u, zn) – (1 – β)ψ(u, wn)

) ≤ ψ(u, yn). (3.8)

Using yn = Jrn wn and Lemma 2.7(i), we have

ψ(yn, wn) = ψ(Jrn wn, wn) ≤ ψ(u, wn) – ψ(u, Jrn wn) = ψ(u, wn) – ψ(u, yn).

Thus, using inequality (3.8), we have

ψ(yn, wn) ≤ ψ(u, wn) – ψ(u, yn)

≤ ψ(u, wn) –
1
β

(
ψ(u, zn) – (1 – β)ψ(u, wn)

)

=
1
β

(
ψ(u, wn) – ψ(u, zn)

)

=
1
β

(‖wn‖2 – ‖zn‖2 – 2〈u, Jwn – Jzn〉
)

≤ 1
β

(∣
∣‖wn‖ – ‖zn‖

∣
∣
(‖wn‖ + ‖zn‖

)
+ 2‖u‖‖Jwn – Jzn‖

)

≤ 1
β

(‖wn – zn‖
(‖wn‖ + ‖zn‖

)
+ 2‖u‖‖Jwn – Jzn‖

)
.

This implies that limn→∞ ψ(yn, wn) = 0. It follows from Lemma 2.9 that

lim
n→∞‖yn – wn‖ = 0. (3.9)

Observe that

‖zn – Tzn‖ ≤ ‖zn – wn‖ + ‖wn – Tzn‖ and

‖yn – Syn‖ ≤ ‖yn – wn‖ + ‖wn – Syn‖,

imply

lim
n→∞‖zn – Tzn‖ = lim

n→∞‖yn – Syn‖ = 0.

Step 4. Finally, we show that {xn} converges strongly to a point in Ω . Since {wn} is
bounded, there exists a subsequence {wnk } of {wn} such that wnk ⇀ p. Furthermore, since
limn→∞ ‖wn – yn‖ = 0 and limn→∞ ‖wn – zn‖ = 0, we have ynk ⇀ p and znk ⇀ p. Moreover,
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since S and T are relatively nonexpansive, we have p ∈ F̂(S) ∩ F̂(T) = F(S) ∩ F(T). Next,
we show that p ∈ A–10. By the uniform continuity of J on bounded sets, it follows from
inequality (3.9) that

lim
n→∞‖Jwn – Jyn‖ = 0.

Since rn ≥ a, we have limn→∞ 1
rn

‖Jwn – Jyn‖ = 0. Therefore,

lim
n→∞‖Arn wn‖ = lim

n→∞
1
rn

‖Jxn – Jyn‖ = 0.

Using the fact that A is monotone and Lemma 2.7 (ii), we have

〈
v – yn, v∗ – Arn wn

〉 ≥ 0, ∀n ≥ 0.

This implies that limk→∞〈v – ynk , v∗ – Arnk
wnk 〉 = 〈v – p, v∗〉 ≥ 0. Thus, p ∈ A–10, since A

is maximal monotone. Therefore, p ∈ Ω . From Step 3, there exists {xnk } a subsequence of
{xn}, such that xnk ⇀ p, as k → ∞. We now show that p = ΠΩx0. Set q = ΠΩx0. Using the
fact that xn = ΠCn x0 and Ω ⊂ Cn, ∀n ≥ 0, we have ψ(xn, x0) ≤ ψ(q, x0). Using the fact that
the norm is weakly lower semi-continuous, we obtain

ψ(p, x0) = ‖p‖2 – 2〈p, Jx0〉 + ‖x0‖2

≤ lim inf
k→∞

(‖xnk ‖2 – 2〈xnk , Jx0〉 + ‖x0‖2)

≤ lim inf
k→∞

ψ(xnk , x0) ≤ lim sup
k→∞

ψ(xnk , x0) ≤ ψ(q, x0). (3.10)

But

ψ(q, x0) ≤ ψ(z, x0), ∀z ∈ Ω . (3.11)

Thus, ψ(p, x0) = ψ(q, x0). By uniqueness of ΠΩx0, p = q. Next, we show that xnk → p, as
k → ∞. Using inequalities (3.10) and (3.11), we obtain ψ(xnk , x0) → ψ(p, x0), as k → ∞.
Thus, ‖xnk ‖ → ‖p‖, as k → ∞. By the Kadec–Klee property of B, we conclude that xnk → p
as k → ∞. Therefore, xn → ΠΩx0. This completes the proof. �

Theorem 3.2 Let B be a uniformly convex and uniformly smooth real Banach space. Let A :
B → 2B∗ be a maximal monotone operator and let Jr = (J +rA)–1J , for all r > 0. Let T : B → B
be a relatively nonexpansive and let {Si}∞i=1 be a countable family of relatively nonexpansive
maps such that

⋂∞
i=1 F(Si) �= ∅ , where Si : B → B, ∀i. Let {ζi}∞i=1 ⊂ (0, 1) and {τi}∞i=1 ⊂ (0, 1)

be sequences such that
∑∞

i=1 ζi = 1. Assume Ω = (
⋂∞

i=1 F(Si)) ∩ F(T) ∩ A–10 �= ∅. Define in-
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ductively the sequence {xn} by: x0, x1 ∈ B

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = B,

wn = xn + αn(xn – xn–1),

zn = J–1((1 – β)Jwn + βJSJrn wn),

un = J–1((1 – γ )Jwn + γ JTzn),

Cn+1 = {z ∈ Cn : ψ(z, un) ≤ ψ(z, wn)},
xn+1 = ΠCn+1 x0,

(3.12)

for all n ∈ N ∪ {0}, where St = J–1(
∑∞

i=1 ζi(τiJt + (1 – τi)JSit)) for each t ∈ B, {αn} ⊂ [0, 1),
β ,γ ∈ (0, 1) and {rn} ⊂ [a,∞), for some a > 0. Then {xn} converges strongly to ΠΩx0.

Proof By Lemma 2.10, S is relatively nonexpansive and F(S) =
⋂∞

i=1 F(Si). The conclusion
follows from Theorem 3.1. �

4 Applications
4.1 Application to a convex optimization problem
Let X be a normed space and let f : X → (–∞,∞] be a convex, proper and lower semi-
continuous function. The subdifferential of f is defined by

∂f (t) :=
{

t∗ ∈ X∗ : f (y) – f (t) ≥ 〈
y – t, t∗〉,∀y ∈ X

}
.

Observe that 0 ∈ ∂f (u) if and only if u is a minimizer of f . Furthermore, it is well known
that the subdifferential of f , ∂f is maximal monotone (see, e.g., Rockafellar [37]). Set A = ∂f
in Theorem 3.2.

4.2 Application to J-fixed point
The notion of J-fixed point (which has also been called semi-fixed point, Zegeye [49], du-
ality fixed point, Liu [25]) has been defined and studied by Chidume and Idu [11], for maps
from a space, say X, to its dual space X∗.

Definition 4.1 Let T : X → 2X∗ be any map. A point u ∈ X is called a J-fixed point of T if
Ju ∈ Tu, where J : X → X∗ is the single-valued normalized duality map on X.

Consider, for example, the evolution inclusion

du
dt

+ Au � 0, (4.1)

where A : B → 2B∗ is monotone. At equilibrium, we have

0 ∈ Au, (4.2)

and the solutions of Eq. (4.2) correspond to equilibrium states of (4.1). Define T : B → 2B∗

by T := J – A. Then u is a J-fixed point of T if and only if u is a solution of (4.2). Con-
sequently, approximating solutions of (4.2) is equivalent to approximating J-fixed points
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of maps T : X → 2X∗ defined by T := J – A. This connection is now generating con-
siderable research interest in the study of J-fixed points (see, e.g., Chidume and Idu
[11], Chidume and Monday [13], Chidume et al. [15, 16], and the references contained
in them). This notion turns out to be very useful and applicable in approximating so-
lutions of Eq. (4.2). For example, Chidume and Idu [11], introduced the concept of J-
pseudocontractive maps and proved a strong convergence theorem for approximating J-
fixed points of a J-pseudocontractive map. As an application of their theorem, they proved
a strong convergence theorem for approximating a zero of a maximal monotone opera-
tor.

Recently, Chidume et al. [9] introduced the concept of relatively J-nonexpansive maps
in a uniformly smooth and uniformly convex real Banach spaces. They gave the following
definitions.

Definition 4.2 Let T : B → B∗ be a map. A point x∗ ∈ B is called an asymptotic J-fixed
point of T if there exists a sequence {xn} ⊂ B such that xn ⇀ x∗ and ‖Jxn – Txn‖ → 0, as
n → ∞. We shall denote the set of asymptotic J-fixed points of T by F̂J (T).

Definition 4.3 A map T : B → B∗ is said to be relatively J-nonexpansive if
(i) F̂J (T) = FJ (T) �= ∅,

(ii) ψ(p, J–1Tx) ≤ ψ(p, x), ∀x ∈ B, p ∈ FJ (T); where FJ (T) = {x ∈ B : Tx = Jx}.

Chidume et al. [9] used these new definitions in approximating a common J-fixed point
of a countable family of relatively J-nonexpansive mappings in a uniformly convex and uni-
formly smooth real Banach space. We now use these definitions to prove a similar result.
The following remark is key in the proof of the theorem below.

Remark 2 Observe that in the definition above, a mapping T is relatively J-nonexpansive
if and only if J–1T is relatively nonexpansive in the usual sense. Furthermore, x∗ ∈ FJ (T) ⇔
x∗ ∈ F(J–1T).

Theorem 4.4 Let B be a uniformly convex and uniformly smooth real Banach space. Let
A : B → 2B∗ be a maximal monotone operator and let Jr = (J + rA)–1J , for all r > 0. Let
T : B → B∗ be a relatively nonexpansive and let {Si}∞i=1 be a countable family of rela-
tively nonexpansive maps such that

⋂∞
i=1 F(Si) �= ∅, where Si : B → B∗, ∀i. Let {ζi}∞i=1 ⊂ (0, 1)

and {τi}∞i=1 ⊂ (0, 1) be sequences such that
∑∞

i=1 ζi = 1. Assume Ω = (
⋂∞

i=1 F(Si)) ∩ F(T) ∩
A–10 �= ∅. Define inductively the sequence {xn} by: x0, x1 ∈ B

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 = B,

wn = xn + αn(xn – xn–1),

zn = J–1((1 – β)Jwn + βSJrn wn),

un = J–1((1 – γ )Jwn + γ Tzn),

Cn+1 = {z ∈ Cn : ψ(z, un) ≤ ψ(z, wn)},
xn+1 = ΠCn+1 x0,

(4.3)

for all n ∈ N ∪ {0}, where Sx = J–1(
∑∞

i=1 ζi(τiJx + (1 – τi)JSix)) for each t ∈ B, {αn} ⊂ [0, 1),
β ,γ ∈ (0, 1) and {rn} ⊂ [a,∞), for some a > 0. Then {xn} converges strongly to ΠΩx0.
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Proof By Remark 2, J–1T is relatively nonexpansive and J–1Si is relatively nonexpansive
for each i. The conclusion follows from Theorem 3.2. �

5 Numerical illustrations
In this section, we give some examples to illustrate the effect of the inertial term in the fast
convergence of the sequence of our algorithm. For simplicity, we consider an example in
R and choose A such that the resolvent can be easily computed.

Example 1 In Theorems 1.3 and 3.1, set B = C0 = R,

Ax =
x
3

, Tx = sin x, Sx =
1
2

(x – sin x).

Clearly, A is maximal monotone and, T and S are relatively nonexpansive. Furthermore,
Ω = {0}. We choose αn = βn = 4n

4n+5 , rn = 2n+1
n , β = 1

2 , γ = 1
4 as the parameters. Obviously,

these parameters satisfy the hypothesis of Theorems 1.3 and 3.1. We choose x0 = x1 = 0.5
and use a tolerance of 10–14 and set maximum number of iteration to be 2000 (see Tables 1
and 2 and Figs. 1 and 2).

Table 1 Table of values choosing x0 = x1 = 0.5

n Algorithm (1.5) Algorithm (3.1)

|xn+1| |xn+1|
1 0.5 0.5
3 0.2113 0.4167
10 0.1717 0.0374
16 0.1664 0.006
30 0.1623 2.668× e–6

60 0.1599 4.667× e–11

85 0.1591 7.703× e–15

100 0.1589 Successful
200 0.1579 Successful
500 0.1572 Successful
1000 0.1568 Successful
1500 0.1566 Successful
2000 0.1565 Successful

Table 2 Table of values choosing x0 = –2, x1 = 3

n Algorithm (1.5) Algorithm (3.1)

|xn+1| |xn+1|
1 2 3
3 0.8431 2
10 0.6663 0.0532
16 0.6365 0.0086
30 0.6089 3.522× e–6

60 0.5872 6.160× e–11

85 0.5782 1.016× e–14

100 0.5743 Successful
200 0.5595 Successful
500 0.5427 Successful
1000 0.5313 Successful
1500 0.5251 Successful
2000 0.5207 Successful
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Figure 1 Graph of the first 85 iterates of Algorithms (1.5) and (3.1) choosing x0 = x1 = 0.5

Figure 2 Graph of the first 85 iterates of Algorithms (1.5) and (3.1) choosing x0 = –2, x1 = 3

Next, we give an example to show that Algorithm (3.12) is implementable.

Example 2 In Theorem 3.2, set C0 = R

Ax = x, Tx =
x
3

, Six = –
sin x

2i .

Clearly, A is maximal monotone, T is relatively nonexpansive and Si is relatively nonexpan-
sive for each i. Furthermore, Ω = (

⋂∞
i=1 F(Si)) ∩ F(T) ∩ A–10 = {0}. We choose ζi = τi = 1

2i ,
i ≥ 1, and αn = βn = 4n

4n+5 , rn = 2n+1
n , β = 1

2 , γ = 1
4 as the parameters. Clearly, these pa-

rameters satisfy the hypothesis of Theorem 3.2. Observe that Sx = J–1(
∑∞

i=1 ηi(μiJx +
(1 – μi)Six)) = 7x–4 sin x

21 . We choose x0 = 1, x1 = 2.5 and use a tolerance of 10–14 and set
the maximum number of iterations to be 2000 (see Table 3 and Fig. 3).

Conclusion. From the numerical experiments above, we observe that indeed incorporat-
ing the inertial term in our algorithm speeds up the convergence of the sequence generated
by our algorithm to the desired solution.
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Table 3 Table of values choosing x0 = 1, x1 = 2.5

n Algorithm (3.12)

|xn+1|
1 2.5
2 1
3 0.0598
4 0.0598
5 0.0465
10 0.0044
20 1.425× e–5

30 5.549× e–8

40 8.18× e–11

50 2.408× e–13

55 3.521× e–15

Figure 3 Graph of the first 55 iterates of Algorithm (3.12) choosing x0 = 1, x1 = 2.5
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