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Abstract
In this paper, we consider the following Kirchhoff type equation:

{
–(a + b

∫
Ω |∇u|2 dx)�u = f (x,u) in Ω ,

u = 0 on ∂Ω ,

where a,b > 0 are constants and Ω ⊂ R
N (N = 1, 2, 3) is a bounded domain with

smooth boundary ∂Ω . By applying Morse theory, we obtain some existence and
multiplicity results of nontrivial solutions for either a or b being sufficiently small.
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1 Introduction
In this paper, we are concerned with the Kirchhoff equation,

utt –
(

a + b
∫

Ω

|∇u|2 dx
)

�u = f (x, u),

which was proposed by Kirchhoff in [13] as a generalization of the well-known d’Alembert
wave equation

ρ
∂2u
∂t2 –

(
ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = 0,

for free vibrations of elastic strings, where ρ is the mass density, ρ0 is the initial tension,
h is the area of the cross section, E is the Young modulus of the material and L is the
length of the string. Kirchhoff’s model takes the changes in length of the string produced
by transverse vibrations into account. We refer to [13, 18] for further references in physics.

The stationary analogue of the Kirchhoff equation takes the form

⎧⎨
⎩–(a + b

∫
Ω

|∇u|2 dx)�u = f (x, u) in Ω ,

u = 0 on ∂Ω ,
(1.1)
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where a, b > 0 are constants, and Ω is a bounded domain in R
N (N = 1, 2, 3) with smooth

boundary ∂Ω . We are interested in the case that f is sub-critical, i.e.
(f0) f ∈ C(Ω ×R,R) and there exists c > 0 such that

∣∣f (x, u)
∣∣ ≤ c

(
1 + |u|γ –1), for some 1 ≤ γ < 2∗ =

⎧⎨
⎩+∞, N = 1, 2,

6, N = 3.

The weak solutions of (1.1) then correspond to critical points of I(a,b) : H1
0 (Ω) →R,

I(a,b)(u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

∫
Ω

F(x, u) dx, (1.2)

where F(x, u) =
∫ u

0 f (x, t) dt, and H1
0 (Ω) is the Sobolev space endowed with the norm

‖u‖ = ‖∇u‖2 =
(∫

Ω

|∇u|2 dx
)1/2

.

To characterize the growth rate of f (x, t) at t = 0, we consider two eigenvalue problems.
First, let

0 < λ1 < λ2 ≤ · · · ≤ λm ≤ · · ·

be the sequences of eigenvalues (counted with multiplicity) of –� in Ω with Dirichlet
boundary condition. Second, according to [23], the nonlocal eigenvalue problem

–‖φ‖2�φ = μφ3 in Ω , φ = 0 on ∂Ω , (1.3)

has an unbounded sequences of eigenvalues, counted with multiplicities

0 < μ1 ≤ μ2 ≤ · · · ≤ μm ≤ · · · . (1.4)

Denote by λ0 = μ0 = –∞ and by Σ the set of all the eigenvalues of (1.3).
Now we introduce two growth conditions for f (x, u):
(GC1) there exists μ ∈ (λm,λm+1) such that lim|u|→0

f (x,u)
u = aμ, uniformly in x ∈ Ω ;

(GC3) there exists μ ∈ (μm,μm+1)\Σ such that lim|u|→0
f (x,u)

u3 = bμ, uniformly in x ∈ Ω ,
where a, b are the constants appear in Eq. (1.1). Clearly, both (GC1) and (GC3) imply
f (x, 0) ≡ 0 so problem (1.1) admits a trivial solution u = 0. We are interested in the exis-
tence of nontrivial solutions.

In recent years, many papers study the Kirchhoff type problems by variational methods.
When the nonlinearity is 4-superlinear near infinity, the relevant results can be found in
[20, 24, 25, 32], and for the case where the nonlinearity is 4-asymptotically linear near
infinity, we refer to [8, 15, 17, 23, 30, 32] for details and further references. For example, if
(GC1) holds with μ < λ1, then it is shown in [8] that 0 is a local minimizer of I(a,b). With
the condition

a
2
λkt2 + C1t4 ≤ F(x, t) ≤ a

2
λk+1t2 + C2t4, for |t| < δ,
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where δ, C1, C2 are positive constants, it is shown in [25] that the functional I(a,b) has
a local linking at zero. Also, using the sequence of eigenvalues constructed in [23], the
authors of [24] find nontrivial solutions when the nonlinearity is superlinear near zero but
asymptotically 4-linear at infinity by computing the relevant critical groups.

In particular, when the nonlinearity is concave–convex, that is,

f (x, u) = λg1(x)|u|q–2u + g2(x)|u|p–2u, (1.5)

for λ > 0, 1 < q < 2 < p < 2∗ and possibly sign-changing functions g1(x), g2(x) ∈ C(Ω), by
the Nehari manifold and fibering maps, the existence of multiple positive solutions is es-
tablished in [7]. In [14], a power-type concave–convex nonlinearity with critical expo-
nent is considered, and two positive solutions are found for b being small. For a non-
homogeneous p-Kirchhoff-type equation with nonlinearity as (1.5) in unbounded do-
mains, the existence of multiple solutions for problem (1.1) is studied in [6], by Ekeland’s
variational principle and the mountain pass theorem. Moreover, without any growth con-
dition on the nonlinear term f at infinity, the paper [28] obtain a sequence of solutions
converging to zero for Kirchhoff equation with local sublinear nonlinearities. For more
details about the existence of solutions for Kirchhoff-type equation involving concave and
convex terms, we refer to [10, 16, 29] for details and further references. Furthermore, prob-
lem (1.1) can be generalized to p-Kirchoff equations and fractional Kirchoff equations. For
instance, fractional Kirchoff equations in the case Ω = R have been studied in [22, 27], in
which the Morse theory were applied to obtain multiple nontrivial solutions. We also refer
to [2, 3] by Chang for a systematic introduction of Morse theory and various applications
to differential equations.

Notice that the parameters a > 0 and b > 0 are fixed in all papers cited above. The param-
eters a and b affect the nature of the equation in the following way. If a > 0, Eq. (1.1) is said
to be non-degenerate; and it is called degenerate if a = 0 (see e.g., [9, 31]). On the other
hand, if b = 0, (1.1) is a usual Laplacian equation. If b > 0, Eq. (1.1) becomes a nonlocal,
i.e., Eq. (1.1) is no longer a pointwise equality. This nonlocal nature causes some mathe-
matical difficulties which make the study of such problems particularly interesting. Then
it seems rather natural to ask whether it is possible to get some relationships between the
two solutions for equations with a = 0 and b = 0, respectively. Motivated by the methods in
[5, 26], we will give some answer to this question through the estimates of critical groups
for critical points of functionals, and we also use Morse theory to obtain the existence of
nontrivial solutions of (1.1).

Our results read as follows.

Theorem 1.1 Let b > 0 be fixed. If f satisfies (f0) and (GC3) with m ≥ 1, then there exists
ε > 0 such that, for each a ∈ (0, ε), Eq. (1.1) has at least one nontrivial solution.

Remark 1
(1) Notice that f (x, u) = bμu3 for some μ ∈ (μm,μm+1) satisfies conditions (f0) and

(GC3), then (1.1) becomes

–
(
a + b‖u‖2)�u = bμu3 in Ω and u = 0 on ∂Ω .
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For any a > 0, the existence of a nontrivial solution has been proved in [23,
Theorem 1.1].

(2) The main novelty of Theorem 1.1 is that no additional assumption on the
nonlinearity f near infinity besides (f0) is required. In comparison, the behavior of f
near infinity is used in an essential way to get the compactness condition, or derive
multiplicity of solutions in the papers we quoted previously. Moreover, let f ∈ C(R)
be a function of u, and f (u) = bμu3 for |u| < 1, and f (u) = |u|p–2u for |u| > 2,
1 ≤ p < 2∗. Since f may take different forms for 1 < |u| < 2, Theorem 1.1 asserts the
existence of nontrivial solution for nonlinearities not only restricted to power-type,
which in contrast plays an important role for applying Nehari manifold type
arguments.

(3) Denote by C�(I(a,b), u) the �th critical group of the C1 functional I(a,b) at an isolated
critical point u (see precise definition in Sect. 2), where l ∈N = {0, 1, 2, . . .}. The key
step in the proof of Theorem 1.1 is to deduce the facts that u = 0 is an isolated
critical point of I(0,b) and its critical group Cm(I(0,b), 0) is nontrivial.

(4) If f satisfies (f0) and (GC1) with m ≥ 0, then u = 0 is also an isolated critical point of
I(a,0) and Cm(I(a,0), 0) is nontrivial (see [2]). But the approach to proving Theorem 1.1
is no longer able to guarantee the existence of a nontrivial solution of (1.1).

From the arguments in the proof of Theorem 1.1, we can deduce the following results.

Corollary 1.1 Assume that (f0) holds.
(i) Let a > 0 be fixed. If u0 is an isolated critical point of I(a,0) with its critical group

C�(I(a,0), u0) nontrivial at some � ∈N. Then there exists ε > 0 such that, for each
b ∈ (0, ε), Eq. (1.1) has at least a solution uε .

(ii) Let b > 0 be fixed. If u0 is an isolated critical point of I(0,b) with its critical group
C�(I(0,b), u0) nontrivial at some � ∈N. Then there exists ε > 0 such that, for each
a ∈ (0, ε), Eq. (1.1) has at least a solution uε .

In both cases, there exists a sequence {εn} and corresponding {uεn} such that εn → 0 and
uεn → u0 in H1

0 (Ω) as n → ∞.

Next, we consider nonlinearity f with a perturbation term,

f (x, u) = λ|u|p–2u + g(x, u), (1.6)

where 1 < p < 6 and λ ∈R. Clearly, if λ = 0, then it returns to the case in Theorem 1.1.

Theorem 1.2 Assume 1 < p < 2 and m ≥ 1
2 (1 – sgn(λ)). If g satisfies (f0) (i.e. replacing f

with g in (f0)), then there exists ε > 0 such that Eq. (1.1) has at least one nontrivial solution
in either of the following cases:

(i) 0 < a, |λ| < ε, b > 0 is fixed and g satisfies (GC3);
(ii) 0 < b, |λ| < ε, a > 0 is fixed and g satisfies (GC1).

Remark 2 In particular, if g(x, u) = bμu3, then the existence of nontrivial solution was
proved in [7], which provides an example for Theorem 1.2 (i). Moreover, as pointed out in
Remark 1 (2), g may take other than power-type forms, thus Theorem 1.2 and Theorem 1.3
are both new for dealing with such nonlinearities.
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Theorem 1.3 Assume 2 ≤ p < 6 and m ≥ 1. If g satisfies (f0) and (GC3) with b > 0 is
fixed, then there exists ε > 0 such that, for 0 < a, |λ| < ε, Eq. (1.1) has at least one nontrivial
solution.

This paper is organized as follows. In Sect. 2, we will recall some established results of
Morse theory. In Sect. 3, we give the proofs of Theorem 1.1 and Corollary 1.1. The proofs
of Theorem 1.2 and Theorem 1.3 are given in Sects. 4 and 5, respectively. In the sequel, the
letter C will be used indiscriminately to denote a suitable positive constant whose value
may change from line to line.

2 Preliminaries
In this section, we summarize some well known results that will be used in later sections.

Let I be a C1 functional defined on a Banach space X, and denote the set of critical
points of I by KI . We also assume that I satisfies the Palais–Smale condition. We shall
prove the existence of multiple solutions by contradiction, for which the trivial solution
will be assumed to be isolated at first. Then to apply the Morse theory, the critical group
of isolated critical points needs to be generalized to critical group of compact dynamically
isolated critical set using the Gromoll–Meyer pair. Precisely,

Proposition 2.1 ([2, Theorem 5.2 and 5.3 in Chapter I]) If S = {u0}, where u0 is an isolated
critical point of I , then there exists a Gromoll–Meyer pair (W , W–) for S = {u0} such that

C�(I, u0) = C�

(
I, [S]

)
= H�(W , W–), � ∈N.

Here [S] denotes an invariant hull of S, and if u0 is an isolated critical point that is located
on an isolated critical level, then the singleton S = {u0} is a dynamically isolated critical
set, and [S] = S = {u0}.

The following proposition is crucial in applying the perturbation type arguments.

Proposition 2.2 ([4, Theorem III.4]) Let S be a compact dynamically isolated critical set
for the functional I , and (W , W–) is a Gromoll–Meyer pair for S. Then there exists ε > 0
depending on I and W such that, for all J ∈ C1(X,R) with ‖I – J‖C1(W ) < ε, (W , W–) is still
a Gromoll–Meyer pair for the critical set SJ = W ∩ KJ .

The homotopy invariance of critical group also plays an important role in our proofs.

Proposition 2.3 ([4]) Let Iτ ∈ C1(X) and u0 ∈ KIτ for all τ ∈ [0, 1]. If there exists a closed
neighborhood U ⊂ X of u0 such that

(i) Iτ satisfies the Palais–Smale condition in U for all τ ∈ [0, 1],
(ii) KIτ ∩ U = {u0} for all τ ∈ [0, 1],

(iii) the mapping τ → Iτ is continuous between [0, 1] and C1(U),
then we have

C�(I0, u0) = C�(I1, u0), � ∈N.
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Finally, for any given μ ∈R, define Φ : H1
0 (Ω) →R by

Φ(u) = ‖u‖4 – μ

∫
Ω

u4 dx. (2.1)

If μ /∈ Σ , then u = 0 is an isolated critical point of Φ . Therefore C∗(Φ , 0), the critical groups
of Φ at 0, are well-defined; see [3]. The following result was proved by Perera and Zhang
in [23].

Proposition 2.4 ([23, Proposition 3.3]) If μ ∈ (μm,μm+1)\Σ , then Cm(Φ , 0) 
= 0.

3 Proof of Theorem 1.1
We begin with a few lemmas.

Lemma 3.1 Assume that (f0) and (GC3) hold, then u = 0 is an isolated critical point of
I(0,b).

Proof The proof is partially inspired by [11]. Note that I(0,b) is a C1 functional and

〈
I(0,b)

′(u), w
〉

= b‖u‖2
∫

Ω

∇u∇w dx –
∫

Ω

f (x, u)w dx, ∀w ∈ H1
0 (Ω).

Clearly, by f (x, 0) = 0 we have u = 0 is a critical point of I(0,b).
If the conclusion is not true, then there exists a sequence {un} ⊂ H1

0 (Ω)\{0} such that

un → 0 in H1
0 (Ω) and I(0,b)

′(un) = 0 for any n ∈N.

Set vn = un/‖un‖, then ‖vn‖ = 1. Passing to a subsequence we can assume

⎧⎪⎪⎨
⎪⎪⎩

vn ⇀ v, weakly in H1
0 (Ω),

vn → v, strongly in L4(Ω),

vn(x) → v(x), a.e. x ∈ Ω ,

as n → ∞. Define

ξn(x) =

⎧⎨
⎩

f (x,un)
bu3

n
, un(x) 
= 0,

μ, un(x) = 0,
(3.1)

then ξn → μ a.e. in Ω as n → ∞ by (GC3).
Moreover, we have

0 =
〈I(0,b)

′(un), w〉
b‖un‖3

=
∫

Ω

∇vn∇w dx –
∫

Ω

ξn(x)v3
nw dx +

∫
Ω

(
ξn(x)v3

n –
f (x, un)
b‖un‖3

)
w dx, (3.2)

this together with (GC3) gives
∫

Ω

∇v∇w dx = μ

∫
Ω

v3w dx. (3.3)
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Replace w with vn – v in (3.2) and let n → ∞, we get ‖v‖ = 1. Then (3.3) implies that
μ is an eigenvalue of (1.3), which is a contradiction since μ ∈ (μm,μm+1)\Σ . The proof is
completed. �

Lemma 3.2 Assume that (f0) and (GC3) hold, then

C�(Φ , 0) = C�(I(0,b), 0), � ∈N.

Proof Define Jt : H1
0 (Ω) → R as

Jt(u) = tI(0,b)(u) +
(1 – t)b

4
Φ(u), t ∈ [0, 1],

then by (f0) Jt satisfies (PS) condition on any bounded domain in H1
0 (Ω) for t ∈ [0, 1].

Clearly, u = 0 is a critical point for all t ∈ [0, 1]. If we can find a neighborhood U of 0
such that u = 0 is the only critical point of Jt in U for all t ∈ [0, 1], then by the homotopy
invariance of the critical groups in Proposition 2.3 we have

C�(Φ , 0) = C�(J0, 0) = C�(J1, 0) = C�(I(0,b), 0), � ∈N.

We argue by contradiction. Assume that there exist sequences {tn} ⊂ [0, 1] and {un} ⊂
H1

0 (Ω)\{0} such that un → 0 in H1
0 (Ω) as n → ∞ and Jtn

′(un) = 0 for any n ∈N.
Set vn = un/‖un‖, and passing to a subsequence we may assume that tn → t0 and

⎧⎪⎪⎨
⎪⎪⎩

vn ⇀ v, weakly in H1
0 (Ω),

vn → v, strongly in L4(Ω),

vn(x) → v(x), a.e. x ∈ Ω ,

as n → ∞. Similar to (3.2), define ξn(x) as (3.1), we get

0 =
〈Jtn

′(un), w〉
b‖un‖3

=
∫

Ω

[∇vn∇w – (1 – tn)μv3
nw – tnξn(x)v3

nw
]

dx

+ tn

∫
Ω

(
ξn(x)v3

n –
f (x, un)
b‖un‖3

)
w dx

=
∫

Ω

[∇vn∇w – μv3
nw + tn

(
μ – ξn(x)

)
v3

nw
]

dx

+ tn

∫
Ω

(
ξn(x)v3

n –
f (x, un)
b‖un‖3

)
w dx. (3.4)

Let n → ∞ and recall the condition (GC3), we have
∫

Ω

∇v∇w dx = μ

∫
Ω

v3w dx, ∀w ∈ H1
0 (Ω).

Again, replacing w with vn – v in (3.4) we get ‖v‖ = 1, which implies that μ is an eigenvalue
of (1.3). This contradicts the assumption. The proof is completed. �
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Combining Proposition 2.4 and Lemma 3.2, we obtain the following.

Lemma 3.3 Assume (f0) and (GC3) hold, then

Cm(I(0,b), 0) 
= 0.

By introducing the quadratic term, the critical group at zero will change.

Lemma 3.4 Assume that f satisfies (f0) and (GC3), then we have

C�(I(a,b), 0) = δ�,0F, � ∈N,

where δ is the Kronecker delta.

Proof In fact, by (f0) and (GC3), there exist C > 0 and γ ∈ (2, 2∗) such that

∫
Ω

F(x, u) dx ≤ C‖u‖4 + C‖u‖γ ,

hence, for ‖u‖ > 0 small enough,

I(a,b)(u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

∫
Ω

F(x, u) dx

≥ a
2
‖u‖2 +

b
4
‖u‖4 – C‖u‖4 – C‖u‖γ

≥ 0.

So 0 is a local minimizer of I(a,b), and this lemma is true. �

Proof of Theorem 1.1 Note that, by (f0), our functionals satisfy the Palais–Smale condition
on any closed bounded set. The proof is divided into four steps.

(1) By Lemma 3.1, u = 0 is an isolated critical point of I(0,b). Without loss of generality,
we may assume that u = 0 is the only critical point of I(0,b) in the ball

Bρ(0) =
{

u ∈ H1
0 (Ω) : ‖u‖ < ρ

}
, for some ρ > 0.

Proposition 2.1 implies that there exists a Gromoll–Meyer pair (W , W–) for I(0,b) at 0 sat-
isfying W ⊂ Bρ(0) such that

C�(I(0,b), 0) = H�(W , W–), ∀� ∈N,

this together with Lemma 3.3 gives

Hm(W , W–) = Cm(I(0,b), 0) 
= 0, for some m ≥ 1. (3.5)

(2) Claim: For any ε > 0, setting β = 2ε

ρ2+2ρ
, then

‖I(a,b) – I(0,b)‖C1(W ) < ε, for 0 < a < β . (3.6)
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Indeed, for any v ∈ H1
0 (Ω),

〈
I(a,b)

′(u), v
〉
= a

∫
Ω

∇u∇v dx + b‖u‖2
∫

Ω

∇u∇v dx –
∫

Ω

f (x, u)v dx.

Therefore

‖I(a,b) – I(0,b)‖C1(W ) = ‖I(a,b) – I(0,b)‖C(W ) +
∥∥I ′

(a,b) – I ′
(0,b)

∥∥
C(W )

= sup
u∈W

∣∣I(a,b)(u) – I(0,b)(u)
∣∣ + sup

u∈W
sup

‖v‖≤1

∣∣〈I ′
(a,b)(u) – I ′

(0,b)(u), v
〉∣∣

≤ 1
2

aρ2 + a sup
u∈W

sup
‖v‖≤1

‖u‖‖v‖

≤ 1
2

a
(
ρ2 + 2ρ

)
< ε,

then (3.6) holds. Using Proposition 2.2, for ε > 0 small enough, (3.6) implies that (W , W–)
is still a Gromoll–Meyer pair for I(a,b) with the critical set

S[a,b] = W ∩ KI(a,b) , for 0 < a < β ,

where

KI(a,b) =
{

u ∈ H1
0 (Ω) : I(a,b)

′(u) = 0
}

.

Therefore, for 0 < a < β , using (3.5), we have

Cm
(
I(a,b), [S[a,b]]

)
= Hm(W , W–) 
= 0, for some m ≥ 1. (3.7)

(3) Without loss of generality, we assume that u = 0 is an isolated critical point of I(a,b) for
0 < a < β and b > 0. Then there exists a Gromoll–Meyer pair (W 0, W 0

–) with 0 ∈ W 0
� W

such that

C�(I(a,b), 0) = H�

(
W 0, W 0

–
)
, for all � ∈N.

Now using Lemma 3.4, we have

H�

(
W 0, W 0

–
)

= C�(I(a,b), 0) = δ�,0F, for 0 < a < β , b > 0. (3.8)

(4) Claim: I(a,b) has at least one nontrivial critical point in W\W 0.
Assume it is not true, then S[a,b] = {0}, which implies that I(a,b) has no critical points

in W\W 0. By the deformation and excision properties of a singular homology (see [2]),
we may assume W 0 = W in the above choice of the Gromoll–Meyer pairs for I(a,b) at 0.
Therefore,

H�(W , W–) = H�

(
W 0, W 0

–
)
, � ∈N,

which is a contradiction by (3.7) and (3.8). Therefore, Eq. (1.1) has at least one nontrivial
solution. The proof is completed. �
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Proof of Corollary 1.1 Similar arguments to the proof of Theorem 1.1 yield the existence
of the solution, here, we focus on the convergence of the solution.

For the case (i), let u0 be the only critical point of I(a,0) in the ball Bρ(u0), and uεn ∈ Bρ(u0)
be the critical point of I(a,εn) such that εn → 0 and

〈
I(a,εn)

′(uεn ), v
〉
= 0, ∀v ∈ H1

0 (Ω). (3.9)

Then passing to a subsequence we may assume that

⎧⎪⎪⎨
⎪⎪⎩

uεn ⇀ u∗, weakly in H1
0 (Ω),

uεn → u∗, strongly in L4(Ω),

uεn (x) → u∗(x), a.e. x ∈ Ω .

Since 〈I(a,εn)
′(uεn ) – I(a,εn)

′(u∗), uεn – u∗〉 = 0, we have, as εn → 0,

∥∥uεn – u∗∥∥2 = b
∥∥u∗∥∥2

∫
Ω

∇u∗∇(
uεn – u∗)dx – b‖uεn‖2

∫
Ω

∇uεn∇
(
uεn – u∗)dx

+
∫

Ω

(
f (x, uεn ) – f

(
x, u∗))(uεn – u∗)dx

→ 0,

which implies that uεn → u∗ in H1
0 (Ω). Let εn → 0 in (3.9) we get

〈
I(a,0)

′(u∗), v
〉
= 0, ∀v ∈ H1

0 (Ω).

Then u∗ is a critical point of I(a,0). But from the isolation of u0 in Bρ(u0), we must have
u∗ = u0. The case (ii) is similar. �

4 Proof of Theorem 1.2
Consider the C1 functional I(a,b,λ) : H1

0 (Ω) →R defined by setting

I(a,b,λ)(u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

λ

p

∫
Ω

|u|p dx –
∫

Ω

G(x, u) dx,

where G(x, u) =
∫ u

0 g(x, t) dt. The critical group of I(a,b,λ) at 0 can be calculated using the
arguments in [12, 19, 21]. For completeness, we provide the detailed proof now.

Lemma 4.1 Assume that g satisfies (f0) and g(x, u) = O(|u|) as |u| → 0, then, for any a > 0,
b ≥ 0, 1 < p < 2 and λ > 0 we have

C�(I(a,b,λ), 0) = 0, ∀� ∈N.

Proof We divide it into a few steps.
Step 1 For each u 
= 0, there exists a constant s0 such that I(a,b,λ)(su) < 0 for all s ∈ (0, s0).
Since g satisfies (f0) and g(x, u) = O(|u|) as |u| → 0, there are two constants, γ ∈ (2, 2∗)

and C > 0, such that

∣∣G(x, u)
∣∣ ≤ C

(|u|2 + |u|γ )
, ∀u ∈R, x ∈ Ω .
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Substitute this inequality in the energy functional,

I(a,b,λ)(u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

λ

p

∫
Ω

|u|p dx –
∫

Ω

G(x, u) dx

≤
(

a
2

+ C
)

‖u‖2 +
b
4
‖u‖4 –

λ

p

∫
Ω

|u|p dx + C‖u‖γ ,

for all u ∈ H1
0 (Ω). Noticing that 1 < p < 2 and λ > 0, the existence of s0 for each nonzero

u ∈ H1
0 (Ω) follows by comparing the exponents in the last expression.

Step 2 There exists ρ > 0 such that, for any 0 
= u ∈ H1
0 (Ω) satisfying 0 < ‖u‖ ≤ ρ and

I(a,b,λ)(u) = 0, we have d
ds I(a,b,λ)(su)|s=1 > 0.

Recall the facts that f (x, u) = λ|u|p–2u + g(x, u), we have

f (x, u)u = λ|u|p + μ|u|2 + o
(|u|2), for some μ ≥ 0, as |u| → 0.

Denote by F(x, u) =
∫ u

0 f (x, t) dt, then for some τ ∈ (p, 2)

τF(x, u) – f (x, u)u = λ

(
τ

p
– 1

)
|u|p + μ

(
τ

2
– 1

)
|u|2 + o

(|u|2), as |u| → 0.

Since λ > 0, there exists a δ > 0 small enough, such that

f (x, u)u > 0 and τF(x, u) – f (x, u)u ≥ 0, ∀0 < |u| ≤ δ, x ∈ Ω .

Therefore there exist γ1 ∈ (2, 2∗) and C > 0 such that

τF(x, u) – f (x, u)u ≥ –C|u|γ1 , ∀u ∈ R, x ∈ Ω . (4.1)

Let 0 
= u ∈ H1
0 (Ω) be such that I(a,b,λ)(u) = 0, then by (4.1) we have

d
ds

I(a,b,λ)(su)
∣∣∣∣
s=1

= a‖u‖2 + b‖u‖4 –
∫

Ω

f (x, u)u dx – τ I(a,b,λ)(u)

= a
(

1 –
τ

2

)
‖u‖2 + b

(
1 –

τ

4

)
‖u‖4 +

∫
Ω

(
τF(x, u) – f (x, u)u

)
dx

≥ a
(

1 –
τ

2

)
‖u‖2 + b

(
1 –

τ

4

)
‖u‖4 – C‖u‖γ1 .

For ‖u‖ � 1, the quadratic term dominates the last expression. Thus there is a ρ > 0 such
that

d
ds

I(a,b,λ)(su)
∣∣∣∣
s=1

> 0, for u satisfying I(a,b,λ)(u) = 0, 0 < ‖u‖ ≤ ρ. (4.2)

Claim:

I(a,b,λ)(su) < 0, for s ∈ (0, 1), I(a,b,λ)(u) < 0, 0 < ‖u‖ ≤ ρ. (4.3)
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Indeed, if ‖u‖ ≤ ρ and I(a,b,λ)(u) < 0 then there is a τ ∈ (0, 1) such that I(a,b,λ)(su) < 0 for
s ∈ (1 – τ , 1) by the continuity of I(a,b,λ). Suppose that there is a s0 ∈ (0, 1 – τ ] such that
I(a,b,λ)(s0u) = 0 and I(a,b,λ)(su) < 0 as s0 < s < 1. Set u0 = s0u, then by (4.2) we have

d
ds

I(a,b,λ)(su0)
∣∣∣∣
s=1

> 0.

But using I(a,b,λ)(su) – I(a,b,λ)(s0u) < 0 we get

d
ds

I(a,b,λ)(su)
∣∣∣∣
s=s0

=
d
ds

I(a,b,λ)(su0)
∣∣∣∣
s=1

≤ 0,

this is a contradiction. The claim holds.
Step 3 Now we define a mapping T : Bρ(0) → [0, 1] as

T(u) =

⎧⎨
⎩1, for u ∈ Bρ(0) with I(a,b,λ)(u) ≤ 0,

s, for u ∈ Bρ(0) with I(a,b,λ)(u) > 0, I(a,b,λ)(su) = 0, s < 1,

and if I(a,b,λ)(u) > 0 then there exists a unique T(u) ∈ (0, 1) such that

I(a,b,λ)
(
T(u)u

)
= 0, I(a,b,λ)(su) < 0, ∀s ∈ (

0, T(u)
)
,

I(a,b,λ)(su) > 0, ∀s ∈ (
T(u), 1

)
. (4.4)

Using (4.2) and (4.4), by the implicit function theorem the mapping T is continuous in u.
Define a mapping η : [0, 1] × Bρ(0) → Bρ(0) by

η(s, u) = (1 – s)u + sT(u)u, for s ∈ (0, 1), u ∈ Bρ(0),

then the mapping η is a continuous deformation from (Bρ(0), Bρ(0)\{0}) to (Bρ(0) ∩
I0

(a,b,λ), Bρ(0) ∩ I0
(a,b,λ)\{0}), where I0

(a,b,λ) = {u ∈ H1
0 (Ω) : I(a,b,λ)(u) ≤ 0}. Since Bρ(0)\{0} is

contractible, by the homotopy invariance of homology group, we get

C�(I(a,b,λ), 0) = H�

(
Bρ(0) ∩ I0

(a,b,λ), Bρ(0) ∩ I0
(a,b,λ)\{0})

∼= H�

(
Bρ(0), Bρ(0)\{0}) = 0, � ∈N.

The proof is completed. �

It is worth to point out that both (GC1) and (GC3) satisfy the growth condition in the
above lemma. In the proof, the condition 1 < p < 2 plays an essential role.

Lemma 4.2 Assume that g satisfies (f0) and g(x, u) = O(|u|) as |u| → 0, then, for any a > 0,
b ≥ 0, 1 < p < 2 and λ < 0 we have

C�(I(a,b,λ), 0) = δ�,0F � ∈N.

Proof We only need to prove that u = 0 is a local minimizer of I(a,b,λ) in the H1
0 (Ω) topology.
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First we show that u = 0 is a local minimizer of I(a,0,λ) in the C1
0(Ω̄) topology. Indeed,

there exist δ > 0 and C > 0 such that

G(x, u) ≤ C|u|2, for |u| ≤ δ, x ∈ Ω .

Then, for u ∈ C1
0(Ω̄) with |u|∞ ≤ δ, we have

I(a,0,λ)(u) =
a
2
‖u‖2 –

λ

p

∫
Ω

|u|p dx –
∫

Ω

G(x, u) dx

≥ a
2
‖u‖2 –

λ

p

∫
Ω

|u|p dx – C
∫

Ω

|u|2 dx

≥
(

–λ

p
– C|u|2–p

∞

)∫
Ω

|u|p dx

≥ 0

provided |u|2–p
∞ ≤ –λ

pC . Now, using [1] we know that u = 0 is also a local minimizer of I(a,0,λ)

in H1
0 (Ω) topology.

Moreover, since b ≥ 0, we also know that u = 0 is a local minimizer of I(a,b,λ) in H1
0 (Ω)

topology. The proof is completed. �

The proof of Theorem 1.2 will be separated into two parts, according to the sign of λ.

Proof of Theorem 1.2 (i) Case 1: λ > 0, m ≥ 1
2 (1–sgn(λ)) = 0. Using (f0) and (GC3), Lemmas

3.1 and 3.3 give the existence of a Gromoll–Meyer pair (W , W–) for I(0,b,0) at 0 such that

Cm(I(0,b,0), 0) = Hm(W , W–) 
= 0 for some m ≥ 0. (4.5)

For any v ∈ H1
0 (Ω), we have

〈
I(a,b,λ)

′(u), v
〉
= a

∫
Ω

∇u∇v dx + b‖u‖2
∫

Ω

∇u∇v dx – λ

∫
Ω

|u|p–2uv dx –
∫

Ω

f (x, u)v dx,

which implies that

‖I(a,b,λ) – I(0,b,0)‖C1(W ) = ‖I(a,b,λ) – I(0,b,0)‖C(W ) +
∥∥I ′

(a,b,λ) – I ′
(0,b,0)

∥∥
C(W )

= sup
u∈W

∣∣I(a,b,λ)(u) – I(0,b,0)(u)
∣∣ + sup

u∈W
sup

‖v‖≤1

∣∣〈I ′
(a,b,λ)(u) – I ′

(0,b,0)(u), v
〉∣∣

≤ Ca + Cλ + Ca sup
u∈W

sup
‖v‖≤1

‖u‖‖v‖ + Cλ sup
u∈W

sup
‖v‖≤1

‖u‖p–1‖v‖

≤ Ca + Cλ.

Then, for any ε > 0, there is β > 0 such that

‖I(a,b,λ) – I(0,b,0)‖C1(W ) < ε, for 0 < a,λ < β ,

which implies that (W , W–) is still a Gromoll–Meyer pair for I(a,b,λ) with the critical set

S[a,b,λ] = W ∩ KI(a,b,λ) , for 0 < a,λ < β .
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Therefore, for 0 < a, λ < β , using (4.5), we have

Cm
(
I(a,b,λ), [S[a,b,λ]]

)
= Hm(W , W–) 
= 0, for some m ≥ 0.

However, Lemma 4.1 gives

C�(I(a,b,λ), 0) = 0, ∀� ∈N.

The remaining part of the proof can be carried out in a similar way to Theorem 1.1.
(i) Case 2: λ < 0, m ≥ 1

2 (1 – sgn(λ)) = 1. Using (f0) and (GC3), Lemmas 3.1 and 3.3 show
that

Cm(I(0,b,0), 0) 
= 0 for some m ≥ 1. (4.6)

Since λ < 0, Lemma 4.2 gives

Cl(I(a,b,λ), 0) = δl,0F. (4.7)

Now, applying the arguments in the proof of Theorem 1.1 again, (4.6) and (4.7) contradict
with each other. Then the equation has at least one nontrivial solution.

(ii) The proof is similar to (i), here we omit it. �

5 Proof of Theorem 1.3
Lemma 5.1 Under the assumptions of Theorem 1.3, we have

C�(I(a,b,λ), 0) = δ�,0F.

Proof By (f0) and (GC3), there exists γ ∈ (4, 2∗) such that

∣∣G(x, u)
∣∣ ≤ C

(|u|4 + |u|γ )
, ∀u ∈R, x ∈ Ω ,

which implies that

I(a,b,λ)(u) =
a
2
‖u‖2 +

b
4
‖u‖4 –

λ

p

∫
Ω

|u|p dx –
∫

Ω

G(x, u) dx

≥ a
2
‖u‖2 – C|λ|‖u‖p – C‖u‖4 – C‖u‖γ

≥ 0

provided 2 ≤ p < 6 and ‖u‖ ≥ 0 small enough. Then we know that u = 0 is a local minimizer
of I(a,b,λ) in H1

0 (Ω) topology. The proof is completed. �

Proof of Theorem 1.3 Since g satisfies (GC3) for some m ≥ 1, from Lemmas 3.1 and 3.3,
we know that u = 0 is an isolated critical point of I(0,b,0), and there exists a Gromoll–Meyer
pair (W , W–) for I(0,b,0) at 0 such that

Cm(I(0,b,0), 0) = Hm(W , W–) 
= 0, for some m ≥ 1. (5.1)
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For any ε > 0, using 2 ≤ p < 6 and

‖I(a,b,λ) – I(0,b,0)‖C1(W ) = ‖I(a,b,λ) – I(0,b,0)‖C(W ) +
∥∥I ′

(a,b,λ) – I ′
(0,b,0)

∥∥
C(W )

= sup
u∈W

∣∣I(a,b,λ)(u) – I(0,b,0)(u)
∣∣ + sup

u∈W
sup

‖v‖≤1

∣∣〈I ′
(a,b,λ)(u) – I ′

(0,b,0)(u), v
〉∣∣

≤ Ca + C|λ| + Ca sup
u∈W

sup
‖v‖≤1

‖u‖‖v‖ + C|λ| sup
u∈W

sup
‖v‖≤1

‖u‖p–1‖v‖

≤ Ca + C|λ|,

we know that there is β > 0 such that

‖I(a,b,λ) – I(0,b,0)‖C1(W ) < ε, for 0 < a, |λ| < β ,

which implies that (W , W–) is still a Gromoll–Meyer pair for I(a,b,λ) with the critical set

S[a,b,λ] = W ∩ KI(a,b,λ) , for 0 < a, |λ| < β .

Therefore, for 0 < a, |λ| < β , using (5.1), we have

Cm
(
I(a,b,λ), [S[a,b,λ]]

)
= Hm(W , W–) 
= 0, for some m ≥ 1.

On the other hand, Lemma 5.1 gives

C�(I(a,b,λ), 0) = δ�,0F.

Thus Eq. (1.1) has at least one nontrivial solution. �
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