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Abstract
In this paper, we introduce a self-adaptive inertial subgradient extragradient method
for solving pseudomonotone equilibrium problem and common fixed point problem
in real Hilbert spaces. The algorithm consists of an inertial extrapolation process for
speeding the rate of its convergence, a monotone nonincreasing stepsize rule, and a
viscosity approximation method which guaranteed its strong convergence. More so,
a strong convergence theorem is proved for the sequence generated by the
algorithm under some mild conditions and without prior knowledge of the
Lipschitz-like constants of the equilibrium bifunction. We further provide some
numerical examples to illustrate the performance and accuracy of our method.
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1 Introduction
Muu and Oettli [40] introduced the equilibrium problem (shortly, EP) as a generalization
of many problems in nonlinear analysis, which include variational inequalities, convex
minimization, saddle point problems, fixed point problems, and Nash-equilibrium prob-
lems; see, e.g., [13, 40]. The EP also has a great impact on the development of many mathe-
matical models arising from several branches of pure and applied sciences such as physics,
economics, finance, image reconstruction, ecology, transportation, network elasticity and
optimization. Given a nonempty, closed, and convex subset C of a real Hilbert space H
and a bifunction f : C × C → R such that f (x, x) = 0 for all x ∈ C. The EP in the sense of
Muu and Oettli [40] (see also Blum and Oettli [13]) is defined as finding a point x∗ ∈ C
such that

f
(
x∗, y

)≥ 0, ∀y ∈ C. (1.1)
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We denote the set of solutions of the EP by EP(f ). Due to its importance and applications,
many authors have extensively studied several iterative methods for approximating the
solutions of the EP, see for example [11, 12, 18, 22, 23, 29–31, 41, 47].

Recently, researchers have considered solving EP (1.1) with pseudomonotone bifunc-
tion f . This is because many application problems are modeled with pseudomonotone
bifunction. More so, it is important to study the approximation of common solutions of
the EP and fixed point problem (i.e., find x ∈ C such that x ∈ EP ∩ F(T), where F(T) =
{x ∈ H : x = Tx}) because of some mathematical models whose constraints are expressed
as fixed point and equilibrium problems. Such models can be found in many practical
problems such as signal processing, network resource allocation, image recovery, etc.; see
for instance [26, 27, 36, 37].

Tada and Takahashi [46] first proposed the following hybrid method for approximating
a common solution of EP with monotone bifunction and fixed points of a nonexpansive
mapping T in Hilbert spaces:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C0 = Q0 = C,

zn ∈ C such that f (zn, w) + 1
λn

〈w – zn, zn – xn〉 ≥ 0,∀w ∈ C,

wn = αnxn + (1 – αn)Tzn,

Cn = {v ∈ C : ‖wn – v‖ ≤ ‖xn – v‖},
Qn = {v ∈ C : 〈x0 – xn, v – xn〉 ≤ 0},
xn+1 = PCn∩Qn x0.

(1.2)

It should be noted that the implementation of Algorithm (1.2) required solving a strongly
monotone regularized equilibrium problem for point zn:

Find zn ∈ C such that f (zn, w) +
1
λn

〈w – zn, zn – xn〉 ≥ 0, ∀w ∈ C. (1.3)

Such method does not hold if the bifunction is relaxed to pseudomonotone, which makes
the iterative method difficult for solving pseudomonotone EP (1.1). In 2008, Quoc et al.
[43] introduced a new process called extragradient method (EM) by extending the work of
Korpelevich [33] and Antipin [7] to the case of pseudomonotone EP. In particular, Quoc
et al. [43] algorithm is given as in Algorithm 1.1.

Later in 2013, Anh [1] introduced the following iterative scheme for approximating
a common solution of pseudomonotone EP and a fixed point of nonexpansive map-

Algorithm 1.1: Extragradient method
Step 0: Choose x0 ∈ C, λn > 0 and set n = 0.
Step 1: Compute yn = arg min{λnf (xn, z) + 1

2‖xn – z‖2 : z ∈ C}.
If xn = yn, then STOP. Else:

Step 2: Compute xn+1 = arg min{λnf (yn, z) + 1
2‖xn – z‖2 : z ∈ C}.

Set n = n + 1 and go to Step 1.
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ping T :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C0 = Q0 = C,

yn = arg min{λnf (xn, z) + 1
2‖xn – z‖2 : z ∈ C},

tn = arg min{λnf (yn, z) + 1
2‖xn – z‖2 : z ∈ C},

zn = αnxn + (1 – αn)Ttn,

Cn = {u ∈ C : ‖zn – u‖ ≤ ‖xn – u‖},
Qn = {u ∈ C : 〈x0 – xn, u – xn〉 ≤ 0},
xn+1 = PCn∩Qn x0.

(1.4)

It is evident that in Algorithm 1.1 and (1.4), one needs to solve two strongly con-
vex optimization problems in the feasible set C in each iteration of the algorithm.
This task can be very difficult if the set C is not a simple set, i.e., explicit. Hence,
there is need for an improvement on the extragradient method. Following Censor et
al. [14, 15], Hieu [22] introduced a Halpern-type subgradient extragradient method
(shortly, HSEM) which involves a half-space in the second minimization problem as in
Algorithm 1.2.

Note that the half-space Tn is explicit, and thus the HSEM has a competitive advantage
over the extragradient method in numerical computations. Also, it should be noted that
the convergence of the HSEM depends on the Lipschitz constants c1 and c2 which are not
easy to be determined. In an attempt to provide an alternative method which does not
require prior knowledge of the Lipschitz constants c1 and c2, Yang and Liu [48] proposed
the following modified HSEM with a nonincreasing stepsize and proved a strong conver-
gence theorem for finding a common solution of pseudomonotone EP and a fixed point
of a quasi-nonexpansive mapping S in real Hilbert spaces (Algorithm 1.3).

For more examples of extragradient and subgradient methods for finding a common
element in the set of solutions of equilibrium and fixed point problems, see for instance
[1–6, 20, 28, 32] and the references therein.

Algorithm 1.2: Halpern-type subgradient extragradient method
Step 0: Choose x0 ∈ H , λn > 0, and {αn} ⊂ (0, 1) such that

(i) 0 < λn < min

{
1

2c1
,

1
2c2

}
, (ii) lim

n→∞αn = 0, (iii)
∞∑

n=1

αn = +∞.

Step 1: Solve the two strongly convex optimization problems:

yn = arg min

{
λnf (xn, z) +

1
2
‖xn – z‖2 : z ∈ C

}
,

zn = arg min

{
λnf (yn, z) +

1
2
‖xn – z‖2 : z ∈ Tn

}
,

where Tn = {v ∈ H : 〈(xn – λnwn) – yn, v – yn〉 ≤ 0} and wn ∈ ∂2f (xn, yn).
Step 2: Compute xn+1 = αnx0 + (1 – αn)zn. Set n := n + 1 and go to Step 1.
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Algorithm 1.3: Modified Halpern-type subgradient extragradient method
Step 0: Take λ0 > 0, x0 ∈ H , μ ∈ (0, 1).
Step 1: Given the current iterate xn, compute

yn = argmin

{
λnf (xn, y) +

1
2
‖xn – y‖2, y ∈ C

}
.

Step 2: Choose wn ∈ ∂2f (xn, yn) such that xn – λnwn – yn ∈ NC(yn), compute

zn = argmin

{
λnf (yn, y) +

1
2
‖xn – y‖2, y ∈ Tn

}
,

where Tn = {z ∈ H : 〈xn – λnwn – yn, v – yn〉 ≤ 0}.
Step 3: Compute tn = αnx0 + (1 – αn)zn, xn+1 = βnzn + (1 – βn)Stn and

λn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{ μ(‖xn–yn‖2+‖zn–yn‖2)
2f (xn ,zn)–f (xn ,yn)–f (yn ,zn) ,λn}

if f (xn, zn) – f (xn, yn) – f (yn, zn) > 0,

λn otherwise.

Set n := n + 1 and return to Step 1.

Motivated by the work of Hieu [22] and Yang and Liu [48], in this paper, we introduce
a new self-adaptive inertial subgradient extragradient method which does not depend on
the Lipschitz constants c1 and c2 for finding solutions of pseudomonotone EP and a com-
mon fixed point of a countable family of demicontractive mappings in real Hilbert spaces.
The inertial extrapolation step in our algorithm is regarded as a means of improving the
speed of convergence of the algorithm (see for instance [8, 9, 17, 29, 31, 34, 39] on inertial-
type algorithms). Our method also consists of the viscosity approximation method (see
[38]) which is a generalization of the Halpern-type algorithm. We prove a strong conver-
gence theorem for the sequence generated by our method under some mild conditions
and without prior knowledge of the Lipschitz constants. It is noted in [10] that strong
convergence method is more desirable than weak convergence one because it translates
the physically tangible property that the energy ‖xn – x†‖2 of the error between the iterate
xn and a solution x† eventually become small. More importance of strong convergence
was also underlined in Güler [21].

The paper is organized as follows. In Sect. 2, we recall some basic definitions and pre-
liminary results which are necessary for our proof. Section 3 deals with proposing and
analyzing the convergence of our iterative method for solving the EP and finding a fixed
point of demicontractive mappings in real Hilbert spaces. Finally, in Sect. 4, we present
some numerical examples to illustrate the performance of the proposed algorithms in
comparison with related algorithms in the literature. Throughout this paper, we denote
the strong (resp. weak) convergence of a sequence {xn} ⊆ H to a point p ∈ H by xn → p
(resp. xn ⇀ p). We also denote the index set N = N\{0} = {1, 2, . . . }.

2 Preliminaries
In this section, we present some basic notions and results that are needed in the sequel.
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Definition 2.1 Recall that the bifunction f : C × C →R is said to be
(i) η-strongly monotone on C if there exists a constant η > 0 such that

f (u, v) + f (v, u) ≤ –η‖u – v‖2, ∀u, v ∈ C;

(ii) monotone on C if

f (u, v) + f (v, u) ≤ 0, ∀u, v ∈ C;

(iii) pseudomonotone on C if

f (u, v) ≥ 0 ⇒ f (v, u) ≤ 0, ∀u, v ∈ C;

(iv) satisfying a Lipschitz-like condition if there exist constants c1 > 0 and c2 > 0 such
that

f (u, v) + f (v, w) ≥ f (u, w) – c1‖u – v‖2 – c2‖v – w‖2, ∀u, v, w ∈ C. (2.1)

We note that(i) ⇒ (ii) ⇒ (iii) but the converse implications do not hold (see, e.g., [44]).

Throughout this paper, we assume that the following assumptions hold on f :
(A1) f is pseudomonotone on C and f (u, u) = 0 ∀u ∈ C;
(A2) f (·, v) is continuous on C for every v ∈ C;
(A3) f (u, ·) is convex, lower semicontinuous, and subdifferentiable on C for every u ∈ C;
(A4) f satisfies a Lipschitz-like condition.
For each u ∈ C, the subgradient of the convex function f (u, ·) at u is denoted by ∂2f (u, u),

i.e.,

∂2f (u, u) =
{

w ∈ H : f (u, v) ≥ f (u, u) + 〈w, v – u〉,∀v ∈ C
}

=
{

w ∈ H : f (u, v) ≥ 〈w, v – u〉,∀v ∈ C
}

.

The metric projection PC : H → C at a point x ∈ H is the necessary unique vector PCx in
C such that

∥
∥PC(x) – x

∥
∥ = min

{‖y – x‖ : y ∈ C
}

.

The metric projection satisfies the following identities (see, e.g., [45]):
(i) 〈x – y, PCx – PCy〉 ≥ ‖PCx – PCy‖2 for every x, y ∈ H ;

(ii) for x ∈ H and z ∈ C, z = PCx ⇔

〈x – z, z – y〉 ≥ 0, ∀y ∈ C; (2.2)

(iii) for x ∈ H and y ∈ C,

∥
∥y – PC(x)

∥
∥2 +

∥
∥x – PC(x)

∥
∥2 ≤ ‖x – y‖2. (2.3)
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The mapping φ : H → H is called a contraction if ‖φ(x) – φ(y)‖ ≤ α‖x – y‖ for α ∈ [0, 1)
and x, y ∈ H . It is easy to check that PC is an example of a contraction mapping on C.

A subset D of H is called proximal if, for each x ∈ H , there exists y ∈ D such that

‖x – y‖ = d(x, D).

In what follows, P(H) denotes the family of all nonempty proximal bounded subsets of H
and CB(H) denotes the family of nonempty, closed bounded subsets of H . The Hausdorff
metric on CB(H) is defined as

H(A, B) := max
{

sup
x∈A

d(x, B), sup
y∈B

d(y, A)
}

for all A, B ∈ CB(H). A point x̄ ∈ H is called a fixed point of a multivalued mapping S :
H → 2H if x̄ ∈ Sx̄. We say that S satisfies the endpoint condition if Sx̄ = {x̄} for all x̄ ∈ F(S).
We recall some basic definitions of multivalued mappings.

Definition 2.2 A multivalued mapping S : H → CB(H) is said to be
(1) nonexpansive if

H(Su, Sv) ≤ ‖u – v‖, ∀u, v ∈ H ;

(2) quasi-nonexpansive if F(S) �= ∅ and

H(Su, Sp) ≤ ‖u – p‖, ∀u ∈ H , p ∈ F(S);

(3) κ-demicontractive for 0 ≤ κ < 1 if F(S) �= ∅, and

H(Su, Sp)2 ≤ ‖u – p‖2 + κd(u, Su)2, ∀u ∈ H , p ∈ F(S).

Note that the class of κ-demicontractive mappings includes the class of nonexpansive
and quasi-nonexpansive mappings. Let S : H → P(H) be a multivalued mapping. We de-
fined the best approximation operator of S as follows:

PS(x) :=
{

y ∈ Sx : ‖x – y‖ = d(x, Sx)
}

.

It is easy to show that F(S) = F(PS) and PS satisfies the endpoint condition. More so, I – S is
said to be demiclosed at zero if for any sequence {xn} ⊂ H such that xn ⇀ x̄ and xn – un →
0, for un ∈ Sxn, then x̄ ∈ F(S).

The following identities hold in any Hilbert space:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H , (2.4)

and

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, ∀x, y ∈ H . (2.5)
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Lemma 2.3 ([16]) Let H be a real Hilbert space, xi ∈ H (1 ≤ i ≤ n) and {αi} ⊂ (0, 1) with
∑n

i=1 αi = 1. Then

∥
∥∥
∥∥

n∑

i=1

αixi

∥
∥∥
∥∥

2

=
n∑

i=1

αi‖xi‖2 –
n∑

i,j=1,i�=j

αiαj‖xi – xj‖2. (2.6)

Lemma 2.4 ([19]) Let C be a convex subset of a real Hilbert space H and ϕ : C → R be
a convex and subdifferentiable function on C. Then x∗ is a solution to the convex prob-
lem: minimize{ϕ(x) : x ∈ C} if and only if 0 ∈ ∂ϕ(x∗) + NC(x∗), where ∂ϕ(x∗) denotes the
subdifferential of ϕ and NC(x∗) is the normal cone of C at x∗.

Lemma 2.5 ([35]) Let {αn} and {δn} be sequences of nonnegative real numbers such that

αn+1 ≤ (1 – δn)αn + βn + γn, n ≥ 1,

where {δn} is a sequence in (0, 1) and {βn} is a real sequence. Assume that
∑∞

n=0 γn < ∞.
Then the following results hold:

(i) If βn ≤ δnM for some M ≥ 0, then {αn} is a bounded sequence.
(ii) If

∑∞
n=0 δn = ∞ and lim supn→∞

βn
δn

≤ 0, then limn→∞ αn = 0.

Lemma 2.6 ([36]) Let {an} be a sequence of real numbers such that there exists a nonde-
creasing subsequence {ani} of {an}. Then there exists a nondecreasing sequence {mk} ⊂ N

such that mk → ∞ and the following properties are satisfied for all (sufficiently large num-
ber k ∈N): amk ≤ amk +1 and ak ≤ amk +1, mk = max{j ≤ k : aj ≤ aj+1}.

3 Main results
In this section, we present our iterative algorithm and its analysis.

In what follows, let C be a nonempty closed convex subset of a real Hilbert space H ,
f : C × C → R be a bifunction satisfying (A1)–(A4). For i ∈ N , let Si : H → CB(H) be κi-
demicontractive mappings such that I – Si are demiclosed at zero and Si(x∗) = {x∗} for all
x∗ ∈ F(Si). Let φ be a fixed contraction on H with coefficient τ ∈ (0, 1). Suppose that the
solution set

Sol = EP(f ) ∩
∞⋂

i=1

F(Si) �= ∅.

The following conditions are assumed to be satisfied by the control parameters of our
algorithm.

(C1) θ ∈ [0, 1), λ1 > 0;
(C2) {δn} ⊂ (0, 1) such that

∑∞
n=1 δn = ∞ and limn→∞ δn = 0;

(C3) {εn} ⊂ [0,∞) such that εn = o(δn), i.e., limn→∞ εn
δn

= 0;
(C4) {βn,i}∞i=0 ⊂ (0, 1) such that

∑n
i=0 βn,i = 1;

(C5) lim infn→∞(βn,0 – κ)βn,i > 0, and κ = max{κi} for all i ∈N .
Next, we present our algorithm (Algorithm 3.1).

Remark 3.2 It is obvious that Tn is a half-space and C ⊂ Tn (see [22] for more details).
Note that (3.1) can be implemented easily since the value of ‖xn – xn–1‖ is known prior
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Algorithm 3.1: Self-adaptive inertial subgradient extragradient method
Step 0: Given λ1 > 0, μ ∈ (0, 1), α ≥ 3. Choose initial iterates x0, x1 ∈ C and set n = 1.
Step 1: Given the current iterates xn–1 and xn, choose αn such that 0 ≤ αn ≤ ᾱn, where

ᾱn =

⎧
⎨

⎩
min{ n–1

n+α–1 , εn
‖xn–xn–1‖ }, if ‖xn – xn–1‖ �= 0,

n–1
n+α–1 , otherwise.

(3.1)

Next, compute

wn = xn + αn(xn – xn–1),

yn = arg min

{
λnf (wn, y) +

1
2
‖wn – y‖2 : y ∈ C

}
.

(3.2)

If r(wn) = yn – wn = 0, set wn = zn and go to Step 3. Else, do Step 2.
Step 2: Choose ηn ∈ ∂2f (wn, yn) such that wn – λnηn – yn ∈ NC(yn). Compute

zn = arg min

{
λnf (yn, y) +

1
2
‖wn – y‖2 : y ∈ Tn

}
, (3.3)

where

Tn =
{

v ∈ H : 〈wn – λnηn – yn, v – yn〉 ≤ 0
}

.

Step 3: Calculate

xn+1 = δnφ(xn) + (1 – δn)

(

βn,0zn +
n∑

i=1

βn,iνn,i

)

, (3.4)

where νn,i ∈ Si(zn) and

λn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

min{ μ(‖wn–yn‖2+‖zn–yn‖2)
2[f (wn ,zn)–f (wn ,yn)–f (yn ,zn)] ,λn},

if f (wn, zn) – f (wn, yn) – f (yn, zn) �= 0,

λn, otherwise.

(3.5)

Set n ← n + 1 and go to Step 1.

to choosing αn. Also, we deduced from (3.1) that limn→∞ αn
δn

‖xn – xn–1‖ = 0. More so, if
wn = yn and wn ∈ Si(wn) for all i ∈ N , we arrived at common solutions of the equilibrium
and fixed point problems.

We begin by proving the following necessary results.

Lemma 3.3 The sequence {λn} generated by (3.5) is monotonically nonincreasing and

lim
n→∞λn ≥ min

{
μ

2 max{c1, c2} ,λ1

}
.
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Proof Clearly, λn is nonincreasing. On the other hand, it follows from Assumption (A4)
that

μ(‖wn – yn‖2 + ‖zn – yn‖2)
2[f (wn, zn) – f (wn, yn) – f (yn, zn)]

≥ μ(‖wn – yn‖2 + ‖zn – yn‖2)
2[c1‖wn – yn‖2 + c2‖yn – zn‖2]

≥ μ

max{c1, c2} .

So, the sequence {λn} is nonincreasing and has a lower bound of μ

max{c1,c2} . This implies
that there exists limn→∞ λn = λ ≥ min{ μ

max{c1,c2} ,λ1}. �

Lemma 3.4 For each v ∈ Sol and n ≥ 1, we have

‖zn – v‖2 ≤ ‖wn – v‖2 – (1 – μ)‖wn – yn‖2 – (1 – μ)‖yn – zn‖2. (3.6)

Proof By the definition of zn and Lemma 2.4, we get

0 ∈ ∂2

(
λnf (yn, y) +

1
2
‖xn – y‖2

)
(zn) + NTn (zn).

Thus, there exist qn ∈ ∂2f (yn, zn) and ξ ∈ NTn (zn) such that

λnqn + zn – wn + ξ = 0. (3.7)

Since ξ ∈ NTn (zn), then 〈ξ , y – zn〉 ≤ 0 for all y ∈ Tn. This together with (3.7) implies that

λn〈qn, y – zn〉 ≥ 〈wn – zn, y – zn〉 ∀y ∈ Tn. (3.8)

Since v ∈ Sol, then v ∈ EP(f ) and v ∈⋂∞
i=1 F(Si). Note that EP(f ) ⊂ C ⊆ Tn, we derive from

(3.8) that

λn〈qn, v – zn〉 ≥ 〈wn – zn, v – zn〉. (3.9)

By the fact that qn ∈ ∂2f (yn, zn), we get

f (yn, v) – f (yn, zn) ≥ 〈qn, v – zn〉.

This together with (3.9) implies that

λn
(
f (yn, v) – f (yn, zn)

)≥ 〈wn – zn, v – zn〉. (3.10)

Since v ∈ EP(f ), then f (v, yn) ≥ 0. From the pseudo-monotonicity of f , we get f (yn, v) ≤ 0.
Hence from (3.10), we get

–2λnf (yn, zn) ≤ 2〈wn – zn, v – zn〉. (3.11)

Since zn ∈ Tn, then

〈
(wn – λnηn) – yn, zn – yn

〉≤ 0.
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Thus

〈wn – yn, zn – yn〉 ≤ λn〈ηn, zn – yn〉. (3.12)

From the fact that ηn ∈ ∂2f (wn, yn) and the definition of subdifferential, we get

f (wn, y) – f (wn, yn) ≥ 〈ηn, y – yn〉 ∀y ∈ H ,

hence

λn
(
f (wn, zn) – f (wn, yn)

)≥ λn〈ηn, zn – yn〉 ≥ 〈wn – yn, zn – yn〉. (3.13)

Combining (3.11) and (3.13), we get

2λn
(
f (wn, zn) – f (wn, yn) – f (yn, zn)

) ≥ 2〈wn – yn, zn – yn〉 + 2〈wn – zn, v – zn〉
= ‖wn – yn‖2 + ‖yn – zn‖2 – ‖wn – zn‖2

– ‖wn – v‖2 + ‖wn – zn‖2 + ‖zn – v‖2.

Hence

‖zn – v‖2 ≤ ‖wn – v‖2 – ‖wn – yn‖2 – ‖yn – zn‖2

+ 2λn
(
f (wn, zn) – f (wn, yn) – f (yn, zn)

)
.

Using the definition of λn in the above inequality, we get

‖zn – v‖2 ≤ ‖wn – v‖2 – ‖wn – yn‖2 – ‖yn – zn‖2

+
2λn

λn+1
λn+1

(
f (wn, zn) – f (wn, yn) – f (yn, zn)

)
.

≤ ‖wn – v‖2 – ‖wn – yn‖2 – ‖yn – zn‖2

+
λn

λn+1
μ
(‖wn – yn‖2 + ‖zn – yn‖2). (3.14)

Observe that limn→∞ λnμ

λn+1
= μ. Hence, we obtain from (3.14)

‖zn – v‖2 ≤ ‖wn – v‖2 – (1 – μ)‖wn – yn‖2 – (1 – μ)‖yn – zn‖2. �

Lemma 3.5 The sequence {xn} generated by Algorithm 3.1 is bounded.

Proof Put un = βn,0zn +
∑n

i=1 βn,iνn,i and let v ∈ Sol. Then from Lemma 2.3 we have

‖un – v‖2 =

∥
∥∥
∥∥
βn,0zn +

n∑

i=1

βn,iνn,i – v

∥
∥∥
∥∥

2

≤ βn,0‖zn – v‖2 +
n∑

i=1

βn,i‖νn,i – v‖2 –
n∑

i=1

βn,0βn,i‖zn – νn,i‖2
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≤ βn,0‖zn – v‖2 +
n∑

i=1

βn,iH2(Sizn, Siv) –
n∑

i=1

βn,0βn,i‖zn – νn,i‖2

≤ βn,0‖zn – v‖2 +
n∑

i=1

βn,i
(‖zn – v‖2 + κi‖zn – νn,i‖2)

–
n∑

i=1

βn,0βn,i‖zn – νn,i‖2

= ‖zn – v‖2 –
n∑

i=1

(βn,0 – κ)βn,i‖zn – νn,i‖2, (3.15)

and by condition (C5), we get

‖un – v‖2 ≤ ‖zn – v‖2.

Therefore

‖xn+1 – v‖ =
∥
∥δnφ(xn) + (1 – δn)un – v

∥
∥

=
∥∥δn

(
φ(xn) – v

)
+ (1 – δn)(un – v)

∥∥

≤ δn
∥∥φ(xn) – v

∥∥ + (1 – δn)‖un – v‖
= δn

∥∥φ(xn) – φ(v) + φ(v) – v
∥∥ + (1 – δn)‖zn – v‖

≤ δnτ‖xn – v‖ + δn
∥
∥φ(v) – v

∥
∥ + (1 – δn)‖wn – v‖

= δnτ‖xn – v‖ + δn
∥
∥φ(v) – v

∥
∥ + (1 – δn)

∥
∥xn + αn(xn – xn–1) – v

∥
∥

≤ δnτ‖xn – v‖ + δn
∥
∥φ(v) – v

∥
∥ + (1 – δn)

[‖xn – v‖ + αn‖xn – xn–1‖
]

=
(
1 – (1 – τ )δn

)‖xn – v‖

+ (1 – τ )δn

[‖φ(v) – v‖
1 – τ

+
αn(1 – δn)‖xn – xn–1‖

δn(1 – τ )

]
.

Let M = max{ ‖φ(v)–v‖
1–τ

, supn≥1( 1–δn
1–τ

) αn
δn

‖xn – xn–1‖}. Then we have

‖xn+1 – v‖ ≤ (
1 – (1 – τ )δn

)‖xn – v‖ + (1 – τ )δnM.

Hence, by induction and Lemma 2.5(i), we have that {‖xn – v‖} is bounded. This implies
that {xn} is bounded, and consequently {yn}, {zn}, and {Sizn} are bounded. �

The following lemma will be used in proving the strong convergence of our Algo-
rithm 3.1.

Lemma 3.6 Let {xn} be the sequence generated by Algorithm 3.1. Then

an+1 ≤ (1 – θn)an + θnbn + cn, (3.16)

where an = ‖xn – v‖2, θn = 2δn(1–τ )
1–δnτ

, bn = 〈φ(v)–v,xn+1–v〉
1–τ

, cn = δ2
n

1–δnτ
‖xn – v‖2 + αnM(1–δn)2

1–δnτ
‖xn –

xn–1‖, and v ∈ Sol for some M > 0.
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Proof From (3.1), we get

‖wn – v‖2 =
∥∥xn + αn(xn – xn–1) – v

∥∥2

≤ ‖xn – v‖2 + α2
n‖xn – xn–1‖2 + 2αn‖xn – v‖‖xn – xn–1‖

= ‖xn – v‖2 + αn‖xn – xn–1‖
(
αn‖xn – xn–1‖ + 2‖xn – v‖)

≤ ‖xn – v‖2 + αnM‖xn – xn–1‖, (3.17)

where M = supn≥1(αn‖xn – xn–1‖ + 2‖xn – v‖). More so,

‖xn+1 – v‖2 =
∥∥δnφ(xn) + (1 – δn)un – v

∥∥2

≤ (1 – δn)2‖un – v‖2 + 2δn
〈
φ(xn) – v, xn+1 – v

〉

≤ (1 – δn)2‖wn – v‖2 + 2δn
∥∥φ(xn) – φ(v)

∥∥‖xn+1 – v‖
+ 2δn

〈
φ(v) – v, xn+1 – v

〉

≤ (1 – δn)2[‖xn – v‖2 + αnM‖xn – xn–1‖
]

+ 2δnτ‖xn – v‖‖xn+1 – v‖
+ 2δn

〈
φ(v) – v, xn+1 – v

〉

≤ (1 – δn)2[‖xn – v‖2 + αnM‖xn – xn–1‖
]

+ δnτ
(‖xn – v‖2 + ‖xn+1 – v‖2)

+ 2δn
〈
φ(v) – v, xn+1 – v

〉
.

Thus

‖xn+1 – v‖2 ≤
(

1 – 2δn + δnτ

1 – δnτ

)
‖xn – v‖2 +

δ2
n

1 – δnτ
‖xn – v‖2

+
αnM(1 – δn)2

1 – δnτ
‖xn – xn–1‖

+
2δn

1 – δnτ

〈
φ(v) – v, xn+1 – v

〉

=
(

1 –
2δn(1 – τ )

1 – δnτ

)
‖xn – v‖2 +

δ2
n

1 – δnτ
‖xn – v‖2

+
αnM(1 – δn)2

1 – δnτ
‖xn – xn–1‖

+
2δn

1 – δnτ

〈
φ(v) – v, xn+1 – v

〉
. (3.18)

Thus, we obtained the desired result. �

Next, we prove our strong convergence theorem.

Theorem 3.7 The sequence {xn} generated by Algorithm 3.1 converges strongly to x̄, where
x̄ = PSol(x̄) is the unique solution of the variational inequality

〈
(I – h)x̄, z – x̄

〉≥ 0, ∀z ∈ Sol. (3.19)
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Proof Let v ∈ Sol and put Γn = ‖xn – v‖2. We divide the proof into two cases.
Case 1: Suppose that there exists N ∈ N such that {Γn} is monotonically decreasing for

all n ≥ N . This implies that limn→∞ Γn exists, and since {xn} is bounded, we have

Γn – Γn+1 → 0, as n → ∞.

From (3.15), we have

‖xn+1 – v‖2 ≤ (1 – δn)‖un – v‖2 + 2δn
〈
φ(xn) – v, xn+1 – v

〉

≤ (1 – δn)

[

‖zn – v‖2 –
n∑

i=1

(βn,0 – κ)βn,i‖zn – νn,i‖2

]

+ 2δn
〈
φ(xn) – v, xn+1 – v

〉

≤ (1 – δn)

[

‖wn – v‖2 –
n∑

i=1

(βn,0 – κ)βn,i‖zn – νn,i‖2

]

+ 2δn
〈
φ(xn) – v, xn+1 – v

〉

≤ (1 – δn)

[

‖xn – v‖2 + αnM‖xn – xn–1‖ –
n∑

i=1

(βn,0 – κ)βn,i‖zn – νn,i‖2

]

+2δn
〈
φ(xn) – v, xn+1 – v

〉
.

This implies that

(1 – δn)
n∑

i=1

(βn,0 – κ)βn,i‖zn – νn,i‖2 ≤ (1 – δn)‖xn – v‖2 – ‖xn+1 – v‖2

+ αnM‖xn – xn–1‖ + 2δn
〈
φ(xn) – v, xn+1 – v

〉
.

Since δn → 0 and αn‖xn – xn–1‖ → 0, then

lim
n→∞

n∑

i=1

(βn,0 – κ)βn,i‖zn – νn,i‖2.

Using condition (C5), we obtain

lim
n→∞‖zn – νn,i‖ = 0. (3.20)

Similarly, from Lemma 3.5, we get

‖xn+1 – v‖2 ≤ (1 – δn)‖un – v‖2 + 2δn
〈
φ(xn) – v, xn+1 – v

〉

≤ (1 – δn)‖zn – v‖2 + 2δn
〈
φ(xn) – v, xn+1 – v

〉

≤ (1 – δn)
[‖wn – v‖2 – (1 – μ)‖wn – yn‖2 – (1 – μ)‖yn – zn‖2]

+ 2δn
〈
φ(xn) – v, xn+1 – v

〉

≤ (1 – δn)
[‖xn – v‖2 + αnM‖xn – xn–1‖ – (1 – μ)‖wn – yn‖2
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– (1 – μ)‖yn – zn‖2]

+ 2δn
〈
φ(xn) – v, xn+1 – v

〉
,

that is,

(1 – δn)(1 – μ)
[‖wn – yn‖2 + ‖yn – zn‖2] ≤ (1 – δn)‖xn – v‖2 + αnM‖xn – xn–1‖

+ 2δn
〈
φ(xn) – v, xn+1 – v

〉
.

This implies that

lim
n→∞(1 – μ)

[‖wn – yn‖2 + ‖yn – zn‖2] = 0.

Since μ ∈ (0, 1), thus we have

lim
n→∞‖wn – yn‖ = 0 and lim

n→∞‖yn – zn‖ = 0, (3.21)

hence

lim
n→∞‖zn – wn‖ = 0. (3.22)

Clearly, from (3.1)

‖xn – wn‖ = αn‖xn – xn–1‖ =
αn

δn
‖xn – xn–1‖.δn → 0, (3.23)

‖un – zn‖ ≤ βn,0‖zn – zn‖ +
n∑

i=1

βn,i‖νn,i – zn‖ → 0, (3.24)

and

‖xn+1 – un‖ ≤ δn
∥∥φ(xn) – un

∥∥ + (1 – δ)‖un – un‖ → 0. (3.25)

Therefore from (3.22)–(3.25), we obtain

lim
n→∞‖xn+1 – xn‖ = 0. (3.26)

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} such that xnk ⇀ z ∈ H and

lim sup
n→∞

〈
f (v) – v, xn – v

〉
= lim

k→∞
〈
f (v) – v, xnk – v

〉
=
〈
f (v) – v, z – v

〉
.

By (2.2), we have

lim sup
n→∞

〈
f (v) – v, xn – v

〉
=
〈
f (v) – v, z – v

〉≤ 0. (3.27)

Combining (3.27) and (3.26), it is easy to see that

lim sup
n→∞

〈
f (v) – v, xn+1 – v

〉≤ 0. (3.28)
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Since C is closed and convex, then z ∈ C. From (3.21) and (3.23), we get ynk ⇀ z and
wnk ⇀ z and by the definition of subdifferential of f and (3.12), we have

λnk

(
f (wnk , y) – f (wnk , ynk )

)≥ 〈wnk – ynk , y – ynk 〉 ∀y ∈ C.

Passing to the limit in the last inequality as k → ∞ and using assumptions (A1) and (A3)
with the fact that limk→∞ λnk = λ > 0, we get f (z, y) ≥ 0 for all y ∈ C. Hence, z ∈ EP(f ).
Furthermore, from (3.22) and (3.23), we have znk ⇀ z. Since Si are demiclosed at zero for
i = 1, 2, . . . , m, it follows from (3.20) that z ∈ F(Si) for i = 1, 2, . . . , m. Therefore z ∈ Sol =
EP(f ) ∩⋂∞

i=1 F(Si).
Using Lemma 2.5(ii), Lemma 3.6, and (3.28), we arrive at ‖xn – v‖ → 0. This implies that

{xn} converges strongly to v.
Case 2: Suppose that {Γn} is not monotonically decreasing, that is, there is a subsequence

{Γnj} of {Γn} such that Γnj < Γnj+1 for all j ∈ N . Then, by Lemma 2.6, we can define an
integer sequence {τ (n)} for all n ≥ n0 by

τ (n) = max{k ≤ n : Γk < Γk+1}.

Moreover, {τ (n)} is a nondecreasing sequence such that τ (n) → ∞ as n → ∞ and Γτ (n) ≤
Γτ (n)+1 for all n ≥ n0. From (3.6) and (3.15), we can show that

lim
n→∞‖zτ (n) – ντ (n),i‖ = 0, lim

n→∞‖yτ (n) – wτ (n)‖ = 0 and lim
n→∞‖yτ (n) – zτ (n)‖ = 0.

By a similar argument as in Case 1, we can also show that

lim sup
n→∞

〈
f (v) – v, xτ (n)+1 – v

〉≤ 0.

Also from Lemma 3.6, we get

0 ≤ Γτ (n)+1 – Γn

≤
(

1 –
2δn(1 – τ )
1 – δτ (n)τ

)
‖xτ (n) – v‖2 +

δ2
τ (n)

1 – δτ (n)τ
‖xτ (n) – v‖2

+
ατ (n)M(1 – δτ (n))2

1 – δτ (n)τ
‖xτ (n) – xτ (n)–1‖

+
2δτ (n)

1 – δτ (n)τ

〈
φ(v) – v, xτ (n)+1 – v

〉
– ‖xτ (n) – v‖2.

Hence, we have

2(1 – τ )
1 – δτ (n)τ

‖xτ (n) – v‖2 ≤ δτ (n)

1 – δτ (n)τ
‖xτ (n) – v‖2 +

ατ (n)M(1 – δτ (n))2

δτ (n)(1 – δτ (n)τ )
‖xτ (n) – xτ (n)–1‖

+
2

1 – δτ (n)τ

〈
φ(v) – v, xτ (n)+1 – v

〉

→ 0.
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This implies that limn→∞ Γτ (n)+1 = 0. Thus, we have

0 ≤ Γn ≤ max{Γτ (n),Γτ (n)+1} ≤ Γτ (n)+1 → 0.

Therefore ‖xn – v‖ → 0, and thus xn → 0. This completes the proof. �

Remark 3.8 We highlight our contributions as follows:
(i) It is easy to see that if φ(xn) = u for any arbitrary u ∈ H , Algorithm 3.1 reduces to a

modified Halpern-type inertial extragradient method and the result is still valid.
This improves the results of Hieu [22] as well as Yang and Liu [48].

(ii) In [25], the authors presented a weak convergence theorem for approximating
solution of pseudomonotone EP provided the stepsize satisfies certain mild
condition which requires prior estimate of the Lipschitz-like constants c1 and c2. In
this paper, we proved a strong convergence result without prior estimate of the
Lipschitz-like constants. This is very important since there is no best estimate for
the Lipschitz-like constant.

(iii) Also our result extends the results of [23, 24, 42] to self-adaptive inertial
subgradient extragradient method with viscosity approximation method.

4 Numerical examples
In this section, we give some numerical examples to support our main result. All the op-
timization subproblems are effectively solved by the function quadprog in Matlab. The
computations are carried out using MATLAB program on a Lenovo X250, Intel (R) Core
i7 vPro with RAM 8.00 GB. We show the numerical behavior of the sequences generated
by Algorithm 3.1 and also compare the performance with Algorithm 1.2 of Hieu [22] and
Algorithm 1.3 of Yang and Liu [48].

Example 4.1 We consider the Nash–Cournot equilibrium model in [42] with the bifunc-
tion f : RN → R

N →R defined by

f (x, y) = 〈Px + Qy + q, y – x〉,

where q ∈ R
N and P, Q are two matrices of order N such that Q is symmetric positive

semidefinite and Q–P is negative semidefinite. In this case, the bifunction f satisfies (A1)–
(A4) and has c1 = c2 = ‖P–Q‖

2 , see [42], Lemma 6.2. The vector q is generated randomly
and uniformly with its entries being in [–2, 2] and the two matrices P, Q are generated
randomly such that their properties are satisfied. For each i ∈N , we define the multivalued
mapping Si : RN → 2R

N by

Si =

⎧
⎨

⎩
[ –(1+2i)

2 x, –(1 + i)x], x ≤ 0,

[–(1 + i)x, – (1+2i)
2 x], x > 0.

It is easy to show that Si is a κi-demicontractive mapping with κi = 4i+8i
4i2+12i+9 ∈ (0, 1) and

F(Si) = {0} for each i ∈ N . Let λ1 = 0.07, μ = 0.7, α = 3, φ(x) = x
4 , εn = 1

(n+1)1.5 , δn = 1
(n+1)0.5
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and for each n ∈N , i ≥ 1, let {βn,i} be defined by

βn,i =

⎧
⎪⎪⎨

⎪⎪⎩

0 if n < i,

1 – n
n+1

∑n
k=1

1
2k if n = i,

1
2i+1 ( n

n+1 ) if n > i.

It is easy to verify that conditions (C1)–(C5) are satisfied. We implement the experiments
for various values of N and m as follows:

Case I: N = 50 and m = 5,
Case II: N = 100 and m = 20,

Case III: N = 200 and m = 50,
Case IV: N = 500 and m = 100.

For Algorithm 1.2, we take λn = 0.07, αn = 1
n+1 , while for Algorithm 1.3, we take λ1 = 0.07,

μ = 0.7, and Sx = x
2 , which is quasi-nonexpansive. We use ‖xn+1 – xn‖ < 10–4 as a stopping

criterion for the numerical computation. Figures 1–3 describe the behavior of ‖xn+1 – xn‖
against the number of iterations for Example 4.1. Also, we showed the CPU time taken
and the number of iterations for each algorithm in Table 1.

Example 4.2 Let H1 = H2 = �2(R) be the linear spaces whose elements are all 2-summable
sequences {xj}∞j=1 of scalars in R, that is,

�2(R) :=

{

x = (x1, x2, . . . , xj, . . .), xj ∈ R and
∞∑

j=1

|xj|2 < ∞
}

Figure 1 Example 4.1, top left: Case I; top right: Case II; bottom left: Case III; bottom right: Case IV
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Figure 2 Example 4.1, top left: Case I; top right: Case II; bottom left: Case III; bottom right: Case IV

with the inner product 〈·, ·〉 : �2 × �2 → R and ‖ · ‖ : �2 → R defined by 〈x, y〉 :=
∑∞

j=1 xjyj

and ‖x‖ = (
∑∞

j=1 |xj|2) 1
2 , where x = {xj}∞j=1, y = {yj}∞j=1. Let C = {x ∈ H : ‖x‖ ≤ 1}. Define the

bifunction f : C × C →R by

f (x, y) =
(
3 – ‖x‖)〈x, y – x〉 ∀x, y ∈ C.

Following [44], it is easy to show that f is a pseudomonotone bifunction which is not
monotone and f satisfies the Lipschitz-like condition with constant c1 = c2 = 5

2 . Also, f
satisfies assumptions (A2) and (A3). For i ∈N , we define Si : C → CB(�2(R)) by

Six =
[

0,
x
5i

]
for all i ∈N , x ∈ C. (4.1)

It can easily be seen that Si is 0-demicontractive for all i ∈N and F(Si) = {0}. Also Sol = {0}.
We define φ : �2 → �2 by φ(x) = x

2 where x = (x1, x2, . . . , xj, . . . ), xj ∈ R, and take λ1 = 0.01,
μ = 0.5, δn = 1

10(n+1) , εn = δ2
n and {βn,i} is as defined in Example 4.1. For Algorithm 1.2, we

take λn = 0.01, αn = 1
10(n+1) and for Algorithm 1.3, we take λ1 = 0.01 and μ = 0.5. We test

the algorithms for the following initial values as follows:
Case I: x0 = (1, 1, 0, . . . , 0, . . . ), x1 = (1, 0, 1, , . . . , 0, . . . ),

Case II: x0 = (1, 0, 0, . . . , 0, . . . ), x1 = (0, 1, 1, , . . . , 0, . . . ),
Case III: x0 = (1, 0, 1, . . . , 0, . . . ), x1 = (1, 1, 0, , . . . , 0, . . . ),
Case IV: x0 = (1, 1, 0, . . . , 0, . . . ), x1 = (1, 0, 0, , . . . , 0, . . . ).

We use the following stopping criterion ‖xn+1 – xn‖ < 10–5 for the numerical computa-
tion and plots the graphs ‖xn+1 – xn‖ against the number of iterations in each case. The
numerical results can be seen in Table 2 and Fig. 2.
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Figure 3 Example 4.1, top left: Case I; top right: Case II; bottom left: Case III; bottom right: Case IV

Table 1 Computational result for Example 4.1

Algorithm 3.1 Algorithm 1.2 Algorithm 1.3

Case I No of Iter. 6 11 9
CPU time (sec) 0.1168 0.9190 0.4081

Case II No of Iter. 6 12 10
CPU time (sec) 0.1450 1.3035 0.5058

Case III No of Iter. 6 12 10
CPU time (sec) 0.1638 2.0598 0.8749

Case IV No of Iter. 6 20 10
CPU time (sec) 0.6649 2.4610 1.3722

Table 2 Computational result for Example 4.2

Algorithm 3.1 Algorithm 1.2 Algorithm 1.3

Case I No of Iter. 46 110 74
CPU time (sec) 1.4865 4.2478 2.6944

Case II No of Iter. 47 117 80
CPU time (sec) 3.3320 9.2959 5.3514

Case III No of Iter. 48 120 95
CPU time (sec) 1.9400 8.0103 6.5045

Case IV No of Iter. 48 109 87
CPU time (sec) 2.5874 8.1565 5.8446

Example 4.3 In this example, we take H = L2([0, 1]) with the inner product 〈x, y〉 =
∫ 1

0 x(t)y(t) dt and the norm ‖x‖ = (
∫ 1

0 x2(t) dt) 1
2 for all x, y ∈ L2([0, 1]). The set C is de-

fined by C = {x ∈ H :
∫ 1

0 (t2 + 1)x(t) dt ≤ 1} and the function f : C × C → R is given by
f (x, y) = 〈Ax, y – x〉 where Ax(t) = max{0, x(t)}, t ∈ [0, 1] for all x ∈ H . We defined the
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Table 3 Computational result for Example 4.3

Algorithm 3.1 Algorithm 1.2 Algorithm 1.3

Case I No of Iter. 6 20 10
CPU time (sec) 0.7455 3.5810 1.6607

Case II No of Iter. 7 40 20
CPU time (sec) 1.2266 5.6197 2.9003

Case III No of Iter. 7 30 15
CPU time (sec) 1.2266 5.5738 2.6539

Case IV No of Iter. 6 18 9
CPU time (sec) 0.7662 4.2516 1.5359

mapping Si : H → 2H by Si(x) = {(– 1+i
i )x} for each i ∈ N . It is not difficult to show that

Si is demicontractive with κi = 1
1+2i , F(Si) = {0} and (I – Si) is demiclosed at 0. We take

φ(x) = x(t)
2 , μ = 0.05, λ0 = 0.25, εn = 1

(n+1)2 , δn = 1
n+1 , and {βn,i} is as defined in Example 4.1.

We test Algorithms 3.1, 1.2, and 1.3 for the following initial values:
Case I: x0 = t2 + 1 and x1 = sin(2t),

Case II: x0 = cos(2t)
2 and x1 = sin(3t)

30 ,
Case III: x0 = exp(5t)

80 and x1 = exp(2t)
40 ,

Case IV: x0 = cos(2t) and x1 = exp(–3t2).
We use ‖xn+1 – xn‖ < 10–4 as a stopping criterion for the numerical computation and plot
the graphs of ‖xn+1 – xn‖ against the number of iterations in each case. The numerical
results can be seen in Table 3 and Fig. 3.

5 Conclusion
The paper presents a self-adaptive inertial subgradient extragradient method for finding a
solution of pseudomonotone equilibrium problem and a common fixed point of a count-
able family of κ-demicontractive mappings in Hilbert spaces. The algorithm consists of
an inertial extrapolation step and a viscosity approximation method, while the stepsize is
defined by a nonincreasing monotone stepsize rule. A strong convergence result is proved
without prior estimate of the Lipschitz-like constants of the pseudomonotone bifunction.
Finally, some numerical examples were given to show the efficiency and accuracy of the
method with respect to related methods in the literature. The result in this paper improves
and extends the corresponding results of [1–6, 22, 24, 25, 32, 42, 48].
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