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1 Introduction
Recently, a new direction has been discovered for the extension of the Banach contraction
principle [6] to metric spaces endowed with a partial order. Ran and Reurings [20] have
successfully carried out the first attempt; in particular, they showed, how this extension is
useful when dealing with some special matrix equations. A similar approach was followed
by Nieto and Rodríguez-López and used such arguments in solving some differential equa-
tions [18]. Bachar and Khamsi [5] studied the existence of fixed points of monotone non-
expansive mappings defined on partially ordered Banach spaces. Dehaish and Khamsi [10]
have given an analogue of the fixed point theorem of Browder and Göhde for monotone
nonexpansive mappings on a very general nonlinear domain. For a thorough discussion of
monotone nonexpansive mappings, see also the paper by Uddin et al. [23]. Recently, Al-
furaidan and Khamsi [3] have given an analogue of the fixed point theorem of Goebel and
Kirk for monotone asymptotically nonexpansive mapping. In 2005, Sahu [21] introduced
nearly asymptotically nonexpansive mapping and proved some fixed point theorems. Ag-
garwal et al. [1, 2] studied some convergence behaviors of monotone nearly asymptotically
nonexpansive mappings in partially ordered hyperbolic metric space.

Some classical fixed point theorems for single-valued nonexpansive mappings have been
extended to multivalued mappings. The first results in this direction were established by
Markin [17] in a Hilbert space setting and by Browder [9] for spaces having a weakly con-
tinuous duality mapping. Lami Dozo [16] generalized these results to a Banach space sat-
isfying Opial’s condition.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13663-020-00675-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-020-00675-z&domain=pdf
mailto:sami.a.shukri@ahu.edu.jo


Shukri Fixed Point Theory and Applications          (2020) 2020:8 Page 2 of 10

If the fixed point equation Tx = x of a given mapping T does not have a solution, then
it is of interest to find an approximate solution for it. In other words, we are in search of
an element in the domain of the mapping, whose image is as close to it as possible. This
situation motivated to develop the notion of “best proximity point” (see [11, 15]). The best
proximity point theorems can be viewed as a generalization of fixed point theorems, since
most fixed point theorems can be derived as corollaries of best proximity point theorems.

In this work, based on some geometrical properties of CATp(0) spaces, for p ≥ 2, we ob-
tain two fixed point results for monotone multivalued nonexpansive mappings and proxi-
mally monotone nonexpansive mappings. Which under some assumptions, reduce to co-
incide and generalize a fixed point result for monotone nonexpansive mappings. This work
is a continuity of the previous work of Ran and Reurings, Nieto and Rodríguez-López done
for monotone contraction mappings.

2 CATp(0) spaces
In this section, we introduce the basic notations and terminologies which we will use
throughout this work. Let (M, d) be a metric space. A continuous mapping from the in-
terval [0, 1] to M is called a path. A path γ : [0, 1] → M is called a geodesic if d(γ (s),γ (t)) =
|s – t|d(γ (0),γ (1)), for every s, t ∈ [0, 1]. We will say that (M, d) is a geodesic space if every
two points x, y ∈ M are connected by a geodesic, i.e., there exists a geodesic γ : [0, 1] → M
such that γ (0) = x and γ (1) = y. In this case, we denote such geodesic by [x, y]. Note that in
general such a geodesic is not uniquely determined by its endpoints. For a point z ∈ [x, y],
we will use the notation z = (1 – t)x ⊕ ty, where t = d(x, z)/d(x, y) assuming x �= y. The
metric space (M, d) is called uniquely geodesic if every two points of M are connected by
a unique geodesic. In this case [x, y] will denote the unique geodesic connecting x and y
in M. A subset C of M is said to be convex whenever [x, y] ⊂ C for any x, y ∈ C.

The most fundamental examples of geodesic metric spaces are normed vector spaces,
As nonlinear examples, one can consider the CAT(0) spaces [8].

A metric space M is said to be a CAT(0) space (the term is due to M. Gromov-see, e.g.,
[8], page 159) if it is geodesically connected, and if every geodesic triangle in M is at least
as “thin” as its comparison triangle in the Euclidean plane.

Recently, Khamsi and Shukri in [14], have extended the Gromov geometric definition
of CAT(0) spaces to the case when the comparison triangles belong to a general Banach
space. In particular, the case when the Banach space is lp, p ≥ 2.

Recall that a geodesic triangle �(x1, x2, x3) in a geodesic metric space (M, d) consists of
three points x1, x2, x3 in M (the vertices of �) and a geodesic segment between each pair
of vertices (the edges of �). A comparison triangle for geodesic triangle �(x1, x2, x3) in
(M, d) is a triangle �(x1, x2, x3) := �(x̄1, x̄2, x̄3) in the Banach space lp, for p ≥ 2, such that
‖xi – xj‖ = d(xi, xj) for i, j ∈ {1, 2, 3}. A point x̄ ∈ [x̄1, x̄2] is called a comparison point for
x ∈ [x1, x2] if d(x1, x) = d(x̄1, x̄).

Definition 2.1 ([14]) Let (M, d) be a geodesic metric space. M is said to be a CATp(0)
space, for p ≥ 2, if, for any geodesic triangle � in M, there exists a comparison triangle �

in lp such that the comparison axiom is satisfied, i.e., for all x, y ∈ � and all comparison
points x, y ∈ �, we have

d(x, y) ≤ ‖x – y‖.
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It is obvious that lp, p > 2, is a CATp(0) space which is not a CAT(0) space [14].
Let x, y1, y2 be in M, and y1⊕y2

2 be the midpoint of the geodesic [y1, y2], then the com-
parison axiom implies

dp
(

x,
y1 ⊕ y2

2

)
≤ 1

2
dp(x, y1) +

1
2

dp(x, y2) –
1
2p dp(y1, y2), (2.1)

This inequality is the (CNp) inequality of Khamsi and Shukri [14].

3 Monotone multivalued nonexpansive mappings
The extension of the Banach contraction principle in metric spaces endowed with a partial
order was initiated by Ran and Reurings [20]. In order to discuss such an extension, we
will need to assume that the metric space (X, d) is endowed with a partial order 
. We will
say that x, y ∈ X are comparable whenever x 
 y or y 
 x. Recall that an order interval is
any of the subsets [a,→) = {x ∈ X; a 
 x} and (←, b] = {x ∈ X; x 
 b}, for any a, b ∈ X.

Next we give the definition of monotone mappings.

Definition 3.1 Let (M, d,
) be a metric space endowed with a partial order. Let T : M →
M be a mapping. T is said to be monotone or order-preserving if

x 
 y �⇒ T(x) 
 T(y),

for any x, y ∈ M.

Next we give the definition of monotone nonexpansive mappings.

Definition 3.2 Let (M, d,
) be a metric space endowed with a partial order. Let T : M →
M be a mapping. T is said to be monotone nonexpansive mapping if T is monotone and

d
(
T(x), T(y)

) ≤ d(x, y),

for any x, y ∈ M such that x and y are comparable.

The definition of monotone multivalued nonexpansive mappings finds its roots in [13].

Definition 3.3 Let (M, d,
) be a metric space endowed with a partial order and C a
nonempty subset of M. A multivalued mapping T : C → 2C is said to be monotone in-
creasing (resp. decreasing) nonexpansive if for any x, y ∈ C with x 
 y and any u ∈ T(x)
there exists v ∈ T(y) such that

u 
 v (resp. v 
 u) and d(u, v) ≤ d(x, y).

x ∈ C is called a fixed point of a single-valued mapping T if and only if T(x) = x. For a
multivalued mapping T , x is a fixed point if and only if x ∈ T(x). The set of all fixed points
of a mapping T is denoted by Fix(T).

Let us discuss the behavior of type functions in CATp(0) metric spaces, for p ≥ 2. It
is worth mentioning that these functions are very useful when one needs to prove the
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existence of fixed points of mappings. Recall that τ : M → R+ is called a type if there
exists a bounded sequence {xn} in M such that

τ (x) = lim sup
n→∞

d(x, xn).

Theorem 3.1 ([14]) Let (M, d) be a complete CATp(0) metric space, with p ≥ 2. Let C be
any nonempty, closed, convex and bounded subset of M. Let τ be a type defined on C. Then
any minimizing sequence {xn} ⊂ C of τ is convergent. Its limit x is the unique minimum of
τ , which is called the asymptotic center of {xn}, and satisfies

τ p(x) +
1

2p–1 dp(x, z) ≤ τ p(z), (3.1)

for any z ∈ C.

Note that the inequality (3.1) is similar to Opial’s condition defined in Banach spaces,
which is introduced in [19], to give a characterization for weak convergent sequences.
From this point of view, an analogue to the weak convergence in lp spaces is introduced in
complete CATp(0) spaces, for p ≥ 2, as follows.

Definition 3.4 We shall say that {xn} ⊂ M weakly converges to a point x ∈ M if x is the
asymptotic center of each subsequence of {xn}. We use the notation xn →ω x.

Clearly, if xn → x, then xn →ω x. If there is a subsequence {xnK } of {xn} such that xnK →ω

x for some x ∈ M, we say that x is a weak cluster point of the sequence {xn}. It is obvious
that each bounded sequence has a weak cluster point (see Proposition 3.1.2. of [4]). This
situation is completely analogous to strong and weak convergences in lp spaces, for p ≥ 2.

Now we are ready to state our main result,

Theorem 3.2 Let (M, d,
) be a complete partially ordered CATp(0) for p ≥ 2, and as-
sume that order intervals are convex and closed. Let C be a nonempty, closed, convex and
bounded subset of M not reduced to one point. Set C(C) to be the set of all nonempty closed
subsets of C. Let T : C → C(C) be a monotone increasing multivalued nonexpansive map-
ping. If CT := {x ∈ C; x 
 y for some y ∈ T(x)} is not empty, then T has a fixed point.

Proof For x0 ∈ CT . i.e., there exists y0 ∈ T(x0) such that x0 
 y0. Set x1 = x0⊕y0
2 . Since order

intervals are convex, we have x0 
 x1 
 y0. Since T is monotone increasing multivalued
nonexpansive mapping, there is y1 ∈ T(x1) such that y0 
 y1 and d(y1, y0) ≤ d(x1, x0). Con-
tinuing in this manner we get an iteration sequence {xn} in C defined by

xn+1 =
xn ⊕ yn

2
, n ≥ 0. (3.2)

By induction, we will prove that

xn 
 xn+1 
 yn 
 yn+1

and

d(yn+1, yn) ≤ d(xn+1, xn),
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for any n ≥ 1. Note that the sequence {d(xn, yn)} is decreasing. Indeed,

d(xn+1, yn+1) ≤ d(xn+1, yn) + d(yn+1, yn)

= d(xn+1, xn) + d(yn+1, yn)

≤ d(xn+1, xn) + d(xn+1, xn)

= 2d(xn+1, xn)

= d(xn, yn).

It is not difficult to see that

(
1 +

n
2

)
d(yi, xi) ≤ d(yi+n, xi)

+ 2n(d(yi, xi) – d(yi+n, xi+n)
)
,

for any i, n ∈N by an induction argument on i.
Set r = limn→+∞ d(yn, xn). Then, if we let i → +∞ in the above inequality, we get (1 +

n
2 )r ≤ δ(C), for any n ≥ 1, where δ(C) = sup{d(x, y); x, y ∈ C} < +∞. This will obviously
imply r = 0, i.e., limn→+∞ d(xn, yn) = 0. In particular, we have limn→∞ dist(xn, T(xn)) = 0,
where

dist
(
xn, T(xn)

)
= inf

{
d(xn, y); y ∈ T(xn)

}
.

i.e., T has an approximate fixed point sequence {xn} ∈ C of T .
Since C is bounded and closed, there exists ω ∈ C, a weak cluster point of {xn}, i.e., there

exists a subsequence {xnk } of {xn} weakly converging to ω ∈ C.
Since {xn} is monotone increasing, together with the assumption that order intervals are

closed, we have xnk 
 ω, for any n ≥ 1. Since T is monotone increasing multivalued non-
expansive mapping, there exists ωnk ∈ T(ω) such that ynk 
 ωnk and d(ynk ,ωnk ) ≤ d(xnk ,ω),
for any n. Assume {ωnk } converges to ω. Since T(ω) is closed, we conclude that ω ∈ T(ω),
i.e. ω is a fixed point of T . Indeed, if ωnk � w, then there exist a subsequence {znk } of {ωnk }
and ε > 0 such that d(znk ,ω) > ε. By the (CNp) inequality, we observe that

dp
(

xnk ,
znk ⊕ ω

2

)
≤ 1

2
dp(xnk , znk ) +

1
2

dp(xnk ,ω) –
(

ε

2

)p

.

Taking lim supnk→∞,

lim sup
nk→∞

dp
(

xnk ,
znk ⊕ ω

2

)
≤ 1

2
lim sup
nk→∞

dp(xnk , znk ) +
1
2

lim sup
nk→∞

dp(xnk ,ω) –
(

ε

2

)p

≤ 1
2

lim sup
nk→∞

dp(xnk ,ωnk ) +
1
2

lim sup
nk→∞

dp(xnk ,ω) –
(

ε

2

)p

=
1
2

lim sup
nk→∞

dp(ynk ,ωnk ) +
1
2

lim sup
nk→∞

dp(xnk ,ω) –
(

ε

2

)p
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≤ 1
2

lim sup
nk→∞

dp(xnk ,ω) +
1
2

lim sup
nk→∞

dp(xnk ,ω) –
(

ε

2

)p

= lim sup
nk→∞

dp(xnk ,ω) –
(

ε

2

)p

.

Finally, by Theorem 3.1, we conclude

lim sup
nk→∞

dp(xnk ,ω) < lim sup
nk→∞

dp
(

xnk ,
znk ⊕ ω

2

)
≤ lim sup

nk→∞
dp(xnk ,ω) –

(
ε

2

)p

.

This contradicts the fact that ε > 0. Therefore, limnk→∞ ωnk = ω. �

Corollary 3.1 Let (M, d,
) be a complete partially ordered CATp(0) for p ≥ 2, and as-
sume that order intervals are convex and closed. Let C be a nonempty, closed, convex and
bounded subset of M not reduced to one point. Let T : C → C be a monotone increasing
nonexpansive mapping. Assume there exists x0 ∈ C such that x0 and T(x0) are compara-
ble. Then T has a fixed point.

4 Proximally monotone nonexpansive mappings
Let A, B be nonempty subsets of a metric space (M, d). Then the proximity pair associated
with the pair (A, B), denoted by (A0, B0), is defined by

A0 =
{

x ∈ A : d(x, y) = d(A, B); for some y ∈ B
}

and

B0 =
{

y ∈ B : d(x, y) = d(A, B); for some x ∈ A
}

,

where d(A, B) = inf{d(x, y); (x, y) ∈ A × B}. It is clear that A0 is not empty if and only if B0

is not empty.
If the fixed point equation Tx = x of a given mapping T does not have a solution, then it

is of interest to find an approximate solution for the fixed point equation.

Definition 4.1 Let A and B be nonempty subsets of a metric space (M, d), and T : A → B
be a mapping. A point x ∈ A is said to be a best proximity point of T if

d(x, Tx) = d(A, B) = inf
{

d(a, b); a ∈ A, b ∈ B
}

.

Note that, if A ∩ B �= ∅, then x is a best proximity point of T if T(x) = x, i.e., x is a fixed
point of T .

The definition of proximally monotone mappings has roots in [7]. Let us define the con-
cept of proximally monotone nonexpansive mappings on a partially ordered metric space.

Definition 4.2 Let A, B be nonempty subsets of M and let T : A → B be a mapping.
(1) T is said to be proximally monotone if it satisfies the condition:

x 
 y, d(u, Tx) = d(A, B) and d(v, Ty) = d(A, B) imply u 
 v

for all x, y, u, v ∈ A.
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(2) T is said to be proximally monotone nonexpansive mapping if T is proximally
monotone and

d(Tx, Ty) ≤ d(x, y),

where x, y ∈ A and x and y are comparable.

If A = B, then the above definition coincides with the definition of monotone nonexpan-
sive mappings and the best proximity point x reduces to a fixed point of T .

Next, let us define the nearest point projection PC : M → 2C by

PC(x) =
{

c ∈ C; d(x, c) = inf
{

d(x, c) : c ∈ C
}}

.

If PC(x) is reduced to one point, for every x in M, then C is said to be a Chebyshev set.
In this case, the mapping PC is not seen as a multivalued mapping but a single-valued
mapping, i.e., PC : M → C defined by

d
(
x, PC(x)

)
= inf

{
d(x, c) : c ∈ C

}
,

for any x ∈ M.
Next, we need the following lemma.

Lemma 4.1 Let (M, d) be a complete CATp(0) space, p ≥ 2. Then any nonempty, closed
and convex subset C of M is a Chebyshev subset.

Proof We need to show that the function c �→ d(x, c) on C has a unique minimizer. It is
clear that instead of minimizing d(x, ·) we can equivalently minimize the function dp(x, ·)
Since the latter is strictly convex, it has at most one minimizer. To show the existence of a
minimizer, we take a minimizing sequence (cn) ⊂ C, that is,

dp(x, cn) → inf
C

dp(x, ·),

and denote cmn := cm⊕cn
2 . Then by the convexity of C we have cmn ∈ C, and the (CNp) in-

equality yields

dp(x, cmn) ≤ 1
2

dp(x, cm) +
1
2

dp(x, cn) –
1
2p dp(cm, cn),

or

1
2p dp(cm, cn) ≤ 1

2
dp(x, cm) +

1
2

dp(x, cn) – dp(x, cmn),

which, together with the fact that (cn) is a minimizing sequence, implies that (cn) is Cauchy.
The limit point is clearly a minimizer and lies in C. �

Definition 4.3 ([12]) A uniquely geodesic metric space (M, d) is said to have the property
(R) if any non-increasing sequence of nonempty, convex, bounded and closed sets, has a
nonempty intersection.
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A direct consequence of the (CNp) inequality is that any complete CATp(0) space, p ≥ 2,
has the property (R) [14].

Next, we need the following lemma.

Lemma 4.2 Let (A, B) be a pair of nonempty, bounded and closed convex subsets of a com-
plete CATp(0) space, p ≥ 2. Then the proximity pair (A0, B0) associated with the pair (A, B)
is a pair of nonempty, bounded and closed convex subsets.

Proof By Lemma 4.1, B is a Chebyshev subset. Let PB be the nearest point projection onto
B, consider the set

An =
{

x ∈ A; d(x, B) = d
(
x, PB(x)

) ≤ d(A, B) +
1
n

}
,

for any n ≥ 1. From the definition of d(A, B) and the continuity and the convexity of the
function x → d(x, B), we know that An is a nonempty, bounded, closed and convex subset
of A, for any n ≥ 1. Obviously {An} is decreasing. By the property (R), we conclude that
A∞ =

⋂
n≥1 An �= ∅. Let u ∈ A∞. Hence

d(u, B) = d
(
u, PB(u)

) ≤ d(A, B) +
1
n

,

for any n ≥ 1, which implies that d(u, B) = d(u, PB(u)) ≤ d(A, B). Since, by the definition of
d(A, B), we have d(A, B) ≤ d(u, PB(u)), we get d(u, PB(u)) = d(A, B), i.e., u ∈ A0 and PB(u) ∈
B0. Therefore, A0 is nonempty.

Finally, A0 is a closed convex subset of A. Indeed, that A0 is closed follows in a straight-
forward way from its definition and the fact that A is closed. The convexity of the set A0

follows from the convexity of the metric of CATp(0) spaces for p ≥ 2. Since A0 is nonempty
and closed convex subset of A, it is bounded.

Similarly, we show that B0 is a nonempty, bounded and closed convex subset of B. �

Now we are ready to obtain our main result for proximally monotone nonexpansive
mappings as follows.

Theorem 4.1 Let (A, B) be a pair of nonempty, bounded, closed, and convex subsets of a
partially ordered CATp(0) space for p ≥ 2 (M, d,
) such that order intervals are closed
and convex with A0 not reducible to one point. Let T : A → B be a proximally monotone
nonexpansive mapping such that T(A0) ⊆ B0. If there exist x0, x1 ∈ A0 such that x0 
 x1

and d(x1, Tx0) = d(A, B), then T has a best proximity point x in A.

Proof Note that, for any y0 ∈ B0, there exists a unique x0 ∈ A0 such that d(x0, y0) = d(A, B).
Hence

d(A, B) ≤ d(A, y0) ≤ d(A0, y0) ≤ d(x0, y0) = d(A, B).

That is, d(A, y) = d(A0, y) = d(A, B), for all y ∈ B0.
Consider the restriction of the nearest point projection PA0 to B0. Since PA0 is an isom-

etry, our assumption on the mapping T implies that the mapping PA0 ◦ T : A0 → A0 is
monotone nonexpansive.
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Moreover, let x0, x1 ∈ A0 such that x0 
 x1 and d(x1, Tx0) = d(A, B). By Lemma 4.1 A0 is
a Chebyshev subset, so PA0 (T(x0)) = x1. Hence, x0 
 PA0 (T(x0)).

By Lemma 4.2 A0 is a nonempty, closed and convex subset of A, therefore A0 is bounded.
Taking this all together with Corollary 3.1, we deduce that the monotone nonexpansive
mapping PA0 ◦ T has a fixed point x ∈ A0, i.e., x = PA0 (Tx). Then we have x ∈ A0 and Tx ∈
B0. Hence

d(x, Tx) = d
(
PA0 (Tx), Tx

)
= d(Tx, A0) = d(A, B).

Therefore, x is a best proximity point of T in A. �

Remark 4.1 If A = B in Theorem 4.1, or T in Theorem 3.2 is assumed to be single-valued,
then these results reduce to coincide with Corollary 3.1 and thus generalize a fixed point
result for monotone nonexpansive mappings. This is considered to be a continuity of the
previous work of Ran and Reurings [20], and Nieto and Rodríguez-López [18] done for
monotone contraction mappings.

At the end, we set out to give an example to illustrate our results, and how the best
proximity point theorems can be viewed as a generalization of fixed point theorems. The
following example has its roots in [22].

Consider the real sequence space X = lp, p > 2. Let A = {(x, 0, 0, . . .) : 0 ≤ x ≤ 1} and B =
{(x, 1, 0, 0, . . .) : 0 ≤ x ≤ 1} be nonempty subsets of X. Clearly, the pair (A, B) is nonempty,
bounded, closed, and convex in X. Moreover, A0 = A, B0 = B and d(A, B) = 1.

Consider the product order 
 on X, i.e. for x = (xi) and y = (yi), then x 
 y iff xi ≤ yi.
Clearly, order intervals are closed and convex.

Define a mapping T : A → B by

T(x, 0, 0, . . .) = (x, 1, 0, 0, . . .).

We now show that T is a proximally monotone. For (x, 0, 0, . . .), (y, 0, 0, . . .), (u, 0, 0, . . .),
(v, 0, 0, . . .) ∈ A with x ≤ y, ‖(u, 0, 0, . . .)–T(x, 0, 0, . . .)‖ = 1 and ‖(v, 0, 0, . . .)–T(y, 0, 0, . . .)‖ =
1, we have x = u and y = v. Hence, u ≤ v, i.e., (u, 0, 0, . . .) 
 (v, 0, 0, . . .).

Moreover, since ‖T(x, 0, 0, . . .) – T(y, 0, 0, . . .)‖ = ‖(x, 1, 0, 0, . . .) – (y, 1, 0, 0, . . .)‖ = |x – y| =
‖(x, 0, 0, . . .) – (y, 0, 0, . . .)‖, T is a nonexpansive mapping.

Now, T(A0) ⊆ B0. Let x = y = 0. Then x 
 y and ‖y – Tx‖ = ‖0 – T0‖ = ‖(0, 0, . . .) –
(0, 1, 0, 0, . . .)‖ = 1 = d(A, B). Therefore, Theorem 4.1 implies that T has a best proximity
point x in A. In fact, any x ∈ A is a best proximity point of T .

On the other hand, consider the restriction of the nearest point projection PA to B. Since
PA is an isometry, our assumption on the mapping T implies that the mapping PA ◦ T :
A → A is a monotone increasing nonexpansive mapping. Reflexivity of the partial order
and Corollary 3.1 implies that PA ◦ T has a fixed point x in A. Indeed, the mapping PA ◦ T
is the identity mapping IA on A, thus any x ∈ A is a fixed point of PA ◦ T .
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