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1 Introduction

The fixed point theory has been advanced by a number of authors. The most popular
research in complete metric spaces has risen from the ideas of Banach [5] and Caccioppoli
[13] for single-valued maps and Nadler [40, 41] for set-valued maps.

We mention that the results of Leader [32], concerning necessary and sufficient con-
ditions for the existence of contractive fixed points of set-valued and single-valued maps
with complete graphs in metric spaces, generalize the results of Banach [5], R. Cacciop-
poli [13], Burton [12], Rakotch [42], Geraghty [21, 22], Matkowski [34—36], Walter [51],
Dugundji [18], Taskovi¢ [46], Dugundji and Granas [19], Browder [11], Krasnosel’skii et
al. [30], Boyd and Wong [10], Mukherjea [39], Meir and Keeler [38], and many others.
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Moreover, Leader’s method as presented in [32] does not require the complete assumption
of metric spaces. Presentation concerning generality and some structural properties of
Leader contractions in metric spaces was fully exploited in Jachymski [23, 24] and Jachym-
ski and Jozwik [25].

Concerning the Bellman functional equations (see [6—8]), variable §-discounted Bell-
man equations (see, e.g., [14, 26, 34]) and Volterra integral equations (see [50]), most of
the results contained in several works and books require such assumptions which (by us-
ing various techniques or by utilizing various known fixed point theorems) imply that the
appropriate Bellman and Volterra operators are continuous (on suitable Banach spaces or
complete metric spaces or sequentially complete locally convex vector spaces).

Let X be a (nonempty) set. A distance on X x X is a map X x X — [0;+00). A distance
space is a set X together with family of distances X x X — [0; +00). We will furnish some
simple examples of various distance spaces and set-valued and single-valued contractions
on these spaces and such that the more than traditional conclusions of known fixed point
theorems are valid even if some hypotheses on these spaces or contractions are ignored
or weakened or replaced by different and less restrictive ones. Also we will furnish sim-
ple examples of various types of Bellman functional equations or variable §-discounted
Bellman equations or Volterra integral equations such that the appropriate Bellman or
Volterra operators are discontinuous and without fixed points, whereas solutions of these
equations exist and are not necessarily the singletons.

This raises the following natural questions: (i) Are there not necessarily Hausdorff or
sequentially complete distance spaces together with families of distances which are not
necessarily continuous or vanish on the diagonal or are symmetric or triangular ones?
Then we ask whether in such distance spaces there exist not necessarily continuous set-
valued and single-valued contractions which have nonempty sets of periodic points or
fixed points or endpoints. (ii) How large is the set of these distance spaces? (iii) What
structures controlling the limiting behavior of the sequences of dynamic processes and
Picard iterations of these set-valued and single-valued contractions, respectively, does
this set possess? (iv) What are connections between periodic points or fixed points or
endpoints and the limits of dynamic processes or Picard iterations of these set-valued or
single-valued contractions? (v) How large and general is the class of such set-valued and
single-valued contractions? (vi) Which suitable techniques, methods and ideas are use-
ful for studying these problems as major complications arise in such general spaces? (vii)
Are the developments of this sort new in known distance spaces and new even in met-
ric spaces or normed spaces or locally convex spaces or gauge spaces? (viii) Have these
investigations the new and different applications, e.g., to studying of Bellman functional
equations or variable §-discounted Bellman equations or Volterra integral equations? (ix)
Are possible unifications and generalizations of known spaces and results? (x) Are theo-
rems of this type optimal?

The objects we are interested in are quasi-triangular spaces. The purpose of this pa-
per, by providing efficient tools and techniques for investigating the set-valued and single-
valued dynamic systems and Bellman and Volterra type operators in these spaces and also
for better understanding generality and specific properties of these spaces, is to show how
to answer these questions positively.

Basic definitions, notations and remarks are given in Sects. 2-8.
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Motivation for general convergence, periodic point, fixed point and endpoint results
presented in Theorems 9.1-9.4 of this paper and concerning the new constructed here
set-valued and single-valued contractions in quasi-triangular spaces comes from the fixed
point theorems in metric spaces established by Leader in his significant paper [32].

Section 10 contains the proofs of Theorems 9.1-9.4. In Sect. 11, we present a number
of examples.

As applications of our convergence, periodic point and fixed point Theorems 9.3 and 9.4
for single-valued contractions in metric and gauge spaces, we provide and prove, without
restrictive assumptions, the new and general convergence, existence and uniqueness the-
orems concerning solutions of Bellman functional equations and variable §-discounted
Bellman equations in metric spaces and Volterra integral equations in locally convex
spaces. More precisely, we concentrate on convergence, existence and uniqueness prob-
lems concerning periodic and fixed points of appropriate Bellman and Volterra operators.
Thus we studied the structure of sets of solutions of these equations in more general set-
ting. Results in this direction are presented in Theorems 12.1-12.4, 13.1-13.3 and 14.1—
14.4 of this paper.

2 Quasi-triangular spaces (X, Pc; 4). Pc;a-separability. Set-valued and
single-valued dynamic systems (X, T) in (X, Pc;.4). Fixed points, periodic
points and edpoints

Quasi-triangular spaces which unify and generalize an existing body of distance spaces

(such as metric, ultra metric, quasi-metric, ultra quasi-metric, b-metric, partial met-

ric, partial b-metric, pseudometric, quasi-pseudometric, ultra quasi-pseudometric, par-

tial quasi-pseudometric, topological, uniform, quasi-uniform, gauge, ultra gauge, partial
gauge, quasi-gauge, ultra quasi-gauge, partial quasi-gauge, normed, locally convex spaces,

ultra quasi-triangular and partial quasi-triangular (see, e.g., [4, 15, 16, 28, 31, 37, 43, 44,

49, 52-541])) are defined as follows.

Definition 2.1 ([53, 54]) Let X be a (nonempty) set, let A be an index set, and let C =
{Calaca €15 OO)A'
(A) We say that a family Pc, 4 = {Py : @ € A} of distances P, : X*> — [0,00), @ € A, is a
quasi-triangular family on X if Ve AV v wex{Po (16, W) < Co [Py (1, v) + Py (v, w)]}.
A quasi-triangular space (X, Pc, 4) is a set X together with the quasi-triangular
family Pc; 4 on X.
(B) We say that a family P4 = {P, : & € A} of distances P, : X* — [0,00), @ € A, is a
triangular family on X if Voe AV v wex{Po (1, W) < Py(u,v) + Py (v, w)}. A triangular
space (X, P 4) is a set X together with the triangular family P4 on X.
(C) If Cy =1 for each & € A, then Pc;, 4 is denoted by P 4. If the set A has only one
element, then P, 4 is denoted by P.
(D) Let (X,Pc,4) be a quasi-triangular space. We say that Pc, 4 is separating on X if
Vawex it 7w => e 4{Put, W) > 0V Py (w, 1) > 0}).

Remark 2.1 Note that “C = {C,laea € [1;00)"” means exactly that [1;00)* =
HQE_A[I; 00) = {x = {X¢ }aea : Vacalxs € [1;00)}}.

Definition 2.2 Let X be a vector space over K (where K is R or C), A be an index set, and
C={Colaca €[1; OO)A~



Wtodarczyk Fixed Point Theory and Applications (2020) 2020:6 Page 4 of 54

(A) We say that a family N, 4 = (N, : @ € A} of maps N, : X — [0,00),x € A, isa
locally convex quasi-triangular family on X if
VaeAVuvex (Ne (1 +v) < Co[Ny(u) + Ny ()]} and Voe 4Viuex Vaek INa (An) = |A NG ()}

(B) A locally convex quasi-triangular space (X, Nc, ) is a set X together with the locally
convex quasi-triangular family Nc, 4 = {N,, : @ € A} on X.

(C) Let (X, Nc;4) be alocally convex quasi-triangular space. We say that N¢; 4 is
separating on X if Vyex{u #0 = Igpc 4{Ny, (1) > 0}}.

Remark 2.2 We see that each locally convex quasi-triangular space is a symmetric quasi-
triangular space. Indeed, if X is a vector space over K and N, 4 = (N, : @ € A}, Ny : X —
[0,00), @ € A, is a locally convex quasi-triangular family, then Pc; 4 = {P, : @ € A} where
Py(u,v) = Ny(u—v), x € A, (4,v) € X x X, is a symmetric and quasi-triangular family and
(X, Pc;.4) is a symmetric quasi-triangular space.

Remark 2.3 Let (X, Pc; 4) be a quasi-triangular space. In general, the distances P,, o €
A, do not vanish on the diagonal, are asymmetric, and do not satisfy the triangle in-
equality (i.e., conditions Ve aVyex{Po(u,u) = 0} or VyeaVuwex{Po(u,w) = Py(w,u)} or
VaeAVuvwex{Po(t, w) < Py (u,v) + Py (v,w)} do not necessarily hold).

We will use (x,, : m € N) C X as a sequence and as a set as the situation demands.
Asymmetry of Py, o € A, justify the use of term “left” and term “right” When the sym-
metry holds, then term “left” and term “right” are identical.

Definition 2.3 Let (X, Pc; 4) be a quasi-triangular space.
(A) We say that (x,, : m € N) C X is left (respectively, right) Pc, a-convergent in X if

LIfo;Zi;&) ={u € X : Voea{limy,_ oo Py (1, %,,) = 0}} # & (respectively,
R-P¢, .
LIM, iy = (v € X : Vae allimy, oo Py (i, v) = O}} # 2).

(B) We say that (x,, : m € N) C X is left (respectively, right) Pc, 4-convergent to u € X

L-Pc, A R-Pc;A

(respectively, ve X) ifu € LIM, nen (respectively, v € LIM(xm:meN)).

Let (X, Pc,4) be a quasi-triangular space. The set-valued dynamic system on (X, Pc; 1)
is defined as a pair (X, T), where T : X — 2X: here, 2X denotes the family of all nonempty
subsets of X. The single-valued dynamic system on (X, Pc. 4) is defined as a pair (X, T),
where 7 is a single-valued map 7: X — X, i.e., V,ex{T(x) € X}.

For g € N and for set-valued and single-valued dynamic systems (X, T'), we define 717 =
ToTo---oT (g-times).

Let (X, T) be a set-valued dynamic system on (X, P, 4). For each ° € X, we denote by
Ox7(W°) the set of all dynamic processes or trajectories starting at w° or motions of the
system (X, T) (see [1-3, 56]), i.e.,

OX,T(WO) = {(wm :m e {0}U N) IVme{O}uN{WWl € T(wm)}}

By Fixx(T), Perx(T) and Endy(7T) we denote the sets of all fixed points, periodic points
and endpoints (stationary points) of (X, T), respectively, i.e., Fixx(T) = {w e X : w € T(w)},
Pery(T) = {we X : w e T (w) for some g € N} and Endy(T) = {w € X : {w} = T(w)}.

Let (X, T) be a single-valued dynamic system on (X, Pc; ). For each w° € X, a sequence
(w" = T (WP) . m € {0} UN), TI% = Iy (an identity map on X), is called a Picard iteration
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starting at w° of the system (X, T). By Fixx(T) and Perx(T) we denote the sets of all fixed
points and periodic points of (X, T), respectively, i.e., Fixx(T) = {w € X : w = T(w)} and
Perx(T) = {we X : w = T4 (w) for some g € N}.

3 Left (right) families J¢. 4 generated by Pc. 4, Jc..4-separability, and relation
between J¢, 4-separability and P 4-separability in (X, Pc; 4)

For given quasi-triangular spaces (X, Pc;4), it is natural to define the notions of the sets

J(LX,PC;A) (respectively, Jf?X,Pc;A)) of left (respectively, right) families Jc, 4 generated by

Pc..a. These sets J](LX,PC;A) (respectively, “U&PC;A)) provide on X new structures which are

richer than structures provided on X by Pc; 4.

Definition 3.1 Let (X, Pc; 4) be a quasi-triangular space.
(A) The family Jc. 4 = o : @ € A} of distances J, : X x X — [0;00), « € A, is said to be
a left family generated by Pc, 4 if the following two conditions hold:
(A1) VoeaVupwex o, w) < ColJa(u,v) + Jo (v, w)]}.
(A.2) For any sequences (x,, : m € N) and (y,,, : m € N) in X with the properties
Ve allimy,— o0 SUP,,.,, Jo (Xms %) = 0} and Ve A {limy,— o0 Jy Vi %) = 0} we
have Ve a{limy,— oo Po, Vi> Xm) = 0}.
(B) The family Jc,4 = {J, : @ € A} of distances J, : X x X — [0;00), « € A, is said to be
a right family generated by Pc; 4 if the following two conditions hold:
(B1) Ve AVummwer Uty W) < Collut,v) + Ju (v, W]},
(B.2) For any sequences (x,, : m € N) and (y,, : m € N) in X with the properties
Ve alimy,— oo SUP,,.,, Jo (1, ) = 0} and Ve a {limy,—s 00 Jo (X1, Vi) = 0} we
have Ve a{lim,,— oo Po (X, Vi) = 0}.
(C) Denote by J(LX'pC;A) (respectively, J&:PC;A)) the set of all left (respectively, right)
families Jc, 4 generated by Pc; 4.
(D) If Cy =1 for each @ € A, then Jc. 4, Pc 4, J(LX,PC;A) and J&,PC;A) we denoted by
T4 Pa, J(LX,PA) and J&,PA)’ respectively. If the set A has only one element, then
Jcas Peoas J(LX,”PC;A) and J&PC;A) is denoted by J, P, Jfy ) and Iy ), respectively.

Remark 3.1 The following hold:
L R

@) Peia € Ipeu) N I pen

(b) The structures on X determined by left (respectively, right) families Jc, 4 generated
by Pc, 4 are more general than the structure on X determined by Pc, 4.

L R

(c) Let Je,ua € Q]I(X,PC;A) U Q]I(X,PC;A

distances J,, o € A, do not vanish on the diagonal, are asymmetric, and do not

> thus, in particular, let Jc;4 = Pc;4. In general, the

satisfy the triangle inequality (i.e., Voe 4 Vuex o (4, ) = 0} or
VoedVuwex Ua (W) = Jo (W, u)} or Voe AV v wex U (4, w) < Jo(u,v) + Jo (v, w)} do not
necessarily hold).

(d) Asymmetry of J,, @ € A, justify the use of term “left” and term “right” When the

symmetry holds, then term “left” and term “right” are identical.

Definition 3.2 Let (X, Pc, 4) be a quasi-triangular space and let Jc, 4 = {Jy : @ € A} €
J(LX,PC;N UJ&PC;AY We say that Jc, 4 is separating on X if ¥V, yex{u # w = JoyealUo, (1, w) >
0V Jo, (W, u) > 0}}.
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The technique for establishing uniqueness of fixed points and endpoints of dynamic
systems is separation (Definition 2.1(D)), contraction property (conditions (d) of Theo-

rems 9.1 and 9.3) and Proposition 3.1 below.

Proposition 3.1 ([53]) Let (X, Pc; 4) be a quasi-triangular space. If Pc. 4 is separating on
X, then each Jc, 4 € J(LX,PC;A) U “H&PC;A) is separating on X.

Remark 3.2 The distances in uniform spaces (these distances are determined by unifor-
mity and generalize uniformity) first appeared in Vilyi [48]. We also mention at this stage
that various concepts of distances in metric spaces (X, d) which generalize d, of this sort,
are given by Kada et al. [27] (w-distances), Lin and Du [33] (z-functions), Suzuki [45] (7-
distances) and Ume [47] (u-distances). General distances in cone uniform spaces, which
generalize these distances and simplify the arguments substantially, are treated in [55]. In
the appearing literature, these distances and their generalizations in other spaces provide
efficient tools to study various problems of fixed point theory. In this paper, using sets

J(LX’PC;A) and ,]]&PC;A) defined above, we also generalize these ideas.

4 Left (respectively, right) Jc. 4-convergences of sequences in (X, Pc; 4). Left
(respectively, right) Jc. 4-Hausdorff spaces (X, P, 4)
The above considerations suggest the appropriate definition regarding left (respectively,

right) Jc, 4-convergence of sequences in (X, Pc, 4).

Definition 4.1 Let (X,Pc, 4) be a quasi-triangular space. Let J¢, 4 € J(LX,PC;A) U J&JDC;A);
thus, in particular, let Jc, 4 = Pc,4-

(A) We say that (x,, : m € N) C X is left (respectively, right) Jc, a-convergent in X if
L-J¢, .
jC;.A € J(LX,pC;A) and LIM(xm;,f,Z‘N) = {M eX: vaeA{hmmeoo]a(u;xm) = O}} #@
(respectively, Jc, 4 € ‘H&”PC;A) and
R-Jc, .
LIM, "ok = {v € X : Vae allimy, oo Ju (m, V) = O}} # 2).
(B) We say that (x,, : m € N) C X is left (respectively, right) Jc, a-convergent to u € X
(respectively, v e X) if Jc, 4 € J%X,PC;A) and u € LIM(Lx:f ;:?N
R-Tc;A )
(xp:meN)/*

) (respectively,

JcA € J&PC»A) and v € LIM

Remark 4.1 Let (X, Pc,4) be a quasi-triangular space. Assume that Jc, 4 € J(LX‘PC n (re-

spectively, Jc.4 € “H&PCA)); thus, in particular, Jc, 4 = Pc, 4. It is clear that if sequence

L_jC;.A
(x:meN)

(m : m € N) C X is left (respectively, right) Jc, 4-convergent in X, then LIM C

LIM@;‘ZZ‘&) (respectively, LIMﬁ;ﬁ;&) C LIM@;‘ZE;&)) for each subsequence (y,, : m € N)

of sequence (x,, : m € N).

Definition 4.2 Let (X, Pc; 4) be a quasi-triangular space. Let Jc, 4 € ‘,]](LX,PC;A) U J&PC;A);
thus, in particular, let J¢, 4 = Pc, 4. We say that (X, Pc;, 4) is left (respectively, right) Jc, 4-
Hausdorff if for each left (respectively, right) Jc, 4-convergent sequence (x,, : m € N) in
. L-Jc;A
X we have: Jc,4 € J(LX,PC;A) and LIM c

e 15 @ singleton (respectively, Jc;a € J&PC;A)

and LIM@;‘TZZ‘I‘\D is a singleton).
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5 Left (respectively, right) Jc, 4-admissible on M € 2* of set-valued and
single-valued dynamic systems (X, T) in (X, Pc,.4)

Left (respectively, right) Jc. 4-admissible of set-valued and single-valued dynamic systems

(X, T) on M € 2% in (X, Pc;, 1) are defined as follows.

Definition 5.1 Let (X,Pc,4) be a quasi-triangular space, and let (X, T') be a set-valued
dynamic system.
(A) Let Jca € J(LX,PC;A); thus, in particular, let Jc,4 = Pc,a. (X, T) is said to be a left
Jc.a-admissible in a point w° € X if each dynamic process
(w" :m € {0} UN) € Oy 7(w°) starting at w°, which is left Jc, 4-sequence (i.e.
satisfying the condition Ve 4 {lim,,;— o supV,)m Jo(W™", w") = 0}), is left T, 4-
converging in X (i.e. has property LIM/ Wm oy o) 7 9)-
(B) Let Jc,a € J X.Pe.a) thus, in particular, let Jc,4 = Pc,a. (X, T) is said to be a right
Jc,.a-admissible in a point w° € X if each dynamic process
(w" :m € {0} UN) € Ox,r(w°) starting at w°, which is right Jc. 4-sequence (i.e.
satisfying the condition Ve 4{lim,,— supn>m]a(w w™) =0}), is right Jc, 4-
converging in X (i.e. has the property LIM(Wm melojuN) 7 D)
(C) Let M € 2X. (X, T) is said to be a left (respectively, right) Jc, a-admissible on M if
JcA € .,]](LX,PC;A) (respectively, Jc, 4 € J&PCA)) and (X, T) is a left (respectively,
right) Jc, 4-admissible in each point w° € M.

Definition 5.2 Let (X, Pc, 4) be a quasi-triangular space, and let (X, T') be a single-valued
dynamic system.
(A) Let Jc.a € JE (XPe) ; thus, in particular, let Je, 4 = Pc,a. (X, T) is said to be a left
Jc.a-admissible in a point w° € X if a sequence (T (w°) : m € {0} UN), which is
left Jc.a-sequence (i.e. satisfying the condition

Vaea[ lim supJ, (T (w°), 7 (w?)) = 0}),

m— 00 n>m

~-TJ

is left Jc, 4-converging in X (i.e. has the property LIM C;‘O) me(OUN) # Q).

(B) Let Jc,a € J X Pea) thus, in particular, let Jc, 4 = ’Pc, A- (X T) is said to be a right
Jc.a-admissible in a point w° € X if a sequence (T (w°) : m € {0} UN), which is
right Jc, a-sequence (i.e. satisfying the condition

Vaea[ lim supJ, (T (w?), 70" (w?)) =0}),

m— 00 n>m
T
is right Jc, 4-converging in X (i.e. has the property LIM Tlmc(;t))me{o JUN) #0)
(C) Let M €2X. (X, T) is said to be a left (respectively, right) Jc,4-admissible on M iff
Jca € J(LX,PC;A) (respectively, Jc.4 € J&PC;A)) and (X, T) is a left (respectively,
right) Jc, 4-admissible in each point w° € M.

6 Relation between left (respectively, right) J¢. 4-admissible property and left
(respectively, right) Jc. 4-sequential completeness in (X, Pc. 4)

Here, we record some relation between properties of left (respectively, right) Jc; -

admissible (set-valued or single-valued) dynamic systems (X, T) on M € 2% in (X, Pc.4)

and left (respectively, right) Jc, 4-sequential completeness of (X, Pc, 4).
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Definition 6.1 Let (X,Pc,4) be a quasi-triangular space. Assume that Jc. 4 € J* U

X.Pc;.a)
IR X Pen)’ thus, in particular, Jc,4 = Pc; 4.
(A) We say that a sequence (u,, : m € N) C X is left (respectively, right) Jc, 4-sequence if
Jca € J(LX,PC;A) and Ve a{limy,— o0 SUP,,s,;, Jo (U 4y) = 0} (respectively,
JcA € "H&Pcm and Ve a{limy, o0 SUP,,..,, Ju (th 1) = O}).
(B) If every left (respectively, right) Jc, 4-sequence (u,, : m € N) C X is left

(respectively, right) Jc, 4-convergent in X (i.e., Jc;a € JLX (X,Pc,4) and

LIMLM j;?N) # @ (respectively, Jc.4 € JX (x,Pc, ) and LIM ~JcA # &), then

(ttyn:meN)
(X, Pc;.4) is called left (respectively, right) Jc, 4-sequential complete.

Remark 6.1 Let (X,Pc,4) be a quasi-triangular space. Assume that Jc, 4 € J(LX,PC;A) u
J X.Pe.a) ) thus, in particular, Jc, 4 = Pe,a. If (X, Pc;4) is left (respectively, right) Jc; 4-
sequentially complete, then each (set-valued and single-valued) dynamic system (X, T) is
left (respectively, right) Jc, 4-admissible on each M € 2%,

7 Left (respectively, right) Jc. 4-closed on M € 2 of set-valued and
single-valued dynamic systems (X, T9), g e N, in (X, Pc. 4)

The idea of “closed maps” as generalization of continuity first arose in Berge [9] (see also

Klein and Thompson [29]). Our formulation of the notion of left (respectively, right) Jc; 4-

closed on M € 2% of set-valued and single-valued dynamic systems (X, T(?), g € N, in

(X, Pc;.4) are defined as follows.

Definition 7.1 Let (X, Pc, 4) be a quasi-triangular space. Suppose (X, T) is a set-valued
dynamic system, T : X — 2%, and let g € N.

(A) Letw® € X. Let Jca € J(LX’pC;A); thus, in particular, let Jc, 4 = Pc, 4. We say that a
set-valued dynamic system (X, T'9) is left Jc, 4-closed in a point wP, if for each
dynamic process (w” : m € {0} UN) €Oy r(w°) starting at w® with property
u-= LIML jCA N 7D (i.e. left Jc, 4-convergent in X) and containing two left
Jc.A- convergmg in X subsequences (x,, : m € N) and (y,, : m € N) (thus, in
particular, LIM(W,‘Z y C LIM(Lx ‘7513\] N LIM(Ly ‘:72&)) satisfying

Vinen{ym € T[ﬂ(xm)} we have 3¢y {u € T!9 (u)}.
(B) Letw® € X. LetchGJ

set-valued dynamic system (X, T'9) is right Jc, 4-closed in a point wP, if for each

X Pea) thus, in particular, let Jc, 4 = Pc,.4. We say that a

dynamic process (W : m € {0} UN) €Oy r(w°) starting at w® with property
V= LIMRij (Co;tN # & (i.e. right Jc, 4-convergent in X) and containing two right
Jc.a-converging in X subsequences (%, : m € N) and (y,,, : m € N) (thus, in
particular, LIM(W,;,Y ) C LIM(x meN N LIMI& ‘zig,)) satisfying
VineN{ym € T[q](xm)}: we have 3,y {v e Tl (V)}

(C) Let M € 2X. A set-valued dynamic system (X, T'9) is said to be a left (respectively,
right) Jc.a-closed on M, if Jc. 4 € J(LX’PC;A) (respectively, Jc,.4 € ‘HXPC;A)) and
(X, T'9) is a left (respectively, right) Jc, 4-closed in each point w° € M.

Definition 7.2 Let (X, Pc, 4) be a quasi-triangular space. Suppose (X, T') is a single-valued
dynamic system, 7: X — X, and let g € N.
(A) Let w® € X. Let Jca € J(LX,PC;A); thus, in particular, let Jc, 4 = Pc,4. We say that a
single-valued dynamic system (X, T19)) is a left Jc. a-closed in a point w°, if in the
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case when a sequence (T"(w°) : m € {0} UN) has property

_ L-Jc,A
U =LIM ;5%
Jc.a- converging in X subsequences (x,, : m € N) and (y,, : m € N) (thus, in

. L’JC;.A L’JC;A L’JC;A : :

particular, LIM(T[m] 0N © LIM, "~ mery N LIM(ym:meN)) satisfying
YoenWm = T (x,,)}, then we have 3¢y {u = T (u)}.
Let w’ € X. Let Jc,4 € J&PCA); thus, in particular, let Jc, 4 = Pc, 4. We say that a

single-valued dynamic system (X, T19) is a right Jc. a-closed in a point w°, if in the

o) # & (i.e. is left Jc; 4- converging in X) and contains two left

case when a sequence (77 (w°) : m € {0} UN) has property
_ R-Jc,A

V= LIM(T[mJ(WO);{O}uN

right Jc, a-converging in X subsequences (x,, : m € N) and (y,, : m € N) (thus, in

. R-Jc,A R-Jc;A R-Jc;A op

particular, LIM(T[m](WO);{O}uN) CLIM, ~.&n NLIM, © 02y satistying

YoenWm = T (x,,)}, then we have 3,c {v = TI(v)}.

Let M € 2%. A single-valued dynamic system (X, T19)) is said to be a left

(respectively, right) Jc.a-closed on M, if T, 4 € I (respectively,
P s 1'ig ; ; X,Pc;a) P Y;

) # @ (i.e. is right Jc, 4-converging in X) and contains two

Jc.A € J&’PC;A)) and (X, T'9) is a left (respectively, right) Jc, 4-closed in each
point w° € M.

8 S 4-Family of accumulation maps

The notion of families Jc, 4 generated by Pc; 4 (Sect. 3) and the following notion of S 4-

family are crucial in constructions of contractions (9.1), (9.11), (9.12) and (9.25).

Definition 8.1 Let A be an index set. The family S 4 = {S, : & € A} is said to be S 4 -family
of accumulation maps Sy, « € A, (simply, S 4-family) if:

(A)
(B)

Vae.A{Sot : [O) OO) - [1; OO)}
Sw» o € A, are strictly increasing on (0;00), i.e., Vae 4 Yocr, <ty {Sa (t1) < Se(£2)}.

(C) Vae.A{Sot(O) = 1}~

(D)

Voealt — 0iff Su(2) — 11.

(E) VaeAvtl,tze[O;oo){Sa(tl + t2) = Sa(tl) : Sa(tZ)}-

(F)

vaGAVtE[O;oo)vﬂe[l;oo) {Sa (ﬁt) =< [Sat (t)]ﬁ}

Remark 8.1 'We record some observations concerning S 4-family. (a) The maps S,, o € A,
are not necessarily continuous. (b) From (A)—(C) it follows that: (b1) Vae 4 Vee[0,00{Se (£) =
1 implies ¢t = 0}. (02) YaeaVico00) {t > 0 implies S, (2) > 1}.

Example 8.1 Let A be an index set. If family S 4 = {Sy : @ € A}, Sy : [0;00) — [1;00), @ €
A, is such that, for arbitrary and fixed « € A, the map S, : [0;00) — [1;00) is one from the

following:
Se(t)=c,, tel0;00), (8.1)
t
Se(t) =1+ , te[0;00), (8.2)
dg + byt
1+ m lft > 1,
Sa®)= Y1+ S if L <r<lneN, (8.3)
1 ift =0,
In(1 + ¢
S =1+ —nd*0 t € [0;00), (8.4)

ay +byIn(1+1¢)’
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t+byIn(1+¢)
Sa(t)=1 , te0;00), 8.5
® +aa+t+baln(1+t) € [0;00) (85)

where ¢, € (1;00), ay € (0;00) and b, € [0;00), then S 4 is an S 4-family.
We prove conditions (A)—(F) for map S, given by (8.2). Clearly (A), (C) and (D) hold.

Moreover, the maps Sy, o € A, are strictly increasing on (0; 00) since
VO(EAVTE(O;OO) {S(;(T) = aa/(au + bar)2 > O}
Next we see that

VoteAVrl,rze[O;oc) {Sa(fl + 7-'2)

1+ 7Ty 1 %)
=1+

<1+ +
ag +be(T1 + 12) du +baT1  do +baTy
‘C T
< 1+—1 . 1+72 =Sa(Tl)'Sot(T2) .
ay + by ay + by Ty
It remains to prove

BT
as + by T

B

It is clear that (8.6) holds for 8 = 1. For 8 > 1 let

Vae.AVre[O;oo),ﬁe[l;oo){Sa(,gr) =1+

B
T BT
ho={1+—) -1 - ———.
® ( +aa+bat> ag + byt

Observing that

Ay

B-2
T
" _1 1
h T) aouB )( + a_‘_ba‘[) (do, +baf)4

T A= b, 2b. B
-1+ + ,
Ay + byt (ag +bet)®  (ag + by BT)?

2b,, +1

/ B-1 1 1
hy(7) = “a13|:< dy + by -5) (@g + byT)? - (@ +ba,3'5)21|’

h:y (0) = Or h// (0) ,3(,3 - 1) 0’

Ol

we conclude the proof (8.6) for 8 > 1.
Now, we prove conditions (A)—(F) for map S, given by (8.5). The maps S, are strictly

increasing on (0; 00). Indeed, it is clear that

ag(1+t+ by
Y te(0500) {S,;(t) = ( ) } .

A+0)[(ay +t+bgIn(1+0)7
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Next we see that

Yi1.t2€(000) {Sa (t1 + 1)

1+t +b,In(1+1 + 1)
Ay + 1+t + by In(l + £ + 1)
ti+ty+byIn(1+t +ty+1 )
* Ay + 1+t + by In(1 + £ + 1)
ty + 1ty + by In(1 + 1) + by In(1 + £5)
" g + 1+t + by In(1 + 1] + 1)
t1+ by In(1 + £7) tr + by In(1 + t,)
ag + 1t + by In(1 +#1) " ag + by + by In(1 + £5)

( t1+baln(1+t1) > ( t2+baln(1+t2) )
<1+ 1+

g + 11 + by In(1 + £1) dg + b+ by In(1 + £5)

=sa<t1)-sa<t2>}.

It remains to prove

BT + b, In(1 + B1)
dg + BT + by In(1 + BT)

B
5[1+ T+byIn(1+7) ]:[Su(t)]ﬁ}. 8.7)

g +T + by In(1+ 1)

VaeAYre000), Be[1;00) {Sa (Br)=1+

It is clear that (8.7) holds for 8 = 1. For 8 > 1 let

t+byIn(1+1) 77 Bt + by In(1 + Bt)
he() =1+ -1- .
dy +t+byIn(1+1) dg + Bt + by In(1 + Bt)
Observing that
B (t)
t+byIn(1+2) 7! ag(1+t+by)
=a,Bi|1+
g +t+ by In(1 +¢) [aq +t+ by In(1 + 0)]2(1 + ¢)

t+beIn(1+8) 17201+ £+ by)? + bglag + £+ by In(1 + £)]
_|: +ao,+t+ba,ln(1+t)] [aq +t+ by In(1 + £)]3(1 + £)?
2(1 + Bt + by)? + by[ay + Bt + by In(1 + Bt)]
[aq + by In(1 + B1)13(1 + Bt)? }’

+B

i, (2)

t+b,In(1+2) 7772 (L+t+by)?
g +t+byIn(1+¢) [aq + be In(1 + £)]*(1 + £)?
) t+bein(1+8) 177201 + £+ b0)% + bylag + £ + by In(1 + 2)]
" g +t+beIn(1+1¢) [aq +t+ by In(1 + £)]3(1 + £)?
2(1 + Bt + by)? + bylaq + Bt + by In(1 + Bt)]
[aq + by In(1 + B)13(1 + Bt)? ’

zﬂaﬂ{(ﬂ_l)[l"'

+B
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, ) 1+ 2a,(1+ bo)? + a2b,
H0)=0,  K0)=pB-1) g >0,

a

we conclude the proof (8.7) for 8 > 1. Therefore, (B), (E) and (F) hold. Clearly (A), (C) and
(D) hold.

9 Convergence, periodic point, fixed point and endpoint theorems for
set-valued and single-valued contractions of Leader type in (X, Pc; 4)

As a result, our arguments become versatile and can readily extend the study of contrac-

tions to more general settings (see Theorems 9.1-9.4).

Theorem 9.1 Let (X, Pc,4) be a quasi-triangular space, and let (X, T) be a set-valued
dynamic system, T : X — 2X. Assume that:
(@) Jca € J(LX,PC;A) (respectively, Jc,u € J&PC;A))'
(b) (X, T) is left (respectively, right) Jc, a-admissible on X.
() Sa={Se:a € A}isan Sa-family.
(d) The Sa-family Sa={Se:a € A}, X, T) and Je,a = {Jy: o € A} GJ(LXPC;A)
(respectively, Jeoa={Jy 1 € A} € JXP ) ) satisfy

VaeAVes13n513renV10 0 x Y (mme 0)uN) O 7(:0) Y (y7:me (0} UN) €O 70)

(9.1)
Vs,leN{Sa(]a(xsr,yl)) <€-n= [Sa(]a(xsw,ylw))]ca < 8}~

Then the following hold.:
(A) Convergence of all dynamic processes. For each point w° € X and for each dynamic
process (W" : m € {0} UN) eOx.r(w°) starting at w°, we have

L-Jc,a
(w":me{0}UN)

L-Pc, A

@ #LIM C LIM S 010 (9.2)

where Jc,4 € J(LX Pea) (respectively,

R-Jc;a R-Pc; A
wmmeioyuny) C LIMm.pci0jum) (9.3)

2 #LIM
where Jc, A € J&PC;A))'
(B) Existence of periodic points of all dynamic processes. If there exists q € N such that
the set-valued dynamic system (X, T'D) is left (respectively, right) Jc. a-closed on X,
then

Fixy (T1) # 2. (9.4)

Moreover, for each point w° € X and for each dynamic process
(w" :m € {0} UN) €Oy 7(wP) starting at w°, we see that there exists a point
u € Fixy(T'7) (respectively, v € Fixx(T9)) such that

L- jCA
(w":mef{0

€ LIM( 520 o C LIM(r G40 o 9.5)

(W":me(
where Jc,A € J(LX Pes) (respectively,

R- jC.A
(W":mef0

R-Pc, A

veLIM o € LIM 520 (9.6)
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where Jc, 4 € J&PC;A))’

(C) Existence of unique endpoint of all dynamic processes. If the set-valued dynamic
system (X, T) is left (respectively, right) Jc, a-closed on X and the family
Pca = {Py : a € A} is separating on X, then there exists a unique endpoint w of T in

X ie.

Endx(T) = {w € X : {w} = T(w)} = (w), 97)
satisfying

Vaea{Ja(w,w) =0}. (9.8)

Furthermore, for each w° € X and for each dynamic process
(W™ :m € {0} UN) €Oy r(w°) starting at w°, we have

L-Jc.A
(w":me{0}UN)

LPCA

w € LIM C LIM S 0108 (9.9)

where Jc,A € J(LX’PCA) (respectively,

R- JCA

(w":mef0

R-Pc, A

w € LIM ooy © LIMn 52400 (9.10)

R
where Je,a €1 (X,Pc;A))'

Theorem 9.2 Let (X, Pc.4) be a quasi-triangular space, and let (X, T) be a set-valued
dynamic system, T : X — 2X. Assume that:
(@) Jca € J(LX,PC;A) (respectively, Jc.a € J&PC A)).
(b) There exists M € 2% such that (X, T) is left (respectively, right) Jc.a-admissible on M.
(€) Sa=1{Sy:a e A}isan Sa-family.
(d) The Sa-family Sq={Sy:a € A}, (X, T), M and Jc.a ={J,:a € A} GJXPCA
(respectively, Jc,a = Uy : o € A} € JR X Pen) ) satisfy

VaeAVa>l EIn>1 HVENVWOeMV(wm;me{O}UN)eOX‘T(WO)VS,IEN (9 11)
{Se U (W, Wl)) <& n=[Sulu(w™, Wl”))]ca <e}
Then the following hold:
(A) Convergence of dynamic processes. For each point w® € M and for each dynamic
process (W" : m € {0} UN) eOx. r(w°) starting at w°, we have

L- JCA L-Pc;a L
%] #LIM (wM:me{0)UN) C LIM (w:me{0}UN) Where jc;_A € J(X’PC;A)
(respectively,
R- JCA R-Pc;A R
& # LIM (wr:mejoyun) C LIM (W:me{OJUN) where Jc.A € J(XvPC;A))'
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(B) Existence of periodic points of dynamic processes. If there exist q € N and w® € M
such that the set-valued dynamic system (X, T'9)) is left (respectively, right)
Jc.a-closed in a point w°, then

Fixy (T1) # @

Moreover, for each dynamic process (W™ : m € {0} UN) eOx. r(w°) starting at w°,
there exists a point u € Fixx(T9) (respectively, v € Fixx(T'9))) such that

L-Tca L-Pc,A L
u € LIM(m oy C© LIMmacioony  where Jeia € Uiy pe, )
(respectively,
R-Jc;a R-Pc;4 R
v € LIMm.miojuny © LIM e 0jum) where Jc, A € J(X,PC;A))'

Theorem 9.3 Let (X, Pc, 4) be a quasi-triangular space, and let (X, T) be a single-valued
dynamic system, T : X — X. Assume that:
(@) Jca € J(LX,PC;A) (respectively, Jc,u € "H&PC;A))'
(b) (X, T) is left (respectively, right) Jc, a-admissible on X.
(€) Sa=1{Sy:a € A}isan Sa-family.
(d) The Sa-family Sa={Sy:a € A}, X,T) and Jc,a ={Jy:x € A} € J(LX,PC;A)
(respectively, Jeoa = {Jy :a € A} € JXP ) ) satisfy

VaeAVa>l EIn>1 3reNVx,yeXVs,leN {Sat (]oz ( T[S] (x)r T[l] (}’)))

(9.12)
<e€-n= [Sa(]ot(T[s”] (x)r TUH] (y)))]Ca < 8}'
Then the following hold.:
(A) Convergence of all Picard iterations. For each point w° € X, we have
L-Jc;A L-Pc;A
& A LIM i ciorom © LM g 0ymeo1on) (9.13)
where Jc, 4 € J(LX,PC;A) (respectively,
o 4 LIMS oA C LIMS FeA (9.14)

(T (W0):me{0}UN (TIml(W0):me {0}UN)

where Jc, A € J&PC;A))'

(B) Existence of periodic points of all Picard iterations. If there exists q € N such that the
single-valued dynamic system (X, T'9) is left (respectively, right) Jc.a-closed on X,
then

Fixx (T'7) # . (9.15)

Moreover, for each point w° € X, there exists a point u € Fixy(T'?) (respectively,
v € Fixx (T such that

L‘jC;.A
(T (w0):me{0)UN)

L-Pc, A

u € LIM (T (W0):me(0}UN)

C LIM (9.16)
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©

and

VaGAVne{l,Z ..... q}{]a(u’ (u)) (T[n](u) u) } (9.17)

where Jc, 4 € J(LX’PCA) (respectively,

R- Jc_A R-Pc;A
vELIM 1oy corom) © LM roml 0y meorom) (9.18)
and
VaeaVne(2at o (v T W) = Jo (T (v),v) = 0} (9.19)

where Jc.4 € J&:PC;A))'
Existence of unique fixed point of all Picard iterations. If (X, T) is left (respectively,
right) Jc, a-closed on X and the family Pc, 4 = {Py : o« € A} is separating on X, then

Juex {Fixx(T) = {w}}. (9.20)

Moreover, for each w° € X,

L-Jc, A L-Pc;A

weLIM (T WOymefoyun) & LIM(T[mJ(WO);me(o;uN) (9:21)
and

Vaea {]a (Wr W) = 0} (922)
where Jc, 4 € J(LX,PC;A) (respectively,

-Jc,A R-Pc, A

w e LIM, ity meionony © LMoy o (9.23)
and

Voea{Jou(w, w) =0} (9.24)

R
where Jc,a €1 (X,PC;A))'

Theorem 9.4 Let (X, Pc, 4) be a quasi-triangular space, and let (X, T) be a single-valued

dynamic system, T : X — X. Assume that:

(@)
(b)
© S
(d)

Jca € JLXP ) (respectively, Jca € ,]]RX Pen)”

There exists M e 2X such that (X, T) is left (respectively, right) Jc. -admissible on M.
={Sy: € A} is an S 4-family.

TheSAfmmlySA—{S cae AL, (X, T), M and Jea =y : WGA}GprcA

(respectively, Jc,a = {Jy :ax € A} € J X Pen) ) satisfy

VaeAV8>1 EIn>1 ElVGNVWOeMVs,ZEN {Sa (]a(T[S] (WO); T[l] (WO)))

(9.25)
<1 =[Sy (TEWP), TH(w0)))] % < ).
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Then the following hold.:
(A) Convergence of Picard iterations. For each point w° € M, we have

L-Jc,A L-Pc, A L
%] #LIM Tl () metojn) < LIM(T[m] O ymelOUN) where Jc.4 € J(X,PC;A)
(respectively,
R-Tc;a R-Pc,A R
@ #LIM (T (W0):me{0}UN) c LIM(Tlml w0):me{0}UN) where Jc.a € J(vaC;A))'

(B) Existence of periodic points of Picard iterations. If there exist g € N and w® € M
such that the single-valued dynamic system (X, T\9) is left (respectively, right)
Jc.a-closed in a point w°, then

Fixy(T7) # @

Moreover, there exists a point u € Fixy(T@) (respectively, v € Fixx(T9)) such that

L-Jc,A c LIML Pc.A

# € LIM ] (01 met0yum) (T (W0):me{0JUN)

and
vaGAvne 1,2,...q} {]a (u’ T[n (u)) (T[n](u) u) }

where Jc,4 € J(LX,PC.A) (respectively,

R— ~7cA
ml (wO):me{0}UN)

R-Pc, A

ve LIM Tl (w0):me{0}UN)

C LIM

and

VaeAYne(2a o (v TVW)) = Jo (T (v),v) = 0}

R
where Jc,a € J (X,PC;A))’

Definition 9.1 Let (X, Pc, 4) be a quasi-triangular space. If assumptions (a)—(d) of Theo-
rems 9.1, 9.2, 9.3 or 9.4 hold, then a dynamic system (X, T) we call admissible (S 4, Jc; 4)-
contraction in (X, Pc; 4).

Remark 9.1 Let (X,Pc,4) be a quasi-triangular space. Assume that Jc, 4 € J(LXPC; oY
IR X Pea > thus, in particular, Jc;4 = Pc;a-

(A) If (X, Pc;.4) is left (respectively, right) Jc, 4-sequentially complete, then each
(set-valued and single-valued) dynamic system (X, T') is left (respectively, right)
Jc.a-admissible on each M € 2%, i.e. then hypothesis (b) of Theorems 9.1-9.4
automatically holds.

(B) In general, (X,Pc,4) are not necessarily left (respectively, right) Jc, 4-Hausdorff or
left (respectively, right) Jc, 4-sequentially complete. Convergence, periodic point,
endpoint and fixed point Theorems 9.1-9.4 presented above are without these
properties.
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10 Proofs of Theorems 9.1-9.4

In the sequel, for w° € X, let (w” : m € {0} UN) has property (w" : m € {0} UN) €Oy r(w°)
when (X, T) is set-valued or (W” : m € {0} UN) is of the form (w” = TV (w°) : m €
{0} UN) when (X, T) is single-valued. Moreover, we assert that hypotheses (a)—(d) of Theo-
rems 9.1-9.4 hold. This means that the hypotheses of the auxiliary Propositions 10.1-10.3
hold.

Proposition 10.1 Let Jc.4 € J(LX,PC;A) U J&;PC;A)' Let w® € X be such that
V(xeAVS>13n>lHVENVS,IEN{SaUa(VVS)Wl)) <é-n = [Sot(]a(wﬁr’ Wl+r))]Ca < 8}- For edCh a € A
and k € N, define

85 a7, ek (W') = I0F{ A(s 4, 7, ayek (W', ) : 1 € N} (10.1)
where

A 4 Te k(W n) = max{Se (Jo (W W) :n<s,i<n+k}, neN. (10.2)
The following holds:

VaeAVken{8(5.4,7¢ 430k (W°) = 1} (10.3)

Proof of Proposition 10.1 Suppose on the contrary that (10.3) is false. Then, by (10.1),

3a0€A3k06N380>1 {S(SA,jC;A);aO,kO (WO) = 80} (10.4')
where
S(SA’jC;A);OlO’kO (WO) = inf{A(SAyJC;A)ﬂO’kO (WO,}’I) ‘ne N} (105)

Observe that with this choice of oy and &, we can use hypothesis and then there exist
no > 1 and rg € N such that

Vi ien{Saq (Juo (W' W) < €0 - 110 = [Sao (oo (W, Wl”"))]c"o <&} (10.6)
Also observe that with this choice of «y, ko, €0 and 1o from (10.4) and (10.5) we get

ElnoeN{a(SA,Jc;A);uo,ko (WO) =80 < AS4,Tc.4)e0k (WO, ny) < € - 7}0}~ (10.7)
Naturally (10.7) gives

Vo <s1<no +ko { S o (W' W) ) < €0 - 10} (10.8)

since, by (10.2), A(s 4, 7¢,4)0ko (WP, ng) = max{Se, (]ao(ws,wl)) :np < 8,1 < ng + ko}. Now,
from (10.6) and (10.8) one gets

Vn0+r0§s,l§n0+r0+k0 { [Sot() (]Ot() (VVS, Wl))]cao < 80}- (109)

Page 17 of 54
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Next, since A(SA,jC;A);aO,kO(WO,no +19) = max{Sy, (Jo, (W', W) ing +ro <8l <ng+ry+kol,
therefore (10.9) implies

[A 5.4 Te a0k (W0 10 +70))] 0 < g0 (10.10)

However, by (10.4), (10.5) and (10.10), we obtain

80 = 8(s 4,76 a0k (W) = IN{ A 4 Tk (W' 1) -1 € N}
= A(SA,JC;A);ao,kO (WO, no + 7’0) = [A(SA,JC;A);ao,kO (Wor no + rO))]Cao <&

which is impossible. Therefore, (10.3) holds. O

Proposition 10.2 Let Jc. 4 € J](LX,PC;A) U “H&PC;A)‘ Let g€ A, 0> 1 and w® € X be such
that

Eln0>15|r0€NVs,lEN{Sa0( ag (]’VS: Wl)) <&y - Mo

= [Sug U (w70, w*70))] 0 < 0. (10.11)
Then the following hold:
Fugert{ [ A a7 aaoro (W' 10) | 0 < mineo, no}} (10.12)
and
Va0 § Sao oo (W', w')) < €3} (10.13)
Here
[A S 4., arvaors (W 110)| 0
= max{[Suo (uo (W', W) ] s 1o < 5,1 < 19 + 1} (10.14)

Proof of Proposition 10.2 Indeed, let g, o, WP, 19 and ry be as in (10.11).
We prove that (10.12) holds. From (10.3), for a, w° and ko = o, we get

88 aTe.ore (W) = Inf{ As 4 7¢ yaoro (W' 1) :me N} = 1 (10.15)
where

A(SA,JC;A);aoJo (WO’ n)

= max{Su, (Joo (W W)) :n<s,l<n+r), neN. (10.16)
Observe that (10.15) and (10.16) imply

inf{ [ Ags .70 anor0 (W 1) ] <0 in e N} = 1 (10.17)
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where

[A(SAJC;A)WOJO (WO’ n)]CaO

= max{[ Sy, (Juo (W', wl))]c‘”0 in<sl<n+rg}, neN. (10.18)

Now, from (10.17) and (10.18), using the fact that min{go, 170} > 1 one gets (10.12).
Now we prove that (10.13) holds. First, we establish that

Vizno {[Sao o (w0170, wH)) ] < g5} (10.19)
If (10.19) is false, then 3= o {[Sao o (W00, w!))]“®0 > £4}; in other words,

L={1€N:1> ng A[Su(Juo (W00, w)) ] > g9} # @. (10.20)
Thus, denoting

lo = minL, (10.21)

by (10.12) and (10.14), the conclusion is that [y > 11y and in view of (10.20) and (10.21) this

implies
¥ong=tcl {[Sao Uy (w0770, 1)) |0 < 2. (10.22)
We claim that
lo > g + To. (10.23)

To see this, suppose the contrary and let [y < ng + ro. We claim that then, by virtue
of (10.14), [SuyUao(w"0*0,w0))]%0 < max{[SyyUu (W, W) : ng < i,j < no + ro} =
[A(5.4. 76000 (W5 10)] %0 < min{eg, no} < &9, which, in view of (10.20)-(10.22), is im-
possible. Thus (10.23) holds.

From (10.23) we deduce that g < [y — ry < [y and next from (10.22) we conclude that

[Sao (Tug (w070, W0 70))] 0 < g (10.24)

Next, in view of (A.1) and (B.1) of Definition 3.1, Definition 8.1, (10.14) and (10.24),
we  obtain  SupUag (W70, W070)) = Sy (CagUlag (W70, W0%10) 4 Jyy (w0¥0, who-mo)]) - <
[Sao(]ao(wﬂo,wnoﬂo))]cao : [Sao(]ao(Wn0+r0,Wlo_ro))]cao < [A(SA:JC;A);ao,ro(WO’nO)]C‘XO © & <
No - €. Hence, using (10.11) we therefore have [Sao(]ao(w”o”o,wlo))]c% < &g. In view of
(10.20) and (10.21), this is impossible.

The proof of (10.19) is complete.

To continue, we require the following analogue of (10.19). It takes the following form

Voo | [Seo o (W' w7070)) ] < g0} (10.25)

Arguments are very close to those given in the proof of (10.19).
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Finally, to establish (10.13), we see that, by (A.1) and (B.1) of Definition 3.1, by Defini-
tion 8.1, by (10.25) and by (10.19), we obtain

vs,lzno {Soto ( oo (Ws’ Wl))
< Suo| CaJuo (W W) + CoJug (W00, W) |

< [l ) [ (7 ] < 0],
Therefore, (10.13) holds. g

- L R 0
Proposition 10.3 Let Jc,4 € J(XvPC;_A) U J(X:PC;A)' Let w’ € X be such that

VaeaVes13n1FrenVsien{Se Ua W, W) < & - 1 = [So (o (W, W) % < ). Then

Voca] Jim_supfu (v, w") =0} where Jea € Tt (10.26)
and
vaeA{ Jim_sup/, (", w”) - o} where Je.a € I p, - (10.27)

Proof of Proposition  10.3 Indeed, by  Proposition  10.2, we  get
VaeAvs>13n0€st,lzno {Se (]Dt (M/sx Wl)) < 82} or, eqllivalenﬂy, VaEA{limm,n%oo S (]Dl(wml Wn)) =
1}. By Definition 8.1, this gives Vyca{lim,,,— o0 Ju(W”,w") = 0} or, equivalently,
VaeAYes0TngenVs,izno U (W', w!) < €/2). Hence, we obtain, in particular, that
VD(EAVS>OEIWIQENVH>MZWIO {]a(wm,wn) < 8/2} and VOIEAVE>03VW0€NVVI>WIZWI0 {]a(wn’wm) < 5/2}
From this it follows that Vge 4Ves0TmenYmsmo{SUP,psp Ju (W, W") < /2 < &} and also
Ve AYes0TmoeN Vimsmo 1SUD 1o Ju (W', W) < €/2 < £} and hence (10.26) and (10.27) hold. [

Proof of Theorem 9.1 The proof will be broken into Steps 1-3.

Step 1. The statement (A) of Theorem 9.1 holds.

To prove (9.2),let Jc, 4 € J(LX,PC;A), let (X, T) beleft Jc. 4-admissible on X, and let w° € X
and (w" : m € {0} UN) eOx r(w°) be arbitrary and fixed. By (10.26), Definition 5.1(A)
and hypothesis (b), we get LIM(L;;ZS;;?{O]UN) ={w e X : Vyepllim, o Jo (W, w™) = 0}} # .
However, by hypothesis (a), Jc,4 is left family generated by Pc, 4. Therefore, fixing
we LIM(;,W;E{O}UN), defining (x,, = w” : m € {0} UN) and (y,, = w: m € {0} U N) we
get Vyea{limy,— oo SUP,., Jo (B %4) = 0} and Ve a{limy,— 00 Jy (Vs %) = 0}. Hence, by
Definition 3.1(A), we obtain Vyca{limy,—ooPy(¥m xn) = 0}). Clearly, this

L-Pc;A

means Vgea{lim,, oo Po(w,w") = 0}, ie. w € LIMmmeioyun)- Consequently, @ #

L-Jc,A L-Pc;,A
LIM ooy © LIM gmizioyury- Thus (9:2) holds.

If Jeu € J&PC-A)’ (X, T) is right Jc,4-admissible on X, and if w° € X and (w"” : m €
{0} UN) €Ox,r(w°) are arbitrary and fixed, then, using (10.27), a similar computation as
above shows that & # LIM?};,Z,CV;?{O]UN) - LIva;zfn‘?{o}UN). Therefore, (9.3) also holds.

Step 2. The statement (B) of Theorem 9.1 holds.

First, we show that (9.4) and (9.5) hold in the left case. With this aim, let w® € X and
(w" : m € {0} UN) €Ox,r(w°) be arbitrary and fixed. By statement (A), we have @ # U =
L-Jc;A LIML—PC;A
(W":me{0}UN) C (w":mef{0

and m € N. Assuming thatsp € {1,2,...,¢} is arbitrary and fixed, we see that the sequences

JUN) - Moreover, w"*s e Tlal(w(m-1)a+5) where s = 1,2,. .o q

Page 20 of 54
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(Y = w0 i € N) and (x,,, = w90 : i € N) satisfy ¥, en{ym € T (x,,)}, and, as

subsequences of (w” : m € {0} UN), are left J¢, 4-convergent to each point of the set

U= LIMLW,‘an?{O _ty- Furthermore, LIM(»/SA 0 o © LIM( 7SA and LIM W,;?;g‘ ou ©
LIM,, 7%A . Hence, we derive @ # U = LIM(mCA 0 o C LIMU JoA N LIM ToA

By the above, since T'9 is left J¢ 4-closed on X, in virtue of Definition 7.1(A), we get
Jyeu{u € T (w)}.

The above considerations lead to the conclusion that Fixy(719) # & and that for each
w? € X and for each dynamic process (W : m € {0} UN) € Ox r(w°) starting w® there
exists a point u € Fixx(7@) such that (w” : m € {0} UN) is left Jc, 4-convergent and also
left Pc, 4-convergent to i, so (9.4) and (9.5) hold in the left case.

In a similar way, we show that (9.4) and (9.6) hold in the right case.

Step 3. The statement (C) of Theorem 9.1 holds.

Part 1. First, we show that

Fixx(T) = {w} forsomew € X. (10.28)

Otherwise, x° € T(x°), y° € T(y°) and x° #y° for some x°,)° € X; remember that, by state-
ment (B), Fixx(T) # @. By Proposition 3.1, since the family Pc, 4 = {P, : « € A} is separat-
ing on X, there exists ag € A such that Jo,, (x%,5°) > 0 or Jo, (5°,2°) > 0. Suppose Ju, (x°,5°) >
0. Then, by Definition 8.1, Sy, (Jo, (x°,5°)) = €9 for some &g > 1. Therefore, by hypothesis
(d), we conclude that for these ag € A and gg > 1, there exist ny > 1 and rg € N, such that
dynamic processes (x" = x° : m € {0} UN) €Oy r(x°) and (5" = y° : m € {0} UN) eOx.1(3°)
satisfy

Vs,leN{ ) (]ao( )) (xo( g (xo:yo)) =& <&+ MNo
= Suo Vo (6,5°)) = S Vg (7%, 57))
< [Su (g (5°770,57))] < 0},
Clearly, this is impossible. We obtain a similar conclusion in the case when J,, (%, x4°) > 0.

We proved that J,, (x°,°) = J,, (#°,4°) = 0. Consequently, by Definition 3.2, (10.28) holds.
Part 2. Let, by (10.28), w € Fixx(T) = {w}. We show that

VaeA{]a(W’ w) = 0} (10.29)

Otherwise, there exists ap € A such that Sy, UaO(W, w)) > 1. Clearly, w € T"(w) for m €
{0} UN which gives (x" = w: m € {0} UN) €Oy r(x°) and ()" = w: m € {0} UN) €Ox r(3°).
Thus by (9.1) we get that for & = Sy, (Jo, (W, w)) > 1 there exist 1 > 1 and ry € N such that
dynamic processes (¥ = w:m € {0} UN) and (y” = w: m € {0} UN) satisfy

VS,IEN{SOto( ao( )) ozo (]ao(w¢ W)) =&0<&y-MNo
[ o (]ao w, W))]Cao

= Sozo (]aO(W; W))
_ [Sot() (]Olo( S+710 yl+r0))]ca0 < 80}

which is impossible. Therefore, (10.29) holds.
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Part 3. For each x° € X and r € N we say that u € T"/(x°) if there exists a sequence (x

,,,,,

Part 4. By (10.28), we get Fixx(T) = {w} for some w € X. We prove that

mef0,...,r}) = (% «l,...,x") satisfying V,,c(o,.1){&"*! € T(x™)} and such that u = x".

VaeA{ sup Ju(u,v) =0j. (10.30)
u,veT(w)

Let r € N be arbitrary and fixed and let (x” : m € {0} UN) €Ox,7(w) and (y" : m € {0} U
N) €Oy, r(w) be dynamic processes such that x” = y" =w for n € {0,...,r — 1} and let x” =
u e T"(w)and y" = v € T (w) be arbitrary and fixed. Then, by (10.29), for eacha € A, & >
L,n>1land n €{0,...,r — 1} we get Su (Jo (x",y")) = SeJo (W, w)) = S4(0) = 1 < & - n. Hence,
by using (9.1) and since Vye4{Cy > 1}, we obtain VoeaVes13ren Y, e 7ir () {Se U (4, V) <
[Seu (1, )] < €} and this implies that VaeAVe03ren{SUP,, el vy Jo (4, v) < €}. Observe
further that by using property w € T(w) C T"(w) for m € N, we find
VaeAV£>O{Supu,veT(W) Jo(u,v) < &}, that is, Vae.A{Supu,veT(W) Jo(u,v) = 0}.

Part 5. Note that T(w) = {w}. Otherwise, u,v € T(w) and u # v and, by Proposition 3.1,
since the family Pc, 4 = {P, : @ € A} is separating on X, there exists «p € A such that
Joo (11, v) > 0 01 Joyo (v, u) > 0. Consequently, sup,, 7 Joo (¢, v) > 0. Clearly, this is impossible
by (10.30). Therefore, (9.7) holds.

Part 6. Property (9.8) follows from Parts 2 and 5. By statement (B), properties (9.9) and
(9.10) hold. O

Proof of Theorem 9.2 With the notation of the Theorem 9.2, Steps 1 and 2 of the proof of
Theorem 9.1 are adapted to w® € M and (" : m € {0} UN) €Oy 7(w°) satisfying assump-
tions of Theorem 9.2. O

Proof of Theorem 9.3 The proof will be broken into Steps 1-3.

Step 1. The statement (A) of Theorem 9.3 holds.

First, we prove (9.13). Let Jc.4 € J X.Pe.a) and let (X, T) be left Jc, 4-admissible on X.
Let w° € X be arbitrary and fixed. Define the sequence (w” = T"(w°) : m € {0} UN).
Clearly hypothesis (d) implies hypothesis of Proposition 10.3 and, by (10.26), Defini-
tion 5.2(A) and hypothesis (b), we get that this sequence is left J¢, 4-convergent in X,
ie.

L- JCA
LIM m] (w0):me (0)UN)

{weX vaeA{ tim J, (w, 7 (w 0}} (10.31)
However, by hypothesis (a), Jc, 4 is the left family generated by Pc; 4. Therefore, fixing

L- JCA
we LIM ml(wO):me{0}UN)’

, defining
(xm =T (WO) :m € {0} U N) and (ym =w:me{0}U N) (10.32)

and using (10.26) and (10.28) we get Vyea{limy— ooSUp,.,,Jo*mx,) = 0} and
Voea{limy,— 00 Jo (Vm»> %n) = 0}. Hence, by Definition 3.1(A), we obtain Ve 4 {limy,— oo Po (V>
xm) = 0}. Next, by (10.29), we observe that this is of the form Vyc{lim,,_ o Py(w,
T (w0) = 0}. Therefore, w € LIML PCA By (10.28), this means that @ #

ml(w0):me{0}UN)”
L-JcA L-Pc,4
LIM Gt 0ymeropony © FIM m) (0ymeqojony Ve proved (9.13).
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Let now Jc, 4 € Jl}p n and let (X, T) be right Jc, 4-admissible on X. Then, using

(10.27), a similar computatlon shows that, for each W’ € X, @ # LIMR [Zﬁj’)me{O}uN)
LIMR PeiA N which means that (9.14) holds.

T (w0):me{0}UN)

Step 2. Conclusion (B) of Theorem 9.3 holds.

First, we show that (9.15)—(9.17) hold in the left case.

Let w® € X be arbitrary and fixed. By statement (A), the sequence (w” = TV (w°) :
m € {0} UN) satisfies @ # U = LIMLW,;an“:{O}UN
quence we have w”+ = Tl (w("-1a+s) where s = 1,2,...,q and m € N. Assuming that

C

) C LIM(M;,, meiojuny)- Moreover, for this se-

so €{1,2,...,q)} is arbitrary and fixed, we see that the sequences (y,, = w"7*0 : m € N) and

m=Da+50 : 1 € N) satisfy V,en{¥m = T (x,,)}, and, as subsequences of (w” : m €

L-JcA
e wo)me{O}UN) Further-

C LIM

(% = W
{0} UN), are left Jc, 4-convergent to each point of the set LIM

L-Jc,A L-Jc, A L- JCA
more, LIM(T[m] wO)mE{O}UN C LIM(y mel) and LIM ] (n0): me{O}uN)

we derive @ # U = LIM WO) meioluN) © LIM(y meN N LIMx meN)
T4 is left Jc. 4-closed on X in virtue of Definition 7.2(A), we get 3¢y {u = T4 (u)).
The above considerations lead to the conclusion that Fixy(71) # & and that for each

Comerm eN Hence,

By the above, since

w® € X there exists a point u € Fixy(T'?)) such that the sequence (w” = T (w°) : m €
{0} UN) is left Jc, 4-convergent and left Pc, 4-convergent to u, so (9.15) and (9.16) hold
in the left case.

Next, we show that (9.17) holds, i.e. that Ve AVne(1,2,..q) U (4, T () = Jo, (T (w), u) =
0} holds. Suppose that 3oye4Tnpei1,2,...q Voo (4 Tll(y)) > 0 v]aO(T[”O](u), u) > 0}. If Jo, (us,
T"l(u)) > 0, then, by Definition 8.1, Serg U (14 T™"l(4))) > 1, and putting

£0 = Suo Uuo (6 T (1)) (10.33)
for some &g > 1, by hypotheses (c) and (d), we get

3r]0>1Elr()eNVs,leN{Sotg( ao(T[S](M): T[l] (M))) <é&o-TNo
= [Suo (ao (T @), TH0 (1)) < g5 (10.34)
Using (9.15), (9.16) and (10.33) we therefore have
e { T (u) = ) (10.35)
and Sao(]ao(T[q](u), Tlarmol(y))) = Seg Uo (1, T")(u))) = o < &9 - no. Hence, using (10.34)
for s = q and [ = g + ny, we get the inequalities [Sy, (]D,O(T[q”"](u), Tla+mo+rol (31)))]Ce0 < g <
&o - No- It follows from this that
Sao Vo (T (@), TV (w))) < 9 < £0 - mo (10.36)
since Cy, > 1 and S, (]aO(T[q”O](u), Tla+mo+rol(y))) > 1. Similarly, by (10.36), using (10.34)
for s =g+ ry and [ = g + ng + rop we conclude that [S,, (]aO(T[q*er](u), Tla+no+2rol(14)))]Ceo <

&0 < &0 - No and this gives

Sag (]ao (T[qﬂro}(”)’ TMMM%](”))) <&y <&Mo (10.37)
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since Cyy > 1and Sy, (Jo, (T197270) (1), T1a+10+210] (31))) > 1. In view of (10.35) and (10.37), and
by induction, using (10.34), we find

Y men {Sao (]ao (T[q+mro] (), Tla+no+mro] (u)))

< [Sug (o (TH770) (1), TH7707770) 1)) )] <0 < g < g - 1o} (10.38)
If m = g in (10.38), we also have
Sap Vo (T4} (1g), T10+070) (1)) < &9 < £0 - o (10.39)

By using (10.33), (10.35) and (10.39), we obtain &y = Su,(u (1 TN (1)) =
Sao (]aO(T[q*q"’](u), Tlarno+arol(y))) < go. It is absurd. Therefore, Joro (1, Tl (35)) = 0. Simi-
larly, we prove that ]aO(T[”O](u), u) = 0. We proved that (9.17) holds.

In a similar way, we show that (9.15), (9.18) and (9.19) hold in the case of right.

Step 3. The conclusion (C) of Theorem 9.3 holds.

Since (X, T) is left (respectively, right) Pc, 4-closed on X, thus, by conclusion (B), we
have Fixx(7T) # @. We show that Fixx(T) = {w} for some w € X. Otherwise, x,y € Fixx(T)
and x # y for some x,y € X; remember that, by the above, Fixx(7T) # @. By Proposition 3.1,
since the family Pc, 4 = {P, : @ € A} is separating on X, there exists «p € A such that
Joo (%, 9) > 0 or Jo, (9, %) > 0. Suppose Jo, (%, ¥) > 0. Then, by Definition 8.1, Sq, (Jo, (%, ) = €0
for some ¢y > 1 and, by hypothesis (d), for these ap € A and ¢y > 1, there exist 7o > 1 and
ro € N, such that

Vs,leN{Sag( oto(T[S] (x): T[l] (y))) = Sag( ap (X;)/)) =&0 <&Mo

= [Sup U (TF0 ), TH0)(3)))] 0 < g5 ). (10.40)

However, for each s,/ € N, Sg, (Jy, (%, %)) = Soy (]aO(T[S”U](x), T+0l(y))) = &9 and (10.40) im-
ply that g9 > 1, Cy, > 1 and 85"0 < gg. Clearly, this is impossible. We obtain a similar con-
clusion in the case when J,, (¥, %) > 0. We proved that J,, (%, y) = Ju, (¥, %) = 0. Consequently,
by Definition 3.2, Fixx(T) = {w} for some w € X, that is (9.20) holds.

Now, (9.20) with (B) means that, for each w° € X, the sequence (w” = T"(w°) : m €
{0} UN) is left (respectively, right) Pc, 4-convergent to w. Thus (9.21) and (9.23) hold.

Finally, we show that (9.22) and (9.24) hold, i.e. that V,c4{S,(Jo(w,w)) = 1} where
Fixx(T) = {w}. Indeed, if we assume that there exists oy € A such that Sy, (Jo, (W, w)) > 1,
then, denoting &g = Sy, s, (W, w)) > 1, by (9.12), there exist 19 > 1 and rg € N, such that

Vs,leN{Sao( ') (T[S] (W)’ T[l](w))) <é&p-MNo

= [Sug U (T (w), T (w)))] 0 < ). (10.41)

However, for each s,/ € N, we have S, (]ao(T[S](w), T w))) = Sero Uag (W w)) = 8 < &0 - 1o.
Thus, using (10.41), we obtain 1 < &g = Sq,(Joo (W, W)) = Sao(]ao(T[”’O](w), Tl (w))) <
[Sao (Iao(T[“’O](w), THrol(1)))]C=o < g, ie., 1 < &, Cyy > 1and eocao < &9, which is impossi-
ble. Therefore, (9.22) and (9.24) hold.

The proof of Theorem 9.3 is complete. d
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Proof of Theorem 9.4 Thus the condition (9.25) holds. Then, defining (w” = T"(w°) :
m € {0} UN) where w° € M and next, for this sequence, using a similar argument as in the
proofs of Propositions 10.1-10.3 and Steps 1 and 2 of the proof of Theorem 9.3, we have
the assertions. 0

11 Examples
Example 11.1 Let X = (0;1),let P: X x X — [0; +00) be given by

0 ifu>v,
P(u,v) = (11.1)
v—u)? ifu<v,

where u,v € X, and let a set-valued dynamic system (X, ) has the form

(x/3+1/3;1/2) U (1/2;—x/3 + 2/3) ifx € (0;1/2),
T(x) =4 {1/2} ifx=1/2, (11.2)
(=x/3 +2/3;1/2) U (1/2;%/3 + 1/3) ifx e (1/2;1).

Let us observe that:

Part 1. P is quasi-triangular distance with C = 8 and (X, Pgy1y) = (X, P) is quasi-
triangular space. We have V,, , ,ex {P(u, w) < 8[P(u,v) + P(v,w)]}; see Definition 2.1(A) and
[53, Example 1, p. 10].

Part 2. For ] = P, for each Spy-family Sq1y = {S} (see Definition 8.1) and for (X, T') the hy-
potheses (a)—(d) of Theorem 9.1 hold. Indeed, hypothesis (a) holds since, by Remark 3.1(a),
Peltpnn fo,p) (see, Definition 3.1(D)).

Next, we see that (X, T) is left and right P-admissible in each point w° € X (see Defini-
tion 5.1). In fact, from (11.2), for m € N, we get

T (X - {1/2}) = (ZI/B’” 1/2) (1/2;1_21/3'”)
i=1

= ((1-1/3")/2;1/2) U (1/2;1 - (1 - 1/3")/2), (11.3)

T ({1/2}) = {1/2}. (11.4)

By applying (11.1)—(11.4), by Definition 2.3, and by direct reasoning the calculations

show that:
Case A. Let w® € (0;1/2) U (1/2;1). If W" : m € {0} U N) €Oy r(w°) satisfies
TmpeNVmzmeW" € (1 — 1/3™)/2;1/2)}, then  limy—ooSUP,,.,, PW",W") =

1My, 00 SUD,,,,,, P(W", w™) = 0, [1/2;1) = LIM{jn,.copuny and {1/2} = LIM{0 oon-

Case B. Let w® € (0;1/2) U (1/2;1). If (w” : m € {0} U N) €Oy r(w°) satisfies
TmoeNYmz=mo{W” € (1/2,1 - (1 - 1/3")/2)}, then lim,_,sup,,,, PW",w") =
limy, o0 SUP,,,,,, P(W", w™) = 0, {1/2} = LIM{;n.,.c ooy @nd (051/2] = LIME,R, ¢ 010m)-

Case C. Let w® € (0;1/2) U (1/2%1). If W™ : m € {0} U N) eOx r(w°) satisfies
VooetTmyomo Imaomo W™ € (1 = 1/3™1)/2;1/2) and w™ € (1/251 — (1 — 1/3’”2)/2)}, then
limy,,—, o0 SUP,,. ., PW", W") = limy,—s o0 SUP,,s,,, PW, W) = 0, {1/2} = LIM me{O]UN) and
{12} = LIMRE. orom-



Wtodarczyk Fixed Point Theory and Applications (2020) 2020:6 Page 26 of 54

Case D. If w° = 1/2, then (w" : m € {0} U N) €Oy r(w°) is such that V,,cn{w" = 1/2},
lim,,_, o sup,,,,, P(W", w") = lim,,_, o sup,.,,, PW", w”) = 0, [1/2;1) = LIMLW,{; mefojun) and
(0;1/2] = LIM{ . e o0y -

Therefore, by Definition 5.1, hypothesis (b) follows from Cases A-D.

Finally, let us observe that (X, T), J = P, and arbitrary Sy;;-family Sypy = {S} satisfy (9.1).

Indeed, by (11.1)—(11.4), we note that

Vs>0HVENVxO,yOeXV(le:mE{O}UN)eOX‘T(xo)V(ym:mE{O}UN)GOX’T(JIO)
Voren{8 - P, y17) < 8- (" — y)
<8-(1/3*)(1/3" = 1/3%)%/2* < ¢).

Consequently, using Definition 8.1, we obtain

Ves13reNV20 0 x Y (e 0juN) O 1(60) Y (y7:me (0} UN) €Oy 70)
Y 1en{[S(P**7, )] < e}

In view of this, we see that

VE>1 3r]>1 EIVGNVxO,yO EXV(xW‘;mE{O}UN)EOXIT(xO)v(ym:me{O}UN)EOX,T(yO)
Y ien{S(P(,9Y) < & - n = [S(P(x*7,5""))]® < &}.

Part 3. (X, T) is a left and right P-closed in each point w° € X. Indeed, for each w° € X
and for each dynamic process (w” : m € {0}UN) eOx, 7(wP), the subsequences (y,, = w"*! :
m € N) and (x,, = w” : m € N) of (W” : m € {0} UN) satisfy V,,en{ym € T (x,,)}. Moreover,
in view of Cases A—E, we get1/2e U = LIM(WW, meojun) C LIM(x ey N LIM(LyjmeN) and
112 €V = LIM{,.coun C LIMGE,c NLIMEE . Observe also that 1/2 € T(1/2) =
{1/2} = Endx(T).

Part 4. P is separating on X. Indeed, for each x,y € X such that x # y, we have P(x,y) >0
or P(y,x) > 0. This means, by Definition 2.1(D), that P is separating on X.

Part 5. P vanishes on the diagonal. Indeed, for each x € X, P(x,x) = 0.

Claim 1. By Parts 1-5, for ] = P, g = 1, (X, T) and for arbitrary Sp)-family Sppy = {S},
hypotheses (a)—(d) and statements (A), (B) and (C) of Theorem 9.1 hold. We have: (i)
Endx(T) = {1/2}. (ii) For each ° € X, every dynamic process (w" : m € {0} UN) €Oy r(w°)
is left and right P-convergent to 1/2.

Example 11.2 Let X = (0;1) and let P: X x X — [0; +00) be given by (11.1) for X = (0;1).
Suppose also that (X, T) is a set-valued dynamic system defined by

(/3 +1/3;1/2) U (1/2;—x/3 +2/3) forx € (0;1/2),
T(x)=1(0;1) for x = 1/2, (11.5)
(=x/3+2/3;1/2) U (1/2;x/3 +1/3) forx € (1/2;1).

Part 1. For ] = P, for M = X, for each Syy-family Sy = {S}, and for (X, T') the hypotheses
(a)—(d) of Theorem 9.2 hold. Indeed, hypothesis (a) holds since, by Remark 3.1(a), P €
Tem N T



Wtodarczyk Fixed Point Theory and Applications (2020) 2020:6 Page 27 of 54

Next, we see that (X, T) is left and right P-admissible in each point w° € X. In fact, from
(11.5), for m € N, we get

T (X —{1/2})

= (i 1/3™; 1/2) U (1/2; 1- i 1/3”’)
i=1

i=1
=((1-1/3")/2;1/2) U (1/2;1 - (1 - 1/3")/2),
T ({1/2}) = (0; 1). (11.6)

By applying (11.1) and (11.5)—(11.6), we consider the situations I and II:

LIfw® € (0;1/2)U(1/2;1) and (W™ : m € {0} UN) €Oy r(w°), then we see that V,,,en{w” €
((1-1/3")/2;1/2) U(1/2;1 - (1 —1/3™)/2)} and Cases A—C hold:

Case A. If w° € (0;1/2) U (1/2;1) and Fyen¥mzme (W" € ((1 — 1/3™)/2;1/2)}, then
1My, 00 SUD,,,,, P(W™, W") = 1imyy, s 00 SUD,,,,,, PW", w™) = 0, [1/2;1) = LIM{;0,,,c 0juny) @nd
{172} = LIM{0co1om)-

Case B. If w° € (0;1/2) U (1/2;1) and J,penVmzmo W™ € (1/2;1 — (1 — 1/3™)/2)}, then
lim,,,—, o0 SUP,,s,,, P(W", W") = limy,_, o0 SUP,,.,,, P(W, W") = 0, {1/2} = LIML Pme{O}UN) and
(0;1/2] = LIM{ 2. oyony-

Case C.If w° € (0;1/2) U (1/2;1) and Vg enTimy g Iy oo (W™ € (1 - 1/31)/2;1/2) and
w2 e (1/2;1 — (1 — 1/3"2)/2)}, then lim,,_, « sup,,.,, PW",w") = lim,,_, « sup,,.,, P(W",
w”) =0, {1/2} = LIM{j,.couny and {1/2} = LIMG2. . oron-

IL If w® = 1/2 and (W" : m € {0} UN) €Oy r(w°), then we see that V,,en{w™” € (0;1)} and
Cases D and E hold:

Case D. If w® = 1/2 and V,en{w” = 1/2}, then lim,_  sup,., P(W",w") =
1im, supn>m P(w",w™) =0, [1/2;1) = LIM(Wm meqoyuny and (0; 1/2] LIM e io00m)-

(W":mef

.....

automatlcally Vm>mo{w e ((1-1/3")/2;1/2) U (1/2;1 - (1 - 1/3”’)/2)} and from thls we
deduce that then Cases A—C hold.
Therefore, by Definition 5.1, hypothesis (b) follows from Cases A-E.
Finally, let us observe that (X, T'), ] = P, and arbitrary Sj;;-family Sjpy = {S} satisfy (9.16).
Indeed, by (11.1), (11.5)—(11.6) and Cases A—E, we note that
Ves03ren V0 em=x ¥ (smme(0)um)e0y 7.0 Vs ten {8 - P, x1*")
<8 (& —xH")* < 8. (1/3%)(1/3' - 1/3°)*/2* < £}.

Consequently, using Definition 8.1, we obtain

V6>1 ElreviO eM:Xv(xm:me{O}UN)eox,T(xO)stkN { [S(P(xs+r’ xl+r))]8 <¢€ } :

In view of this, we see that

Vs>13;7>1HrevioeM=XV(x”’:me{O}UN)EOx,T(xO)
Voien{S(P@, &) <& - = [S(p(**", 4178 < e}
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Part 2. (X, T) is a left and right P-closed in each point w° € X. Indeed, for each w° € X
and for each dynamic process (w" : m € {0} UN) €Oy, r(w°), the subsequences (y,, = w"*! :
m € N) and (x,, = w” : m € N) of (W” : m € {0} UN) satisfy V,,en{ym € T (x,,)}. Moreover,
in view of Cases A—E, we get 1/2 € LI LIM(Wm mefojun) C LIM(x meny N LIMfy‘PmeN and
1/2 € V = LIM{ e 0 C LIMG?, ey NLIME T ). Observe also that 1/2 € T(1/2) =
(0;1).

Claim 1. By Parts 1 and 2, for ] = P, q = 1, M = X, and for arbitrary S,-family Sy = {S},
hypotheses (a)—(d) and statements (A) and (B) of Theorem 9.2 hold. We have: (i) Fixx(T) =
{1/2} and T(1/2) = X. (ii) For each w® € M = X, every dynamic process (w” : m € {0} U
N) €Oy, () is left and right P-convergent to 1/2.

Remark 11.1 We observe that in the cases of left and right we do not apply Theorems 9.1
to (X, T) from Example 11.2. In fact, assume in (9.1) that (x : m € {0} UN) €Oy r(x°) and
(" :m € {0} UN) €Ox r(5°) are such that x” = y" = 1/2 for m € {0,1,...,r — 1} but, e.g.,
x"=1/4 and y" = 3/4 or ¥ = 3/4 and y" = 1/4. Then from (9.1) we see that for each ¢ > 1
and 7 > 1 there exists r € N such that S(P(1/2,1/2)) = S(0) = 1 < ¢ - n = [SP(x",y"))]® =
[S((3/4 — 1/4)%)1® = [S((1/2)*)]® < &. However, since [S((1/2)*)]® > 1, this is impossible for
each ¢ such that 1 < & < [S((1/2)*)]8.

Example 11.3 Let X = [0;1]. Let P: X x X — [0; +00] be given by (11.1) for X = [0;1].
Suppose also that (X, T) is a set-valued dynamic system defined by

{0} forx =0,
(0;x/2) for x € (0;1/2),
T(x)=1(0;1) forx=1/2, (11.7)
(/2 +1/2;1) forx e (1/2;1),
{1} forx=1.

Part 1. ForJ =P, M =X, q =1 and (X, T) given by (11.7), harking back to the discussion
of Example 11.2, we may easily verify the hypotheses of Theorem 9.2. Indeed, by (11.1) and
Definitions 5.1 and 2.3, hypothesis (b) of Theorem 9.2 holds, since:

Case A. If w® = 0, then Vpen{w” = 0} and lim,_ sup,.,, P(W",w")
lim,,, « sup,,,,, P(W",w") = 0. Moreover, X = [0;1] = LIM(LV;ﬁzme{O}UN) and {0}
LIMRw*{; me(0)UN)*

Case B. If w® e (0;1/2), then V,en{w” € (0;w°/2") and this implies that

lim,;,—, o0 SUP,,s,, P(W", W") = lim,,Hoo sup,.,, Pw",w") = 0. Moreover, (0;1] =
LIMLerZ :me{0}UN) and {0} = LIM;, wm me{0}UN)*

Case C. If w° = 1/2 and F,yenVime(t,.mo){w™ = 1/2} and w™*! € (0;1/2), then
Vouen w0t e (0;w0+1/2™M) and limy,— o0 SUP,,s,,, PW", W") = lim,,_ « sup,.,, P(W",
w™) = 0. Moreover, (0; 1] = LIM{7.,,.couny and {0} = LIMS2. . o10n-

Case D. If w® = 1/2 and V,en{w” = 1/2}, then lim,_  sup,.,, P(W",w")
limy,—, o0 sSUP,,. ., PW", w") = 0. Moreover, [1/2;1] = LIM(ij'{"):me{O}UN) and [0;1/2]
LIM{ e oumy-

Case E. If w° = 1/2 and J,penVimeq1,.mo) (W™ = 1/2} and w™* € (1/2;1), then

.....

Vomen{w™ortm e (1 — (1 — w”0+1)/2™;1). This implies that lim,, . sup,.,, P(W",w") =
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lim,,_, o0 SUP,,.,, PW*',W") = 0. Moreover, {1} = LIMLW,IJ me(OJUN) and [0;1) =
LIM( e ojury -

CaseE.Ifw® € (1/2;1), then V,,,en{w™ € (1-(1-w°)/2"; 1) and also lim,,,_, « sup,,.,, P(W",
w") = lim,,_, o sup,.,, P(W",w") = 0. Moreover, {1} = LIM(LWVI,,)m 0JUN) and [0;1) =

R-P
LIM(W’”:me{O}UN)'

Case G. If w® = 1, then V,en{w” = 1} and limm_,oO Sup,,.,, PW", w") =
1imy;— o0 SUP,,.,, PW', Ww") = 0. Moreover, {1} = LIM{, wm meoyuyy  and [051] =
LIME-D

(w":me{0}JUN
From Ca:s}es j& G it follows also that (9.16) holds for M = X and that (X, T) is left and
right P-closed in each point w° € M = X.
Claim 1. For ] = P, M = X and q = 1 the hypotheses and statements of Theorem 9.2 hold.
We have: (i) Fixx(T) = {0,1/2,1} and Endx(T) = {0, 1}. (ii) For each w° € X, every dynamic
process (W : m € {0}UN) €Oy r(w°) satisfies 1 € LIMZ, andO € LIME-P

WWI me{0} (Ww":me{0}UN)*

Example 11.4 Let X = (0;4) and define (X, T') by

7/2 ifx € (0;2],
Tx)=131/2)(x-3)+3 ifxe (23], (11.8)
1/2 if x € (3;4).

For A = {1/2} U (5/2;3] U {7/2} C X, we set

0 ifu=vorAn{uv}={uv}
P(u,v) = (11.9)
1 ifu#vand AN {u,v}#{u,v}

where u,v € X. We see that C = 1. Observe that:
Part 1. If ] = P, then (X, T) is left and right P-admissible on X. Indeed, first we note that,

formeN,
1/2 ifx € (0;2],
TP () = { (1/22")(x—3) +3 ifx e (2;3], (11.10)
7/2 ifx € (3;4),

and, for m € {0} UN,

7/2 ifx € (0;2],
TP (@) = § (122" (x-3) + 3 ifxe (23], (11.11)
1/2 if x € (3;4).

Using (11.10) and (11.11) we, therefore, have

T"(X) C A. (11.12)
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Next, (11.9) and (11.12) imply that, for each w° € X, a sequence (W” = T (w°) : m € {0} U
N) satisfies lim,,_, o SUp,,,, P(W", W") = lim,_, o, SUP,,.,,, P(W", w") = 0 and

vweA{ Tim P(w,w") = lim P(w",w) =o}. (11.13)

Part 2. If ] = P, then hypothesis (d) of Theorem 9.3 holds. Indeed, by (11.9) and (11.11), for
each Sp)-family Sy = {S} we have VS>13,7>1ElreNVx,yesz,leN{S[P(T[S] ), TO@)] <e-n=
SIP(TE (), TH(5))] = 1 < ).

Part 3. (X, T?)) is left and right P-closed on X. Indeed, if w® € X is arbitrary and fixed,
then (w” = T wP) : m € {0} UN) is a left and right P-converging sequence to each
point of A (see (11.13)), any two subsequences (¥, : m € N) and (x,, : m € N) of (w" =
T (w) : m € {0} U N) satisfying V,uen{ym = T (x,,)} are left and right P- converging to
each point of A, and Fixy(T™)) = {w = T®I(w) : w € {1/2,3,7/2}} C A = LIM; .. EAOIUN) =
LIMRW’{‘)me{O}UN In virtue of Definition 7.2, (X, T') is left and right P-closed on X.

Part 4. (X, T) is a left and right ] = P-closed on X. Indeed, let w® € X be arbitrary and
fixed and let g = 1. Observe that sequence (w” = TV (W) : m € {0} U N) satisfies {3} =
Fixx(T) C A = LIML
(% = w" :m € N) of (w" = T"(wP) : m € {0} UN) are left and right P-converging to each

wm mef{0

UN)} = LIM(Wm .mefojun)» Subsequences (¥, = w1 :m e N) and

point of A, and V,,en{ysm = T(xm)}.

Part 5. P is not separating on X. Indeed by (11. 11) for each x,y € X such that x # y and
AN{x,y} = {x,}, we have Vie(0,00) {P (%, ¥) = P(y,%)

Claim 1. By Parts 1-3 and 5, for ] = P and q =2, the statements (A) and (B) of Theo-
rem 9.3 hold. We have: (i) Fixx(T®) = {1/2,3,7/2} # @. (ii) For each w° € X, a sequence
(w" = T"(w°) : m € {0} U {0} UN) is left and right P-convergent to each w € Fixx(T™?).
(iii) ¥, cpixy (ri2n {PW, w) = P(w, T(w)) = P(T (w), w) = 0}.

Claim 2. By Parts 1, 2, 4 and 5, for ] = P and q = 1, the statements (A) and (B) of The-
orem 9.3 hold. We have: (i) Fixx(T) = {3} # @. (ii) For each w° € X, a sequence (w™"

T (wP) : m € {0} UN) is left and right P-convergent to 3. (iii) P(3, 3) = 0.

Example 11.5 Let X = (2;4) and P: X x X — [0; +00] be given by (11.1); thus C = 8. Sup-
pose also that (X, T') is a single-valued dynamic system defined by

7w, forx=m,,,me{0}UN},

w,, forx=w,.1,me {0} UN},
Tx)=1 ey € 10} U} (11.14)
3 forx =my = wg =3,

3 forx e ®,

where IT = {n,, =4 -1/2" .me {0} UN}, 2 ={w, =2+ 1/2" :me {0} UN}, ® =
(Z4\[T U £2].

Let us observe that:

Part 1. For ] = P, for each Syy-family Sy = {S}, and for dynamic system (X, T) the hy-
potheses (a)-(c) of Theorem 9.3 hold. Indeed, hypothesis (a) holds since, by Remark 3.1(a),
Pe fo, I HJ&P). Next, we see that dynamic system (X, T) is admissible on X. In fact, using
(11.14) we find

VnenVaeo { TV (71,0) = TV (70) = TV (@) = T (o) = T (x) = 3}. (11.15)
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Next, by (11.14) and (11.15), for each w® € X, sequence (w” = TV (w°) : m € {0} UN) satis-
fies lim,,_, o0 SUP,,. ., P(W", W") = lim,,,_, oo SUP,,.,,, P(W", W") = 0 and LIM(LV;E:mE{O}UN) =[3;4)
and LIva;yfsz{o}UN) = (2; 3], which means, by Definition 5.2, that hypothesis (b) holds.

Finally, let us observe that (X, T), J] = P, and arbitrary Sp;-family Sqy = {S} satisfy
hypothesis (d). Indeed, by (11.14) and (11.15), we note that EIrevi,yEXvs,leN{P(T[S+r] (%),
TU"(y) = P(3,3) = 0}. Consequently, we obtain V,.; EI,,>1EI,GNVx,yGXVS,leN{S(P(T[s] (%),
TU() <& -0 = ST (x), TH ()18 = [S0)]® = 1 < &}.

Part 2. (X, T) is a left and right P-closed on X. Indeed, for each w° € X, the subse-
quences (¥, = w"*1 : m € N) and (x,, = w” : m € N) of (w” = TV (w°) : m € {0} UN) satisfy
Vmen{¥m = T(x,,)} and also Fixx(T) = {3}.

Part 3. P is separating on X (see Part 4 of Example 11.1).

Claim 1. By Parts 1-3, for ] = P, for arbitrary Spy-family, and for q = 1, hypotheses (a)—
(c) and statements (A)—(C) of Theorem 9.3 hold. We have: (i) Fix(T) = {3}. (ii) For each
w € X, sequence (W” = T (w°) : m € {0} UN) is left and right P-convergent to 3. (iii)
P(3,3)=0.

Example 11.6 Let X = [2;4] and let P: X x X — [0; +o0] be of the form (11.1); thus C =
8. LetIT={m,=3-1/2" . me{0}JUN}, 2 ={w,, =3+1/2" :m e {0} UN} and ® =
[2;4]\[IT U £2] and let (X, T) be defined by

T, forx=m,,1,me{0}UN},

2 for x =y =2,

Tx)={w, forx=wy.1,me{0}UN}, (11.16)
4 for x = wg = 4,

3 forx € ©.

Let us observe that:

Part 1. For ] = P, for each Sy1y-family Sppy = {S}, for M = X and for dynamic system (X, T)
the hypotheses (a)—(d) of Theorem 9.4 hold.

Indeed, hypothesis (a) holds since, by Remark 3.1(a), P € J(LXJ,) N J&P).

Next, we see that dynamic system (X, T') is admissible on M = X. In fact, by (11.16), ob-
serve that V,en{TV(w,,) = TV (7o) = 2}, Vuen{TVNwn) = TV (wo) = 4}, and
V.o Vmen{ T (x) = 3}. From this, using (11.1), we see that, for each w® € M = X, sequence
(w" = T"(P) : m € {0} U N) satisfies lim,,,_ oo SUp,s . PW", w") = limy,_, o0 sUp,,.,,, P(W",
w™) = 0. Furthermore, from (11.16) it follows that

[2;4] forw®el,
=1{4) forw’e,

[3;4] forxew’e®,

L-P
LIM(W”‘:mE{O}UN)

and

{2} for w? e 1T,
LIM{ o eiopum = | [2:4] forw® € 2,
[2;3] forw®e®.
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Therefore, hypothesis (b) holds.

Finally, let us observe that (X, T), J = P, and arbitrary Sy,-family Sy = {S} satisfy (d).
In fact, since ¥,ue(0jun Vs zm (P(TE (7,,), T (71,1)) = P(2,2) = 0}, ¥me(o)un Vs iom (P(TE (0,,),
T (w,,)) = P(4,4) = 0} and also V,coV,=0{P(T¥ (x), TV (x)) = P(3,3) = 0}, thus we have
Vo113 yoeax orcn (SP(TH(0), TH(wO))) < & - = [S(P(TI(w0), T (w0)))]® =
[SOE=1<e)

Part 2. (X, T) is a left and right P-closed on X. Indeed, for each w° € X, the subse-
quences (¥, = w1 : m € N) and (x,, = w" : m € N) of (w” = TV (w°) : m € {0} UN) satisfy
Vien{Wm = T(x,)}. Moreover, Fixy(T) = {2,3,4}.

Part 3. P is separating on X. See Example 11.1 (Part 4).

Claim 1. By Parts 1-3, for ] = P and q = 1, hypotheses (a)—(c) and statements (A) and (B)
of Theorem 9.4 hold. We have: (i) Fix(T) = {2,3,4}. (i) If w° € M = X, then the sequence
(w" = T (wP) : m € {0} UN) is left and right P-convergent to 2 when w° € IT, to 4 when
w € 2, and to 3 when w? € @. (iii) P(2,2) = P(3,3) = P(4,4) = 0.

12 Convergence, existence and uniqueness results for functional equations of
Bellman type
In this section, before proceeding further, let us make the following assumptions and no-
tation:
I. X denotes a nonempty set, B(X) denotes the set of all bounded real-valued maps on
X, (B(X), |l - II) is a normed space with norm

|| = sup{!h(x)’ 1x € X}, h € B(X)
and (B(X), P) is a metric space with metric P: B(X) x B(X) — [0; c0) defined by
P(h,k)=h-kl, hkeB(X).

Definition 12.1 Let (B(X), P) be a metric space defined above.
(A) The distance J : B(X) x B(X) — [0; 00) is said to be a left distance generated by P if
the following two conditions hold:
(A1) ViukeooU(h, k) < J(hu) + ] (u, k)}.
(A.2) For any sequences (4, : m € N) and (k,, : m € N) in B(X) with the properties
limy,,— o0 SUP,,s, J (Hyy 1) = 0 and limy,,—, o0 J (K, 11,) = O we have
lim,,,, oo P(kyy, 11yy) = 0.
(B) The distance J : B(X) x B(X) — [0;00) is said to be a right distance generated by P if
the following two conditions hold:
(B.1) Viukeo U k) <J(h,u) +J(u,k)}.
(B.2) For any sequences (%, : m € N) and (k,,, : m € N) in B(X) with the properties
limy,— 00 SUP,,s ., J (M1, e) = 0 and limy,—, o0 J (B, ki) = O we have
lim,,, s oo P(Hy, kya) = 0.
(C) Denote by J(LB(X), ) (respectively, JfB(x), P)) the family of all left (respectively, right)
distances J generated by P.

Remark 12.1 The following holds: P € J%B(X),P) N J{;(X)'P). Here J and P are triangular dis-
tances. For details, see Definitions 2.1 and 3.1.
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II. Y denotes a nonempty set.
II1. We are concerned here with the study of the functional equation of Bellman type of
the form

h(x) = sup{f(x,y) + G(x, 3, h(E(x,9)))}, x€X, (12.1)
yeY
where f: X XY - Rand G: X x Y x R — R are given bounded maps, £ : X x ¥ — X is
a given map, and # € B(X) is an unknown map to be determined.
IV. Put

H={heBOO: e - sup{ (5,9) + G, (5,9))) } e € x}i
ye
the set of all solutions % € B(X) of Eq. (12.1).
V. The operator B of Bellman type is of the form

(Bh)(x) = sulp/){f(x,y) + G(x,y,h(é(x,y)))}, heBX),xeX. (12.2)
ye

Here, we define the dynamic system (B(X), B) as follows: For & € B(X) let Bh = k, where
k(x) = supyey{f(x,y) + G(x,9,h(E(x, %))}, x € X. Clearly k is bounded, since f and G are

bounded and so k € B(X). Therefore, 5 : B(X) — B(X).
VI. The operators B"*1: B(X) — B(X), m € {0} UN, are defined by

(B ) (x) = sug{f(x,y) +G(x,y, (B™h) (E(x.9))} (12.3)
ye
forall 7 € B(X) and x € X.
VIIL. Any fixed point of (B(X), B) is a solution of Eq. (12.1). Moreover, any periodic point
of dynamic system (B(X), B3), i.e., any point of the set

Perpx)(B) = {h € B(X):h= B9 for some g € N},

is a solution of (12.1).
VIIL Recalling that f and G are bounded, we conclude that, for each %° € B(X), the
sequence of iterations

(0" = B" K :m € {0} UN) C B(X) (12.4)

starting at #° € B(X) is well defined. Here B! = I5(x)-identity on B(X).
Moreover, with the above assumptions and notation, we also record the following two
definitions needed in the sequel.

Definition 12.2 Let (B(X), P) be a metric space defined above.

(A) Let] € Jgy) p; thus, in particular, let / = P. Let 1° € B(X). (B(X), B) is said to be a
left J-admissible in KO if, in the case when the sequence (B"/1° : m € {0} UN) is left
J-sequence in B(X) (i.e. satisfies the condition lim,,_, , sup,,,,,, J(B" 1%, B" 1) = 0),
then the sequence (B"1° : m € {0} UN) is left J-convergent in B(X) (i.e. has the

property @ #LIM(Lé{m]hOZ{O}UN) = {k € B(X) : lim,,,_. oo J(k, B" 10) = 0}).
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(B) LetJ e ,,]]&(X)’P); thus, in particular, let J = P. Let #° € B(X). (B(X), B) is said to be a

right J-admissible in h° if, in the case when the sequence (B"/1° : m € {0} UN) is
right J-sequence in B(X) (i.e. satisfies the condition

lim,,, o SUp,,.,,, J(BPKC, B 10) = 0), then the sequence (B"h° : m € {0} UN) is
right J- convergent in B(X) (i.e. has the property

o] ;!LIM B h° {OIUN) = {k € B(X) : lim,,, o0 J(B" 10, k) = 0}).

(C) LetM € ZB . (B(X), B) is said to be a left (respectively, right) J-admissible on M iff

Je J(LB(X),P) (respectively, J € Jﬁs()(),p)) and (B(X), B) is a left (respectively, right)
J-admissible in each 4° € M.

Definition 12.3 Let (B(X), P) be a metric space defined above and let g € N.
(A) Letj e ‘,]](LB(X)'P); thus, in particular, let / = P. Let 4° € B(X). (B(X), B'7)) is said to be a

(B

=

left J-closed in K if, in the case when the sequence (B"4° : m € {0} UN) is left
J-convergent in B(X), i.e. @ #U = LIMLB[]m]hO (OIUN
J-converging in B(X) subsequences (ky, : m € N) and (W, : m € N) (i.e., in particular,
LIM 04010 © LMo mery N LIMG ) satisfying Voeni{Kin = B9w,), then
we have Elueu{u Bldlyy.

Let] € JSS(X),P)? thus, in particular, let / = P. Let 4° € B(X). (B(X), B'7)) is said to be a
right J-closed in K° if, in the case when the sequence (B K0 : m € {0} UN) is right

J-convergent in B(X), i.e. @ #V = LIM

y and contains two right

N’ and contains two right

m]hO {0}
J-converging in B(X) subsequences (k :m € N) and (w,,, : m € N) (i.e,, in particular,
R R e
LIM B[]mlho o) © LIM(k meny N LIM w] meN) ) satisfying Ve {k = B9k}, then

we have Jyey (v = Blly}.

(C) Let M € 220 (B(X), B) is said to be a left (respectively, right) J-closed on M iff

Je J (respectlvely, J e JR ) and (B(X), B) is a left (respectively, right)
J- closed in each #° € M.

The general theory concerning existence and uniqueness of solutions of functional equa-

tions of Bellman type is currently a very active field, rooted in optimization, dynamic pro-

gramming, computer programming, invariant imbedding, and applications in engineering

and physical sciences. Concerning these existence and uniqueness problems, most of the

work requires assumptions that X and Y are Banach spaces and that the operator B is

continuous. For these topics see, e.g., [6—8].

Here we will concentrate on convergence, existence and uniqueness problems concern-

ing fixed and periodic points of operator 3 defined by (12.2). Thus we will study the struc-

ture of set H of solutions of the functional Eq. (12.1) of Bellman type in more general

setting.

We have the following analogues of Theorems 9.3 and 9.4.

Theorem 12.1 Assume that 1-VIII are satisfied. Suppose also that:
(@) J € (g p) (respectively, ] € JfB(X),P))‘

(b

)
(©)
(d) S-family {S}, (B(X),B) and ] € J(LB(X)'P) (respectively, ] € J@(X)’P)) satisfy

(B(X), B) is left (respectively, right) J-admissible on B(X).
S = {8} is an S-family.

Vs>1 E177>1 EIreth,kEB(X)Vs,lEN {S(](B[S] h: B[l] k))
<e-n=SUBE"h,BHK)) < e).
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Then the following hold.:

(A)

(B)

©

Convergence property. For each h° € B(X), we have

L-P L
(%) }/LIM B[”‘]ho mel0 C LIM Blmlj0. :me{0JUN) Where] € "]](B(X) P)
(respectively,
R-J R-P R
o] #LIM Bl 0.me 0)UN) C LIM B 10:me (0JUN) where ] € J(B(X),P))'

Existence of solutions and convergence property. If there exists q € N such that the

single-valued dynamic system (B(X), B\7) is left (respectively, right) J-closed on B(X),

then
@ # Fixpo (BY) € H.

Moreover, for each h° € B(X), there exists u € FixB(X)(B[q]) (respectively,
v € Fixp(x)(B'Y)) such that

u e LIME/ e LIME;

(Bl 10:me (0} B[mlho :me{0}UN)

and

Voe2,q 1 (1 B W) = 1(B™ (w), u) =0} where] e J(LB(X),p)
(respectively,

ve LIMfB[m]h0 mefoyuny) © LIMRB[I:”]hO :me{0}UN)
and

Ve 2mq {J (v, B ) =J(B™ (v),v) =0} where ] € Iy, p))-

Existence of unique solutions and convergence property. If (B(X), B) is left
(respectively, right) J-closed on B(X) then

Jneson {H = Fixgp)(B) = {h}}.

Moreover, for each h° € B(X),

L-] _
HELIME o oy CLIMEE oy and (1) =0
where ] € .,]](LB(X)'P) (respectively,
R- / _
HELIME o o CLIMEE vy and T H) =0,

where ] € J@(X)'P)).
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Theorem 12.2 Assume that 1-VIII are satisfied. Suppose also that:
(@) Je “H(LB(X),P) (respectively, ] € J@(X)’P)).
(b) There exists M € 25X such that (B(X), B) is left (respectively, right) J-admissible
on M.
() &={S}isan S-family.
(d) S-family S ={S}, (B(X),B), M and ] J](LB(X)'P) (respectively, ] € JﬁB(x),P)) satisfy

Vs>l3r]>1HreNVhoeMVs,leN{S(](B[s]hor B[l]hO))
<e-n= SUBEIR, BIIR0)) < g}

Then the following hold:
(A) Convergence property. If i° € M, then

L
(%) 7—’LIM (B 10:me 0}UN) C LIM B[W‘]ho :me{0JUN) Where] (S “]](B(X) P)
(respectively,
R-P R
& #LIM B Ome(0) C LIM B i0:me(0)UN) where ] € JI(B(X),P)).

(B) Existence of solutions and convergence property. If there exist q € N and h° ¢ M
such that the single-valued dynamic system (B(X), B\9)) is left (respectively, right)
J-closed in h°, then

%) #FiXB(X)(B[q]) CcH.
Moreover, there exists u € FixB(X)(B[q]) (respectively, v € FixB(X)(B[q])) such that

u e LIM:/ e LIME;

(Bl p0:me 0} (Blm H0:me{0}JUN)

and
Voet1,2,..0 U (1 B™ () = 7 (B (w), u) = 0}
where ] € J(LB(X),P) (respectively,

R-J R-P
v € LIM (st 0,mc 00y © LM G140 imeoyum)

and

Vie(1,2,.q) {J(Vy Bl v)) = ](B[”] v),v) = 0}
where]eﬂ X)P)

The following results are special cases of the above theorems.
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Theorem 12.3 Assume that 1-VIII are satisfied. Suppose also that:
(a) (B(X),B) is P-admissible on B(X).
(b) S =A{S}isan S-family.
() S-family S = {S} and (B(X), B) satisfy

Ves13y51Fren Vi ke Vsien
{S(Sup, sexyey |Gy, (BR)(2))
~ Gy, (BURO)) <& -7 (12.5)
= S(sUp, ex yey |Gx,y, (BE) (1))
- Gy, (BEE)(0)]) < &}

Then the following hold.:
(A) Convergence property. For each h° € B(X), there exists h € B(X) such that a
sequence (0" = B"H° : m € {0} UN) is P-convergent to h.
(B) Existence of solutions and convergence property. If there exists q € N such that the
dynamic system (B(X), B'9) is P-closed on B(X), then:
(B1) @ #Fixpu(B4) c H.
(B2) Foreach h° € B(X), there exists h € FixB(X)(B[q]) such that the sequence
(" = B" 1 : m € (0} UN) is P-convergent to h.
(C) Existence of unique solution and convergence property. If the dynamic system
(B(X), B) is P-closed on B(X), then:
(C1) There exists h € B(X) such that H = Fixgx)(B) = {h}.
(C2) Foreach h° € B(X), the sequence (W" = B"H° : m € {0} UN) is P-convergent
to h.

Theorem 12.4 Assume that 1-VIII are satisfied. Suppose also that:
(@) There exists M € 290 sych that (B(X), B) is P-admissible on M.
(b) S ={S}isan S-family.

() S-family S ={S}, M and (B(X), B) satisfy

Ves1 EIn>1 HrENVhoeMVs,leN
{S(supy,sex yey |Gy, (BIR)(2))
- Gy, (BUH)@)) < -1 (12.6)
= S(SUP,,ex yey |Gy, (BEHO) (1))
- Gy, (BEHO)O)) < e).

Then the following hold:

(A) Convergence property. For each h° € M, there exists h € B(X) such that a sequence
(" = B"H° . m € {0} UN) is P-convergent to h.

(B) Existence of solutions and convergence property. If there exists h° € M such that the
dynamic system (B(X), B) is P-closed in h°, then:
(B1) @ #Fixgx)(B) C H.
(B2) There exists h € Fixp(x)(B) such that the sequence (b = B0 m e {0} UN)

is P-convergent to h.
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Remark 12.2 We record some observations concerning the implications of Theorems
12.1-12.4.
(i) If (B(X),P) is P-complete, then (B(X), B) is P-admissible on each M € 25% (see
also Sect. 6).
(i) If there exist ¢ € N and 4° € B(X) such that the dynamic system (B(X), B7)) is
P-continuous in /#°, then (B(X), B4) is P-closed in #°.
(iii) Here X and Y are nonempty sets. In the literature, X and Y are Banach spaces or
complete metric spaces. We see that Theorems 12.1-12.4 are new even when X
and Y are these spaces.

Proof of Theorem 12.3 We first note that P is symmetric on B(X) and (B(X), P) is not nec-
essarily P-sequentially complete (see Sect. 6).
We prove that (12.5) implies

Ves13po13renVikesoo Vsien {S[P(B4 1k, BI k) | < & -

— S[P(BE*p, B )] < e} (12.7)

To establish this, let x € X and %, k € B(X) be arbitrary and fixed. Then, for arbitrary p > 0,
in view of (12.3), there exist y1, y2 € ¥ such that

(BER) @) <f(o31) + Gl (BYR) (5 (o) + 1, (12.8)
(BY ) @) < f(.72) + Gls, o, (BUK) (£ (s, 32)) + 1. (12.9)

Observe also that (12.3) implies

(BHIK) () = f (6, 31) + Gl 31, (BUK) (€ (x,91)), (12.10)
(BE ) () = £ (6,32) + Gl y, (BYh) (£ (. 3)). (1211)

Restating (12.8)—(12.11) as

(B[s+1]h) (X) _ (B[l+1]k) (x)
< G, y1, (Bh) (£, 31)) — G, y1, (BUK) (5 (o 31)) + 1
< |G y1, (B¥R) (& (x,91)) — Gl y1, (BUK) (€ (1)) | + 1

and

(B'1K) () - (B h) (x)
< G, y2, (BUK) (& (x,92)) = G, 32, (B h) (£ (x,32)) + 1t

or

(B[s+1]h) (x) _ (B[l+1]k) (x)
> G(%,y2, (Bh) (£ (%, 72)) — G(x,y2, (BUK) (5 (x,32)) — 1
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> — |G, y2, (Bh) (£ (x,92)) = G, y2, (BUK) (£ (x,92)) | = s
we see that they imply

(B 1)) - (515

<max{|G(x,y1, (B¥h) (€ (x, 1)) - Glx, 1, (BUK) (& (x, 1))
|G, y2, (BYh) (& (3, 32)) = Glox, y, (BUK) (£ (x,32)) [} + 1

< iggiax,y, (BYh) (& (x,9)) - G, y, (BYK) (€ (x,9)) | + .

’

Recalling that > 0 is arbitrary, we conclude |(B¥*Uh)(x) — (BHVk)(x)| < sup,cy |Gy,
(B¥h) (& (x,9)) — G(x, 5, (BUk)(£ (x,))| and in view of (12.1) and (12.3) this implies

P(B[S+l]h, B[l+1]k)
= sup| (B Uh) (x) — (B k) ()|

xeX

sup| (B[”l]h)(x) - (B[M]k) (x)|

xeX

sup [ G(x,, (B (§(x,)) = G, (BK) (£ (x.9) )|

xeX,yeY

< sup |G(xy (BYR)®) - G(xy, (BYK)@)). (12.12)

xteX,yeY

IA

A similar computation shows that

P(B[S+r+1]h, B[l+r+1]k)
_ su);()| (B[s+r+1]h) (x) _ (B[l+r+1]k) (x)|
X€

< sup [G(x,, (B*h)(£(x.9))) - G(x, (BYK) (5 (x. )|

xeXyeY

< sup |G(xy (B57H)(2) - G(x,y, (B k) @) (12.13)

xteX,yeY

Therefore, using (12.12), (12.13) and (12.5), we find (12.7).
Therefore, the contractive condition (12.7) holds and also it remains to see that P is sepa-
rating on B(X) (see Sects. 2 and 3). From this, using (12.7), the statements of Theorem 12.3

are now immediate consequences of Theorem 9.3 when J =P = P. O

Proof of Theorem 12.4 We deduce from (12.6) that

V5>13n>1 EIrethoeMVs,leN {S[P(B[HH hO, B[Hl]ho)]

<e-n=>S[P(BE*Un°, BH1p0)] <&} (12.14)

Next, using (12.14) and a similar argument as in the proofs of Theorems 9.4 and 12.3, we

have the assertions. O
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13 Discount maps § and convergence, existence and uniqueness results for
variable §-discounted equations of Bellman type
Here let us make the following assumptions and notation:
I. Assume that a discount map § : R — R is such that §(D) is a bounded set for each

bounded set D C R and that there exists a continuous map y : [0; 00) — [0; 00) satisfying

th,tze[o;oo){tl <thhb =y({) < V(tz)}, (13.1)
Vicono { lim y(¢) =0 (13.2)

and, for each bounded set D C R,

Vo menf|8(r2) = 8(r)| < v (12 - 1ul) }. (13.3)

II. X and A are nonempty sets.

III. B(X) is the set of all bounded real-valued maps on X, (B(X), || - ||) is a normed space
with norm ||/ = sup{|A(x)| : x € X}, h € B(X), and (B(X), P) is a metric space with metric
P: B(X) x B(X) — [0;00) defined by

P(hk)=|\h-k|, hkeB(X). (13.4)

IV. Assume now that ¥ : X — 24, f: X x A — X and that the map u: X x A — R is
bounded. The variable §-discounted equation of Bellman type studied in this section is of

the form

h(x) = sup {u(x,zz) + S(h(f(x,a)))}, x€X, (13.5)

acwv (x)

where 4 € B(X) is an unknown map to be determined.

V. The operator B of Bellman type is of the form

(Bh)(x) = sup {u(x,a) + 5(h(f(x,a)))}, x € X,heBX). (13.6)

aey¥(x)

Here the dynamic system (B(X), B) is defined as follows: For 4 € B(X) we define Bk = k,
where k(x) = sup,,cy () {u(x, a) + 8(h(f (x,a)))}, x € X. Clearly k is bounded, since # and § are
bounded and so k € B(X). Therefore, 5 : B(X) — B(X).

VI. The operators B"*1: B(X) — B(X), m € {0} UN, are defined by

(B n)(x) = sup {u(x,a)+8[(B"h)(f(x,a)]} (13.7)

aev (x)

forall # € B(X) and x € X.

VIL Recalling that # and § are bounded, we conclude that, for each #° € B(X), the se-
quence of iterations (4 = B h° : m € {0} UN) CB(X) starting at 1° € B(X) is well defined.
Here Bl = I5x)—the identity on B(X).
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VIII. Any fixed point of (B(X), B3) is a solution of Eq. (13.5). Moreover, any periodic point
of (B(X), B), i.e., any point of the set

Pergx)(B) = {h € B(X) : h = B4} for some q € N},

is a solution of (13.5).
IX. Put

Hs = {h € B(X) : h(x) = sup {u(x,a) + S(h(f(x,a)))},x EX};

aey¥(x)

the set of all solutions /% € B(X) of Eq. (13.5).
We turn to some examples of maps § and y satisfying (13.1)—(13.3).

Example 13.1 We note that if § : R — R is defined by
5(r) = Itl/[a+bltl], TeR,

where a € [1;00) and b € (0; 00), then §(D) is a bounded set for each bounded set D C R.
Moreover, for each 11,17, € R, we have

allna| - |nll

8(ry) -8 =
8(z2) - 8(x)| a® + ab(| 12| + |11]) + | 1o 11

alty — 1| |72 — 71 - |To — 71l

T a2 +ab(|nl+ ) a+b(nl+lnl) T a+bln-nl

Now we note that if y(¢) = t/[a + bt], t € [0;00), then y is strictly increasing since
Vieooo) (V' (t) = alla + b)* > 0}, Ve ner{ld(na) — 8(r)l < y(2 - nl)} and
Yietos00) iMoo Y (8) = lim, o t/[@" + b(@" ' +a@" 2 + - + a+ 1)t] = 0).

Example 13.2 Let § : R — R be defined by

5(1) = [t]+bIn(1 +|7|)

= , eR,
a+|t|+bIn(l+|1])

where b € (0;00) and 1 + b < a. We see that §(D) is a bounded set for each bounded set
D C R and, for each 11, 72 € R, we have

|6l(|‘[2| - |Tl|) +abln 1+|m| |
’5(1’2) —8(1:1)| = e
[a+ |2l +bIn(1 +[wa)][a + 7] + bIn(l + |71])]

al|ta| = |t1]| + abIn(1 + %)

= Z1a(nl+al) + ablnl(d+ o) + 0]

[lz2] = 7l + £In(1 + ||7a| = |71 l])

Ta+(nl+nl)+bIn(l + || + |T1l)

Ty — 11| + bIn(1 + |13 — T1])

Ta+|n-ul+bn(l+|n-ul)
We claim that if y is defined by

Y (t) = t+bIn(1+¢)

=———, te[0;00),
a+t+bln(1+1¢) [ )
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then V;, ,er{|8(72) — 8(11)| < ¥(Ir2 — 11])} and y is strictly increasing since

v =1+ ; 0
telo00) | V ) = 1+¢)lave+bm+ 02 |

Furthermore, V:c[0,00){lim,— o v (t) = 0} is evident. Here we rely on the fact that y(t) <
(1 + b)t/a for t € [0; 00), and, consequently, V,enVe[0;00){0 < yU(t) < [(1 + b)/a]"t}.

We begin with the following auxiliary result concerning crucial properties of operators
(13.7).

Theorem 13.1 Assume that 1-1X are satisfied. Then (B(X), B) and each S-family S = {S}

satisfy

(13.8)

V£>l3?7>1Hreth,kEB(X)vs,lEN{S[P(B[S+l]h: B[l+1]k)] <&é€-n
— S[P(B[ﬁrﬂ]h,B[l+r+1]k)] < 8}.

In particular,

(13.9)

VE>13r]>1EIreNVMEQB(X)VhoeMVs,leN{S[P(B[S+1]h0; B[l+1]h0)]
<g-n=> S[P(B[S+r+1]ho,B[l+r+1]h0)] <e}.

Proof First we prove that

Vi irenYnresoo {P(BE 1 h, B+ 1)

<yl [P(B[S]h,Bmk)]}. (13.10)

To establish this, let x € X, i,k € B(X) and s,/,7 € N be arbitrary and fixed. Then, for
arbitrary p > 0, in view of (13.7), there exist a1, a, € ¥ (x) such that

(B[S+1]h) (x) < M(xrﬂl) + 5[(8[311’!)((]((96,011))] + U, (1311)
(BUk) (x) < u(x, az) + 8[ (BUK) ((F(x, a2)) ] + e (13.12)

Observe also that (13.5) implies

(B ) = ulx, 1) + 8[ (BUR)(F(x,a1) ], (13.13)
(BEh) () = ulx, a2) + [ (B 1) (f(x, a2)) | (13.14)

Restating (13.11) and (13.13) as

(B ) (x) - (B k) (x)
<8[(B¥R)((f(x,a1))] - 8[(BYK) ((F(x,a1)) ] + 1
= [8[(B ) (F(xan)] - [ (BUR) (Fexan)]| + 1
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and (13.12) and (13.14) as

(B[l+1]k) (x) _ (B[s+l]h) (x)
<S[(BYKk)((f (x,a2))] - 8[(BEH) ((F(x,a2)) ] + 1

or
(BS*UR) (x) - (B k) (x)
> S[(B)(f (s, @2)] ~ 5[ (BUK) (F(w.2))] -
= - [s[(BYR)(F(xa2)] - [ (BUR)(f (s a2)]| - 1o
we see that they imply

(B )w) - (5" k)00

<max{[8[(Bh)((f(x,a1))] - 8[(BYk)((f(x,a1)) ]|,
BB ) (7 50)] - [(BR) (75a)) } +

< sup o[(BA)(1te)] -8 (B (/5 )] |+ .

Recalling that p > 0 is arbitrary and ¥ : X — 24 and g: X x A — X, we conclude
((BEh)(x) — (BEFUE) ()| < sup,ey 18IBER)()] - S[(BUK)(0]] < sup,ex vy (I(BHA)(2) -
BUR®) < supex vy ((BER)(6) — (BUK@) < y(supex [(BER)(2) - (BUK)@)) =
y BBk, BUk)] and this implies P(BE U, B k) = sup, . |(BE V) (x) — (BE k) (x)] <
y[P(BYh,BYk)]. A similar computation shows that P(BE+Up, Blr+lk) =
sup,.cx |(BE R (x) — (BU+Uk)(x)| < y [P(BEh, BEK)] <y [P(BE R, BUK)). There-
fore, (13.10) holds.

Now we prove that if S-family S = {S} is arbitrary and fixed, then S = {S} and operators
B B(X) — B(X), m € {0} UN, defined by (13.7) satisfy

v£>13n>13V€th,k€B(X)VS,l€N{S[P(B[S+1]h, B[l+l]k)]
<e-n=> S[p(B[s+r+l]h’B[l+r+1]k)] < 8}. 13.15)

Indeed, observe that P(BU14, BAk) is bounded for each s,/ € N and 4, k € B(X). Thus, it is
clear that

lim " (P[BY 1k, BYk]) =0 (13.16)

r—0o0

and consequence of (13.10) and (13.16) is

lim P[BE++1p, Bl+1k] = 0. (13.17)

r—0o0

Next we deduce from (13.17) that

Ves03ns0FrenVikenon Vsien { P[ Bk, B K]

<e+rn= P[B[S+’+1]h,5[l+’+1]/(] < e}. (13.18)
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Finally, using S-family S = {S} and property (13.17), the contractive condition (13.9) may
then be constructed by modification of condition (13.18). O

In the sequel, we need the following definitions.

Definition 13.1 Let (B(X), P) be a metric space with metric P defined by (13.4).
(A) Let h° € B(X). (B(X), B) is said to be a P-admissible in h° if, in the case when the
sequence (B 10 : m e {0} UN) is P-sequence in B(X) (i.e. satisfies the condition
lim,,, o0 SUp,,.,,, P(B" 0, B K0) = 0), then the sequence (B 1° : m € {0} UN) is
P-convergent in B(X) (i.e. has the property Jreppr){lim,,—, oo P(B"™ K0 k) = 0}).
(B) Let M € 22%) (B(X), B) is said to be a P-admissible on M if (B(X), B) is
P-admissible in each #° € M.

Definition 13.2 Let (B(X),P) be a metric space with metric p defined by (13.4) and let
qgeN.

(A) Let 1% € B(X). (B(X), B1)) is said to be a P-closed in K if, in the case when the
sequence (B 4° : m € {0} UN) is P-converging in B(X) and contains two
P-convergent in B(X) subsequences (u,, : m € N) and (v,, : m € N) satisfying
Voen{thn = B4v,,}, then there exists 1 € B(X) such that & = B4},

(B) Let M € 22 (B(X), B4} is said to be a P-closed on M if (B(X), B14) is P-closed in
each 1° € M.

Now, we prove the following two results.

Theorem 13.2 Assume that 1-1X are satisfied and suppose that the dynamic system
(B(X), B) is P-admissible on B(X). Then the following hold.:
(A) Convergence property. For each h° € B(X), there exists h € B(X) such that a
sequence (0" = B"H° : m € {0} UN) is P-convergent to h.
(B) Existence of solutions and convergence property. If there exists q € N such that the
dynamic system (B(X), B'9)) is P-closed on B(X), then:
(B1) @ # Fixpu(B4)) C Hs.
(B2) For each h° € B(X), there exists h € FixB(X)(B[q]) such that the sequence
(" = B" K . m e (0} UN) is P-convergent to h.
(C) Existence of unique solution and convergence property. If the dynamic system
(B(X), B) is P-closed on B(X), then:
(C1) There exists h € B(X) such that Hs = Fixgx)(B) = {h}.
(C2) Foreach h° € B(X), the sequence (W" = B"1° : m € (0} UN) is P-convergent
to h.

Theorem 13.3 Assume that 1-1X are satisfied and suppose that there exists M € 259 such
that the dynamic system (B(X), B) is P-admissible on M.
Then the following hold:
(A) Convergence property. For each h° € M, there exists h € B(X) such that a sequence
(" = B"H° . m € {0} UN) is P-convergent to h.
(B) Existence of solutions and convergence property. If there exist q € N and h° € M
such that the dynamic system (B(X), B\) is P-closed in h°, then:
(B1) @ # Fixpu(B4) C Hs.
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(B2) There exists h € FixB(x)(B[q]) such that the sequence
(" = B" 1K . m € (0} UN) is P-convergent to h.

Proof of Theorem 13.2 Therefore, (B(X), P) is a metric space, single-valued dynamic sys-
tem (B(X),B) is J = P = P-admissible on B(X), contractive condition (13.8) holds (see
Theorem 13.1), and P = P is separating on B(X) (since P is metric). Consequently, the
statements of Theorem 13.2 are now immediate consequences of Theorem 9.3. O

Proof of Theorems 13.3 The statements of Theorem 13.3 are consequences of contractive
condition (13.9) of Theorem 13.1 and Theorem 9.4. O

Remark 13.1 Let us observe here that X and A are nonempty sets. In the literature, dis-
count maps § and variable §-discounted Bellman equations are studied in the case when
X is a complete metric space, A is a metric space, B(X) is the set of all continuous bounded
real-valued maps on X, (B(X), P) is a complete metric space, # and f are continuous, ¥ (x)
is a compact set for each x € X, and the dynamic system (B(X), ), B : B(X) — B(X), is a
continuous generalized Matkowski contraction (see, e.g., [14, 26, 34]).

14 Convergence, existence and uniqueness results for integral equations of
Volterra type in locally convex spaces

First, we record two definitions needed in the sequel.

Definition 14.1 Let E be a vector space over R, and let A be an index set.

(A) The map P: E — [0;00) is called a seminorm on E if:

(1) ViueeVaer{P(Au) = || - P(u)} (homogeneity). So, in particular, P(0) = 0.
(i) Vuvee{P(u +v) < P(u)+ P(v)} (¢triangle inequality).

(B) A topological vector space (E, T), such that there is a family P4 = {P, : o« € A} of
continuous seminorms P, : E — [0;00), « € A, on E and 7T is a locally convex
topology on E generated by the family P 4, is called a locally convex space and is
denoted by (E, P 4).

(C) The family P4 = {Py : o € A} of seminorms P, : E — [0;00), @ € A, on E is called
separating it Vy,ep{u # 0 = gy a{Poy (1) > 0}}.

(D) If the family P4 = {P, : « € A} is separating on E, then 7T is a Hausdorff locally
convex topology on E and (E, P.4) is called a Hausdor(ff locally convex space.

Definition 14.2 (see [17]) Let X be a (nonempty) set, and let .4 be an index set.
(A) The distance D : X% — [0;00) is called a pseudometric (or the gauge) on X if:
(i) Vuex{D(u,u) = 0}. 1t is not required that D(u, v) = 0 implies u = v.
(i) Vuvex{D(u,v) = D(v,u)} (symmetry).
(iii) Viuywex{D(u,v) < D(u,w) + D(w, v)} (triangle inequality).
(B) Each family D4 = {D, : a € A} of pseudometrics D, : X*> — [0;00), o« € A, on X is
called a gauge on X.
(C) The gauge D4 ={D, : @ € A} on X is called separating if
Viuwer(tt W= Fage Do (1, W) > O}).
(D) Let the family D 4 = {D,, : @ € A} be gauge on X. The topology 7 (D 4) having as a
subbase the family B(D 4) = {B(#, Dy, &4) : 4 € X, 84 > 0, € A} of all balls
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B(tt,Dy,64) ={v € X :Dy(u,v) < gy} with u € X, g, >0, and « € A is called topology
induced by D 4 on X.

(E) A topological space (X, 7)) such that there is a gauge D 4 on X with 7 = T(D 4) is
called a gauge space and is denoted by (X, D 4).

(F) If the family D 4 = {Dy : o € A} is separating on X, then the topology 7 (D 4) is
Hausdorft and (X, D 4) is called a Hausdorff gauge space.

Before proceeding, let us make the following assumptions and notations:
L. (E,P.4) is a Hausdorff sequentially complete locally convex space.
I1. The integral equation of Volterra type studied in this section is given in the form

y(&) =f(¢) + / K(t,t,y(h(r)))dr, tel, (14.1)
1(t)
where I = [0;1]" and I(¢) = {t = (11,...,T,) ER":0<1; <t,i=1,...,n} fort = (t,...,t,) €
I. Here: f : I — E is continuous (that is, f € C(I,E)), h: I — I is continuous (that is, & €
C(,I)) and K : I x I x E — E is continuous and bounded (that is, K € CB(I x I x E,E));
the maps f, i and K are given maps; y € C(I, E) is an unknown map to be determined; and,
for each t €1, f](:) K(t,t,y(h(7)))dt denote the Riemann integral on I(¢). For a Riemann
integral in locally convex space, see e.g. [20, Appendix 1].
III. The operator V of Volterra type is defined by

VN =f(@) + /I()K(t,r,y(h(t)) dr, (14.2)

t €1,y € C(I,E). Here we define the dynamic system (C(I, E), V) as follows: For y € C(I,E)
we define Vy = x, where x(¢) = f(£) + fl(t) K(¢t,7,y(h(t))dz, t € I. Clearly x € C(I, E). There-
fore,V:C(I,E) — C(I,E).

IV. The operators V1 : C(I,E) — C(I,E), m € {0} UN, are defined by

(Vimtly) () = £ () + /

I(t

K(tt, (V[m}y) (h(2))) d, (14.3)
)

tel,yeC(,E).
V. For each y° € C(I,E) and for (W11 : m € {0} U N) defined by (14.3), the sequence of

iterations
(y" =V"y0 :m e {0} UN) CC(I, E)
starting at y° € C(I, E) is well defined. Here V!°! = I, )—the identity on C([, E).
VI. Any fixed point of dynamic system (C(/, E), V) is a solution of Eq. (14.1). Moreover,
any periodic point of (C([,E), V), i.e., any point of the set

Percip (V) = {h eC(LE):y= V[q]y for some g € N},

is a solution of (14.1).
VII. Put

V= {y € CLE): y(t) =f(t) + /I( )1((:, 7,y(h(z))) dr,t € 1};
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the set of all solutions y € C(I, E) of Eq. (14.1).
VIIL (C(I,E), D 4) is a gauge space with gauge D 4 = {D, : @ € A} defined by

VaeAVx,yeC(I,E) {Da (x:y) = HtIEaIXPa [x(t) - )’(t)] } (14'4')

We need the following two definitions.

Definition 14.3 Let (E, P 4) be a Hausdorff locally convex space and let (C(I, E), D 4) be a
gauge space with gauge D4 = {D, : @ € A} defined by (14.4).

(A)

(B)

©

Let J4 € J(LC( LE)D 1)} thus, in particular, let 74 = D 4. We say that the single-valued
dynamic system (C(I, E), V) is left J 4-admissible in y° € C(I,E) if, in the case when
the sequence (WI"1y° : m € (0} UN) is left J 4-sequence in C(I,E) (i.e.,
Vaea{lim,, o sup,,,,,, Jo (Vy°, V50) = 0}), then the sequence

(V90 m € {0} UN) is left J 4-convergent in C(I, E) (i.e., there exists u € C(I, E)
such that Ve 4 {lim,,_ o0 Jo (i, V"50) = 0}).

Let J4 € JfC(I‘E),DA); thus, in particular, let 74 = D 4. We say that the single-valued
dynamic system (C(I, E), V) is right J 4-admissible in y° € C(I,E) if, in the case
when the sequence (V"5 : m € (0} UN) is right J 4-sequence in C(I,E) (i.e.,
Vaea{lim,, . o sup,,.,, Ju (V5°, VM50 ) = 0}), then the sequence

(Vs m e {0} UN) is right J 4-convergent in C(I,E) (i.e., there exists v € C(I, E)
such that Ve 4 {lim,,_ 00 Ju (V"9°,v) = 0}).

Let M € 2€UE) (C(I,E), V) is said to be a left (respectively, right) J 4-admissible on
Mif Ty € J(LC(LE)‘DA) (respectively, J4 € ch(lyE),DA)) and (C(I,E), V) is a left
(respectively, right) J 4-admissible in each y° € M.

Definition 14.4 Let (E, P 4) be alocally convex space and let (C(/, E), D_4) be a gauge space
with gauge D 4 = {D, : « € A} defined by (14.4) and let g € N.

(A)

©

Let y* € C(I,E). Let J4 € JfC(I'E)'DA); thus, in particular, let 74 = D 4.We say that
the single-valued dynamic system (C(I, E), V\?)) is left J -closed in »° if, in the case
when the sequence (V"5 : m € {0} UN) is left 7 4-convergent in C(I, E), i.e.

u= LIM(L;[Z“]‘LO:{O}W) # &, and contains two left J 4-converging in C(I, E)
subsequences (ky, : m € N) and (w,, : m € N) satisfying Ven{ky, = Vidy, ), then
there exists u € U such that u = V4.

Let y* € C(I,E). Let J4 € J(RC(LE),DA); thus, in particular, let 74 = D 4.We say that
the single-valued dynamic system (C(I, E), V9)) is right J a-closed in y° if, in the
case when the sequence (V") : m € {0} UN) is right 7 4-convergent in C(, E), i.e.
V= LIMfl;[‘Z"ﬁ/o:{O}UN) # &, and contains two right J 4-converging in C(I, E)
subsequences (k,, : m € N) and (w,, : m € N) satisfying ¥,,en{kn = V9w, }, then
there exists v € V such that v = Vily,

Let M e 2€E) e say that (C(I, E), V19)) is left (respectively, right) J a-closed on M
if T4 € J(LC(I,E),DA) (respectively, J4 € JfC(I,E)’DA)) and (C(, E), V) is a left
(respectively, right) J 4-closed in each y° € M.

Remark 14.1 The following hold: (a) D4 € JfC(I’E)'DA) N JfC(I,E),DA). (b) Ju, Dy, and P,
a € A, are triangular distances. (c) (E,P.4) and (C(I,E), D 4) are triangular spaces.
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The fundamental papers of Volterra concerning integral equations were initiated by Ref.
[50]. These papers and papers of many researchers in this field provide new perspectives
on the investigations and new ideas and techniques together with the different areas in
which the topic of solutions of integral equations has had its influence. In particular, the
theory of Volterra integral equations in abstract settings (e.g., in Banach spaces, Fréchet
spaces, and locally convex spaces) has received increasing attention.

In this section we will concentrate on convergence, existence and uniqueness problems
concerning solutions of Eq. (14.1) of Volterra type. More precisely, we have the analogues
of Theorems 9.3 and 9.4. They take the following forms.

Theorem 14.1 Let (E, P 1) be a Hausdor{f sequentially complete locally convex space with
the topology defined by the family P = {P, : o € A} of continuous seminorms on E. Let
(C(L,E), D 4) be a gauge space with the gauge D 4 = {D, : « € A} defined by (14.4). Suppose
also that:

(@) Ja€ J(LC(I,E),DA) (respectively, T4 € JfCU,E),DA))'

(b) (C(I,E),V) is left (respectively, right) J 4-admissible on C(I,E).

() Sa={Se:a € A}isan Sa-family.

(d) The Sa-family Sa ={Se:a € A}, (CLE),V) and Ja= o e € Ay € Jeypyp )

(respectively, Ja ={Js 1 € A} € J (CUED )) satisfy

VaeAvs>1 EIn>1 E|reNVx,yeC(1,}2)Vs,leN {Sa (]oz (V[S]xr V[”y))
<& = Se(Jo(VEx, VIly)) < g},

Then the following hold.:
(A) Convergence property. For each y° € C(I, E), we have

L-T A L-D 4
D 7 LIM Lot 0meiopony © M ilyomeioiom)

where J 4 € J](LC(I’E),DA) (respectively,

R-D 4y

R-T A
@ #LIM N © M i 0,e oum

(vlml,0 yV:me{0}UN)

where J 4 € .J] CLE) DA))
(B) Existence of solutlons and convergence property. If there exists q € N such that
(C(I,E), V) is left (respectively, right) J 4-closed on C(I,E), then

& # Fixc,p) (V[q]) c .

Moreover, for each y° € C(I, E), there exists u € Fixc(l,g)(V[q}) (respectively,
Ve Fixcg,g)(V[q])) such that

ue LIML o o c LIM-PA

me{0}UN) (VImly0:me{0)UN)

and

VaeAVYne(i2,q (o (V1) = Jo (V" u,u) = 0}
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where J 4 € J(LC(I,E),DA) (respectively,

R-D 4

R-T A
v e LIM C LIM V0 me(0)UN)

(VImly0:me{0)UN)

and
VaeAVYne(i2q (o (v, V) = T, (VI v) = 0}

where J 4 € J CLE) D.A))
(C) Existence of unique solution and convergence property. If (C(I,E), V) is D s-closed
on C(I,E), then there exists y € C(I, E) such that

Y =Fixegp(V) = {y}.

Moreover, for each y° € C(I,E),

L-D 4

L-TJ A
y € LIM N) CLIM (VIm150:me {0}UN)

(VImly0:me{0}UN)

and Nye al{Ja(y,y) = 0} where J 4 € J%C(I,E),DA) (respectively,

R jA R D_A

and VaeA{]a(y;y) =0} where J4 € J?C(I,E)Y'D_A))'

Theorem 14.2 Let (E,’P 1) be a Hausdor{f sequentially complete locally convex space with
the topology defined by the family P = {Py : a € A} of continuous seminorms on E. Let
(C(I,E), D 4) be a gauge space with the gauge D 4 = {D, : @ € A} defined by (14.4). Suppose
also that:
(@) Jac€ JL (respectively, Ja € J?C 0E), DA))
(b) There exlsts M e 2C0E) sych that (C(I,E), V) is left (respectively, right)
T a-admissible on M.
() Sa={Se:a € A}isan Sa-family.
(d) The Safamily S4={Su:a € A}, (CUE),V), Mand Ja={u:a € Ay €Iy pp )
(respectively, Ta = {Jo: 0 € A} € “HfC(I,E),DA)) satisfy

VaEAV9>13n>1 E*revaoeMVs,lEN {Soz (]Ot (V[S]yoy meo))
<e-n=> Sa(]a(v[sw]yo’v[Hr]yO)) < 8}.

Then the following hold:
(A) Convergence of property. For each point y° € M, we have

L-T A L-Dy
D7 LIM L 0, merorom) © LM il y0,me010m)

where J 4 € J(LC(LE)]DA) (respectively,

R-D 4y

R-T A
@ #LIM n © LIM V1y0:me(0)UN)

(VImly0:me{0}UN)
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(B)

where J 4 € JFC(I,E),DA))'

Existence of solutions and convergence property. If there exist q € N and y° € M
such that the single-valued dynamic system (C(I, E), V1)) is left (respectively, right)
Ja-closed in y°, then

@ # Fixc(,p) (V[q]) c.

Moreover, there exists u € Y (respectively, v € V) such that

L-D 4

L-TJ 4
ue LIM(v[mJyO: (VImly0:me{0}UN)

mefojun) < LIM

and
Vae.AVne{l,Z ,,,,, q} {]a (”: V[n] (M)) = ]a (V[n] (M), M) = 0}

where J 4 € J(LC(LE)]DA) (respectively,

R-D 4

R-T A
v e LIM UN) C LIM(y[m]yO:me{O}UN)

(VImly0:me{0}

and

VaeAVne{1,2 ,,,,, q} {]oz (Vr V[n] (V)) = ]oz (V[n] (V): V) = O}

where J 4 € ch(I,E),DA))’

Now, we formulate and prove the following special cases of Theorems 14.1 and 14.2.

Theorem 14.3 Let (E, P 4) be a Hausdor{f sequentially complete locally convex space with

the topology defined by the family P 4 = {Py : a € A} of continuous seminorms on E. Let
(C(I,E), D 4) be a gauge space with the gauge D 4 = {D, : @ € A} defined by (14.4). Suppose
also that:

(@) Sa={Sy:a € A}isan S s-family.

(b)

The S p-family Sa = {Sy : o € A} and (C(I,E), V) satisfy

VaeAYes13p513renYayecB) Vs ien
{Sa(Sup, ;e PulK (2, T, (V) (1))
- Kt T, V) ()] <e-n (14.5)
= Se(sUp, ;e Po[K (8, T, (VE7x) (1))
- K(t, T, V) ())) < &}

Then the following hold:

(A)

(B)

Convergence property. For each y° € C(I,E), there exists y € C(I, E) such that a
sequence (y" = V"0 . m € {0} UN) is D 4-convergent to y.

Existence of solutions and convergence property. If there exists q € N such that
(CU,E), V') is D 4-closed on C(I, E), then:

(B1) @ #Fixeqp(V4) C V.
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(B2) Foreach y° € C(I,E), there exists y € Fixc(IYE)(V[q]) such that sequence
(" = V50 m € {0} UN) is D g-convergent to y.
(C) Existence of unique solution and convergence property. If (C(I,E), V) is D s-closed
on C(I,E), then:
(C1) There exists y € C(I,E) such that Y = Fixcqpy (V) = {y}.
(C2) Foreach y° € C(I,E), the sequence (y" = V"0 : m € {0} UN) is
D _4-convergent to y.

Theorem 14.4 Let (E, P 4) be a Hausdor{f sequentially complete locally convex space with
the topology defined by the family P4 = {Py : a € A} of continuous seminorms on E. Let
(C(,E), D 4) be a gauge space with the gauge D 4 = {D, : « € A} defined by (14.4). Suppose
also that:

(@) Sa={Sy:a e A}isan S s-family.
(b) The Sa-family Sa ={S, :a € A}, M € 2°UE) and (C(I,E), V) satisfy

VaeAVes13ps1 HreNVyoeMvs,leN
{Sa(Sup, ¢ e PulK(t, T, (V1Y) (1))
- K6, T, VHO)(u)]) <& - n (14.6)
= Sa(sup, , ,c; Pu[K (2,7, (VE10) (1))
- K(t, 7, W"y0) () < e}

Then the following hold:

(A) Convergence property. For each y° € M, there exists y € C(I, E) such that a sequence
(" = V"0 € {0} UN) is D 4-convergent to y.

(B) Existence of solutions and convergence property. If there exist q € N and y° € M
such that the dynamic system (C(I, E), V\9) is D s-closed in y°, then:
(B1) @ # Fixcqp(V4) C V.
(B2) There exists y € Fixc(l,g)(v[q]) such that a sequence (y" = V"% : m € {0} UN)

is D a-convergent to y and

VaeAVnen 2, q) {Da (J’»VW (_)/)) = 0}‘

Proof of Theorem 14.3 We first note that (C(I,E), P4), P4 =D.a, C = {Cylaecas YaealCo =
1}, is a triangular space and that assumptions of Theorem 14.3 can be rerun with the fol-
lowing modifications: D 4 is symmetric on C(/,E), Dy = {D, : @ € A} is separating on
C(I,E) since Py = {Py : @ € A} is separating on C(I,E), the space (C(I,E),D,) is D4-
sequentially complete since the space (E, P 4) is P 4-sequentially complete, and a single-
valued dynamic system (C(I, E), V) defined by (14.2) is J 4 = P4 = D 4-admissible on each
M € 2°D since the space (C(I, E), D 1) is D_4-sequentially complete.
We prove that (14.5) implies

voze.AVs>1 EIn>1 E|revi,yec(1,]:")\V,s,leN
{Sa (Da [V[“I]x, V[l”]y]) <e-n

= S (Do [V, VI+1ly]) < 6] (14.7)
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To establish this, let « € A, t € I and «,y € C([, E) be arbitrary and fixed. Then, in view of
(14.1)—(14.4),

P,[(VEx) (1) = (VI ly) (0]
=P, {/I(t) [K(t, T, (V[s]x) (h(r))) - K(t, T, (V[”y) (h(t)))] dr }

< [ PR (e, 0 00) - Ko (409) 0

< sup P, {K(t, T, (V[s]x) (h(t))) - I((t, T, (V[”y) (h(r)))}

t,rel

< sup Po{K(t, T, (Wx)(w)) - K (¢, 7, WWy) ()}

t,T,nel

Consequently, we have D, [VEUx, VIHy] = sup,, P, [(VEUx) () — (V) (@)] <
sup, . 1 Po[K(t, 7, (WBlx) () — K (¢, T, WWy) ()] which, by (14.5), implies Sy (Do [VF+x,
Yl < Sa(suptyf’ue,Pa[K(t,r,(V[S]x)(,u)) - K, 7, WUy ()] < & - n. Similarly, in
view of (14.5), we find Sy (Dy [V +Ux, VIr+lly]) < S, (sup, o Po[K (2, T, VE"Ix) (1)) -
K(t, T, W y)(1))]) < . Therefore, in view of (14.5), (14.7) holds.

The statements of Theorem 14.3 are now immediate consequences of Theorem 9.3. [

Proof of Theorem 14.4 Using (14.3), (14.4) and (14.6) we obtain

VoeAV¥es1Tn513renVy0ecr,E) Vsien
{Sa (Da [V[s+1]y0’v[l+l]y0]) <e-n

= Sa (Da [V[s+r+1]y0’ V[l+r+1]y0]) < 8}.

Next, using a similar argument as in the proofs of Theorems 9.4 and 14.3, we have the

assertions. O
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