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Abstract
Let E be a real Banach space with dual space E∗. A new class of relatively weak
J-nonexpansive maps, T : E → E∗, is introduced and studied. An algorithm to
approximate a common element of J-fixed points for a countable family of relatively
weak J-nonexpansive maps and zeros of a countable family of inverse strongly
monotone maps in a 2-uniformly convex and uniformly smooth real Banach space is
constructed. Furthermore, assuming existence, the sequence of the algorithm is
proved to converge strongly. Finally, a numerical example is given to illustrate the
convergence of the sequence generated by the algorithm.
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1 Introduction
Let E be a real Banach space with dual space E∗. A mapping J : E → 2E∗ defined by J(x) :=
{x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2,‖x∗‖ = ‖x‖,∀x ∈ E}, is called the normalized duality map on E,
where 〈·, ·〉 denotes the duality pairing between the elements of E and E∗. A mapping A :
E → E is said to be accretive if for each x, y ∈ E, there exists j(x – y) ∈ J(x – y) such that
the following inequality holds: 〈Ax – Ay, j(x – y)〉 ≥ 0. A mapping A : E → E∗ is said to be
monotone if for each x, y ∈ E, the following inequality holds: 〈x – y, Ax – Ay〉 ≥ 0. In a real
Hilbert space, accretive operators are called monotone.

It is known that many physically significant problems can be modeled in the form of the
following evolution equation: du

dt + Au = 0, where A : E → E is an accretive-type map. This
equation describes any system that generates energy over time. Observe that at equilib-
rium, u is independent of time so that the equation reduces to

Au = 0, (1.1)

whose solutions correspond to the equilibrium state of the system described by equation
du
dt + Au = 0.
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Approximation of solutions of Eq. (1.1) has been studied extensively by various authors
(see, e.g., Aoyama et al. [4], Blum and Oettli [6], Censor, Gibali, Reich and Sabach [12],
Censor, Gibali and Reich [9–11], Chidume [14], Chidume et al. [15, 16, 18, 23, 25, 26],
Gibali, Reich and Zalas [27], Iiduka and Takahashi [29], Iiduka et al. [31], Kassay, Reich
and Sabach [33], Kinderlehrer and Stampacchia [34], Lions and Stampacchia [36], Liu [37],
Liu and Nashed [38], Ofoedu and Malonza [43], Osilike et al. [44], Reich and Sabach [48],
Reich [46], Rockafellar [49], Su and Xu [51], Zegeye et al. [58], Zegeye and Shahzad [57],
and the references therein).

For approximating a solution of Eq. (1.1) in a real Hilbert space H, where A : H → H
is monotone, assuming existence, Browder [7] introduced an operator T := I – A, where
I is the identity map on H . He called such an operator a pseudocontraction. It is trivial
to observe that zeros of A correspond to fixed points of T . Interest in pseudocontractive-
type map stems mainly from this firm connection with the accretive-type maps. Hence,
approximating fixed points of pseudocontractive maps has become a flourishing area of
interest to researchers in nonlinear operator theory (see, e.g., the monographs of Alber
[1], Berinde [5], Chidume [14], Goebel and Reich [28], and the references therein).

Let a function f : E →R∪ {∞} be convex and proper. The subdifferential of f , ∂f : E →
2E∗ , is defined for each x ∈ E by

∂f (x) :=
{

x∗ ∈ E∗ : f (y) – f (x) ≥ 〈
y – x, x∗〉,∀y ∈ E

}
.

It is known that ∂f is a monotone map on E, and 0 ∈ ∂f (v) if and only if v is a minimizer
of f . In general, if A := ∂f : E → 2E∗ is a monotone-type map defined on an appropriate real
normed space E, solutions of equation

0 ∈ Au, (1.2)

in this case where A is of monotone type, correspond to minimizers of some convex func-
tional defined on E. This is one of the motivations for studying the equation Au = 0, where
A : E → E∗ is monotone.

Clearly, Browder’s fixed point technique for the equation Au = 0, where A : E → E is of
accretive-type, is not applicable to the equation Au = 0, where A : E → E∗ is monotone, for
an arbitrary real normed space E more general than Hilbert spaces.

As has been rightly observed by Hazewinkle, a Series Editor of Kluwer Academic Pub-
lishers,

“. . . many, and probably most, mathematical objects and models do not naturally live
in Hilbert space.”

They live generally in real Banach spaces more general than Hilbert spaces.
Let E be a smooth real normed space, and let T : E → E∗ be a map. If J : E → E∗ is

the normalized duality map, then x ∈ E is called a J-fixed point of T if Tx = Jx (see, e.g.,
Chidume et al. [23–25] and Chidume and Idu [20]). This concept was introduced by Zeg-
eye [55] in 2008, who called such a fixed point a semi-fixed point. The concept was later,
in 2012, called duality fixed point by Cheng et al. [13], Liu [37], and Su and Xu [51]. The
notion of J-fixed point has been found to have numerous applications, and provides for
monotone maps T : E → E∗ the analog of Browder’s pseudocontractive maps for accretive



Chidume and Ezea Fixed Point Theory and Applications          (2020) 2020:3 Page 3 of 16

maps, T : E → E. For more on J-fixed points, the reader may consult any of the following
references: Chidume and Monday [21, 22].

A map A : E → E∗ is called inverse strongly monotone if there exists α > 0 such that

〈x – y, Ax – Ay〉 ≥ α‖Ax – Ay‖2, for all x, y ∈ E.

Chidume et al. [23] called a map T : E → E∗ strictly J-pseudocontractive if for every x, y ∈
E, there exists α > 0 such that the following inequality holds:

〈Tx – Ty, x – y〉 ≤ 〈Jx – Jy, x – y〉 – α
∥∥(Jx – Tx) – (Jy – Ty)

∥∥2. (1.3)

Remark 1 Liu [37] called this concept α-strongly duality.

By setting A := J – T : E → E∗, where E is a real normed space with dual space E∗ and T
is a strictly J-pseudocontractive map, we list some properties of A and T (Chidume et al.
[23]):

(i) x ∈ E is a J-fixed point of T if and only if x is a zero of A,
(ii) A is inverse strongly monotone if and only if T is strictly J-pseudocontractive.
We recall the following definitions.

Definition 1.1 Let C be a nonempty closed and convex subset of E; let T : C → E be a
map. A point x∗ ∈ C is called a fixed point of T if Tx∗ = x∗. The set of fixed points of T
is denoted by F(T). We say that (I – T) is demiclosed at zero whenever a sequence {xn}
in C converges weakly to x and {xn – Txn} converges strongly to 0, then x ∈ F(T). A point
p ∈ C is said to be an asymptotic fixed point of T if C contains a sequence {xn}∞n=1 which
converges weakly to p and limn→∞ ‖Txn – xn‖ = 0. The set of asymptotic fixed points of T
is denoted by F̂(T).

Definition 1.2 (Chidume and Idu [20]) Let E be a smooth real normed space with dual
space E∗. Let T : E → E∗ be any map. A point x ∈ E is called a J-fixed point of T if Tx = Jx.

The set of J-fixed point of a map T is denoted by FJ (T) = {x ∈ E : Tx = Jx}. We now give
some examples of J-fixed points.

Example 1 Let H be a real Hilbert space; let T : H → H be any map with F(T) := {x ∈ H :
Tx = x} 
= ∅. Then, F(T) = FJ (T).

Example 2 (Chidume and Idu [20]) It is known that in lp spaces, 1 < p < ∞,

Jx = ‖x‖2–p
lp

(|x1|p–2x1, |x2|p–2x2, . . .
)
,

for any x = (x1, x2, . . .) ∈ lp (see, e.g., Alber [3], p. 36). For 1 < q < p, we set γp := (1 + 1
2p )

2–p
p

and define T : lp → lq (⊂ lp) by

T(x1, x2, x3, . . .) =
(

γpx1,
γp

2p–1 x2, 0, 0, . . .
)

.

For any λ ∈R, let xλ = (λ, λ
2 , 0, 0, . . .). Then, xλ ∈ FJ (T).
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Let E be a smooth real Banach space with dual space E∗. A function φ : E × E → R,
defined by

φ(x, y) = ‖x‖2 – 2〈x, Jy〉 + ‖y‖2, ∀x, y ∈ E, (1.4)

where J is the normalized duality mapping from E into E∗ will play a central role in what
follows. It was introduced by Alber and has been studied by Alber and Ryazantseva [3],
Alber and Guerre-Delabriere [2], Chidume et al. [16, 17, 23], Chidume and Idu [20],
Kamimura and Takahashi [32], Reich [47], Takahashi and Zembayashi [53, 54], Zegeye
[55], and a host of other authors.

If E = H , a real Hilbert space, Eq. (1.4) reduces to φ(x, y) = ‖x – y‖2, ∀x, y ∈ H .

Definition 1.3 A map T : C → E is said to be relatively nonexpansive if the following
conditions hold (see, e.g., Matsushita and Takahashi [40] and Reich [45]):

(1) F(T) 
= ∅,
(2) φ(p, Tx) ≤ φ(p, x), ∀x ∈ C and p ∈ F(T),
(3) F̂(T) = F(T).

Definition 1.4 A point p ∈ C is said to be a strong asymptotic fixed point of T if C contains
a sequence {xn}∞n=1 which converges strongly to p and limn→∞ ‖Txn – xn‖ = 0 (see, e.g.,
Reich [45]). The set of strongly asymptotic fixed points of T is denoted by F̃(T).

Definition 1.5 A map T : C → E is said to be relatively weak nonexpansive if the following
conditions hold (see, e.g., Liu [39] and Zegeye and Shahzad [56]):

(1) F(T) 
= ∅,
(2) φ(p, Tx) ≤ φ(p, x), ∀x ∈ C and p ∈ F(T),
(3) F̃(T) = F(T).

If E is a strictly convex and reflexive real Banach space and A : E → E∗ is a continuous
monotone map with A–1(0) 
= ∅, it is known that Jr := (J + rA)–1J , for r > 0, is relatively
weak nonexpansive (see, e.g., Kohasaka [35]). Clearly, every relatively nonexpansive map
is relatively weak nonexpansive. Let T : C → E be a map; we have that F(T) ⊂ F̃(T) ⊂ F̂(T).
It follows that F(T) = F̃(T) = F̂(T) for any relatively nonexpansive map.

An example of a relatively weak nonexpansive map which is not a relatively nonexpansive
map is given in Zhang et al. [59]. In the following definitions, we assume that the space E
is reflexive, strictly convex, and smooth real Banach space with dual space E∗.

Definition 1.6 (Chidume et al. [15]) Let T : E → E∗ be a map. A point x∗ ∈ E is called
an asymptotic J-fixed point of T if there exists a sequence {xn} ⊂ E such that xn ⇀ x∗ and
‖Jxn – Txn‖ → 0 as n → ∞. We shall denote the set of asymptotic J-fixed points of T by
F̂J (T).

Definition 1.7 (Chidume et al. [15]) A map T : E → E∗ is said to be relatively J-
nonexpansive if

(i) F̂J (T) = FJ (T) 
= ∅,
(ii) φ(p, J–1Tx) ≤ φ(p, x), ∀x ∈ E, p ∈ FJ (T).
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In 2008, Iiduka and Takahashi [30] introduced an iterative algorithm for finding a zero
of an inverse strongly monotone map A in a 2-uniformly convex and uniformly smooth
real Banach space. They proved a strong convergence theorem to some element of A–1(0).

For appropriating zeros of inverse strongly monotone maps and fixed points of relatively
weak nonexpansive maps, Zegeye and Shahzad [56] in 2009 introduced a generalized pro-
jection algorithm and proved that the sequence generated by their algorithm converges
strongly to a common element of the sets of zeros for inverse strongly monotone maps
and fixed points of relatively weak nonexpansive maps

For finding an element in the set of solutions of zeros for an inverse strongly monotone
map and fixed points for a countable family of relatively weak nonexpansive maps in a 2-
uniformly convex and uniformly smooth real Banach space, Chidume et al. [19] proved
the following theorem.

Theorem 1.8 Let E be a 2-uniformly convex and uniformly smooth real Banach space
with dual space E∗. Let A : E → E∗ be an α-inverse strongly monotone map, and let Ti :
E → E, i = 1, 2, . . . , be a countable family of relatively weak nonexpansive maps. Assume
that W :=

⋂∞
i=1 F(Ti) ∩ A–10 
= ∅, where A–10 = {u ∈ E : Au = 0} 
= ∅. For arbitrary x1 ∈ E,

let the sequence {xn}∞n=1 be iteratively defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E := C1,

un = J–1(Jxn – λAxn),

yn = J–1(
∑∞

i=1 αiJTiun),

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1 x1, ∀n ≥ 1,

(1.5)

where J : E → E∗ is the normalized duality map, λ ∈ (0, α
2L ), L > 0 denotes the Lipschitz

constant of J–1, and {αi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 αi = 1. Then, the sequences
{xn}∞n=1 and {un}∞n=1 converge strongly to some x∗ ∈ W :=

⋂∞
i=1 F(Ti) ∩ A–10.

Remark 2 This theorem is a significant improvement on the result of Zegeye and Shahzad
[56]. We observe that the relatively weak nonexpansive maps studied in Zegeye and
Shahzad [56] and Chidume et al. [19] are maps from a real normed space to itself.

It is our purpose in this paper to introduce a new class of maps called relatively weak
J-nonexpansive maps from a real normed space E to its dual space E∗. We first give some
properties of this class of maps, and we then construct an algorithm to approximate a com-
mon element of J-fixed points for a countable family of relatively weak J-nonexpansive
maps and zeros of a countable family of inverse strongly monotone maps in a 2-uniformly
convex and uniformly smooth real Banach space. We prove a strong convergence theo-
rem. Finally, we give a numerical example to illustrate the convergence of the sequence
generated by the algorithm.

2 Preliminaries
It is obvious from the definition of the function φ that

(‖x‖ – ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2, ∀x, y ∈ E. (2.1)
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Remark 3 It is known that if E is a reflexive, strictly convex and smooth real Banach space,
then, for all x, y ∈ E, φ(x, y) = 0 if and only if x = y (see, e.g., Zhou et al. [60]).

Define a map V : E × E∗ → R by V (x, x∗) = ‖x‖2 – 2〈x, x∗〉 + ‖x∗‖2. Then, it is easy to
see that V (x, x∗) = φ(x, J–1(x∗)), ∀x ∈ E, x∗ ∈ E∗. Let C be a nonempty closed and convex
subset of a smooth, strictly convex, and reflexive real Banach space E. The generalized
projection map introduced by Alber [1], is a map ΠC : E → C such that, for any x ∈ E, there
corresponds a unique element x0 := ΠC(x) ∈ C such that φ(x0, x) = miny∈C φ(y, x). We note
that the existence and uniqueness of the generalized projection map ΠC follows from the
strict monotonicity and properties of the Lyapunov functional φ (see, e.g., Takahashi [52],
Alber [1], and Alber and Ryazantseva [3]). If E is a real Hilbert space, we remark that the
generalized projection ΠC coincides with the metric projection from E onto C.

The following lemmas are needed in the sequel.

Lemma 2.1 (Matsushita and Takahashi [41]) Let E be a strictly convex and smooth Banach
space; let C be a closed convex subset of E, and let T be a relatively nonexpansive mapping
from C into itself. Then, F(T) is a closed convex subset of C.

Lemma 2.2 (Schu [50]) Let E be a uniformly convex Banach space and C be a nonempty
closed convex subset of E. Let T be a nonexpansive mapping of C into itself. Then, (I – T)
is demiclosed at zero.

Lemma 2.3 (Chidume et al. [19]) Let C be a closed convex subset of a uniformly convex and
uniformly smooth real Banach space E, and let Ti : C → E, i = 1, 2, . . . , be a countable family
of relatively weak nonexpansive maps. Assume that

⋂∞
i=1 F(Ti) 
= ∅ and {αi}∞i=1 is a sequence

in (0, 1) such that
∑∞

i=1 αi = 1. Let the map T : C → E be defined by Tx = J–1(
∑∞

i=1 αiJTix)
for each x ∈ C. Then, T is relatively weak nonexpansive and F(T) =

⋂∞
i=1 F(Ti).

Lemma 2.4 (Bruck [8]) Suppose E is strictly convex and {Tn} is a sequence of nonexpansive
mappings Tn : C → E. Then there exists a nonexpansive mapping T : C → E such that
F(T) =

⋂∞
i=1 F(Ti).

Remark 4 It was proved in Bruck [8] that the map T : C → E defined by Tx =
∑∞

i=1 αiTix,
for each x ∈ C, where {αi}∞i=1 is a sequence in (0, 1) such that

∑∞
i=1 αi = 1, is nonexpansive.

3 Main results
Definition 3.1 Let E be a reflexive, strictly convex, and smooth real Banach space with
dual space E∗. Let T : E → E∗ be a map. A point p ∈ E will be called a strong asymp-
totic J-fixed point of T if E contains a sequence {xn}∞n=1 which converges strongly to p and
limn→∞ ‖Txn – Jxn‖ = 0. The set of strongly asymptotic J-fixed points of T will be denoted
by F̃J (T).

Definition 3.2 Let E be a reflexive, strictly convex, and smooth real Banach space with
dual space E∗. A map T : E → E∗ will be called relatively weak J-nonexpansive if the fol-
lowing conditions hold:

(1) FJ (T) 
= ∅,
(2) φ(p, J–1Tx) ≤ φ(p, x), ∀x ∈ E and p ∈ FJ (T),
(3) F̃J (T) = FJ (T).
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An example of a relatively weak J-nonexpansive map that is not relatively J-nonexpansive
(see Zhang et al. [59]). In addition, we provide the following example.

Example 3 Let 	p(R) be the sequence space, for 1 < p < ∞. Let the sequence {xn}∞n=1 ∈
	p(R) be defined by x0 = (1, 0, 0, 0, . . .), x1 = (1, 1, 0, 0, 0, . . .), x2 = (1, 0, 1, 0, 0, 0, . . .), x3 =
(1, 0, 0, 1, 0, 0, 0, . . .), . . . , xn = (ζn,1, ζn,2, ζn,3, . . . , ζn,k+1, 0, . . .), . . . , where

ζn,k =

⎧
⎨

⎩
1, if k = 1, n + 1;

0, if k 
= 1, k 
= n + 1.

Let T : 	p(R) → 	q(R) be a map defined as follows:

T(x) =

⎧
⎨

⎩

n
n+1 Jxn, if x = xn,

–Jx, if x 
= xn,
(3.1)

where J : 	p(R) → 	q(R) is the single valued normalized duality map and 1
p + 1

q = 1. It is
easy to see that the sequence {xn}∞n=1 converges weakly to x0.

Let f = (α1,α2, . . . ,αn+1, . . .) ∈ 	q(R), for 1 < q < ∞; we have that f (xn – x0) = 〈f , xn – x0〉 =
αn+1 → 0 as n → ∞. Therefore, {xn}∞n=1 converges weakly to x0. Clearly, {xn}∞n=1 is not
Cauchy since ‖xn – xm‖ =

√
2, for n 
= m, and the J-fixed point of T is zero, i.e., FJ (T) = {0}.

Since {xn}∞n=1 converges weakly to x0 and

‖Txn – Jxn‖ =
∥∥∥∥

n
n + 1

Jxn – Jxn

∥∥∥∥ =
1

n + 1
‖Jxn‖ → 0,

we see that F̂J (T) = {x0}, i.e., x0 is an asymptotic J-fixed point of T . Hence, F̂J (T) 
= FJ (T),
i.e., T is not a relatively J-nonexpansive map.

We now show that zero is a unique strong asymptotic J-fixed point of T . Let {yn}∞n=1 ∈
	p(R) such that yn → y∗ and ‖Tyn – Jyn‖ → 0 as n → ∞. Since {xn}∞n=1 is not Cauchy, there
exists sufficiently large N such that yn 
= xm, for n, m > N . Now, Tyn = –Jyn, for n > N ; this
implies that Tyn – Jyn = –2Jyn, for n > N . It follows that ‖Tyn – Jyn‖ = 2‖Jyn‖ → 0, and thus,
yn → y∗ = 0. Consequently, F̃J (T) = FJ (T).

We now show that T is a relatively weak J-nonexpansive map. Based on the definition
of T , we obtain

φ
(
0, J–1Tx

)
= ‖Tx‖2 ≤ ‖x‖2 = ‖0‖2 + 〈0, Jx〉 + ‖x‖2 = φ(0, x), ∀x ∈ 	p(R).

It follows that T is a relatively weak J-nonexpansive map. Hence, the map T is an example
of a relatively weak J-nonexpansive map, which is not a relatively J-nonexpansive map.

Lemma 3.3 Let E be a reflexive, strictly convex, and smooth real Banach space with dual
space E∗. Let T : E → E∗ be a map. Then, FJ (T) ⊂ F̃J (T) ⊂ F̂J (T).

Proof Let p ∈ FJ (T). Then, T(p) = Jp. Set xn = p, ∀n ≥ 1, so Txn = Tp = Jp. Therefore,
FJ (T) ⊂ F̃J (T). Clearly, F̃J (T) ⊂ F̂J (T). Hence, FJ (T) ⊂ F̃J (T) ⊂ F̂J (T). �
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Theorem 3.4 Let E be a reflexive, strictly convex, and smooth real Banach space with dual
space E∗. Let T : E → E∗ be a relatively J-nonexpansive map. Then, T is relatively weak J-
nonexpansive.

Proof Since T is a relatively J-nonexpansive map, we get that
(1) F̂J (T) = FJ (T) 
= ∅,
(2) φ(p, J–1Tx) ≤ φ(p, x), ∀x ∈ E and p ∈ FJ (T).

Using Lemma 3.3 and the fact that F̂J (T) = FJ (T), we see that FJ (T) ⊂ F̃J (T) ⊂ F̂J (T) =
FJ (T). This implies that FJ (T) = F̃J (T) = F̂J (T). Therefore, T is relatively weak J-
nonexpansive. �

Theorem 3.5 Let E be a reflexive, strictly convex, and smooth real Banach space with dual
space E∗. Let T : E → E∗ be a relatively weak J-nonexpansive map. Then, the J-fixed point
set of T , FJ (T), is closed and convex.

Proof We first show that FJ (T) is closed. Let {xn}∞n=1 be any sequence in FJ (T)
such that xn → x ∈ E as n → ∞. Using the fact that T is relatively weak J-nonexpansive and
definition of φ, we see that φ(xn, J–1Tx) ≤ φ(xn, x) → 0 as n → ∞. Thus,
φ(xn, J–1Tx) → 0. We observe that φ(xn, J–1Tx) = ‖xn‖2 –2〈xn, J(J–1Tx)〉+‖JJ–1Tx‖2, and so
limn→∞ φ(xn, J–1Tx) = φ(x, J–1Tx) = 0. From Remark 3, this implies that J–1Tx = x, so
Tx = Jx. Therefore, x ∈ FJ (T). It follows that FJ (T) is closed.

We now show that the set FJ (T) is convex. Let x1, x2 ∈ FJ (T), t ∈ (0, 1), and set x3 =
tx1 + (1 – t)x2; we show that x3 ∈ FJ (T). From the definition of φ and the fact that T is
relatively weak J-nonexpansive, we see that

φ
(
x3, J–1Tx3

)
= ‖x3‖2 – 2〈x3, Tx3〉 +

∥∥JJ–1Tx3
∥∥2

= ‖x3‖2 – 2
〈
tx1 + (1 – t)x2, Tx3

〉
+

∥∥JJ–1Tx3
∥∥2

= ‖x3‖2 – 2t〈x1, Tx3〉 – 2(1 – t)〈x2, Tx3〉 +
∥∥JJ–1Tx3

∥∥2

= ‖x3‖2 + tφ
(
x1, J–1Tx3

)
+ (1 – t)φ

(
x2, J–1Tx3

)
– t‖x1‖2

– (1 – t)‖x2‖2

≤ ‖x3‖2 + tφ(x1, x3) + (1 – t)φ(x2, x3) – t‖x1‖2 – (1 – t)‖x2‖2

= ‖x3‖2 – 2〈x3, Jx3〉 + ‖x3‖2 = 0,

so φ(x3, J–1Tx3) = 0. Therefore, we see that J–1Tx3 = x3 from Remark 3, and this implies
that Tx3 = Jx3, i.e., x3 ∈ FJ (T). Therefore, FJ (T) is convex. Hence, the J-fixed point set of
T , FJ (T), is closed and convex. �

Lemma 3.6 Let E be a uniformly smooth and uniformly convex real Banach space with
dual space E∗. Then, the map T : E → E∗ is relatively weak J-nonexpansive map if and only
if the map J–1T : E → E is relatively weak nonexpansive map. Moreover, FJ (T) = F(J–1T)
and F̃(J–1T) = F̃J (T).

Proof We first show that FJ (T) = F(J–1T). y∗ ∈ FJ (T) iff Ty∗ = Jy∗ iff J–1Ty∗ = y∗ iff
y∗ ∈ F(J–1T). Therefore, FJ (T) = F(J–1T). We now show that F̃(J–1T) = F̃J (T). p ∈ F̃J (T)
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if and only if there exists a sequence {xn}∞n=1 ⊆ E which converges strongly to p and
limn→∞ ‖Txn – Jxn‖ = 0 if and only if there exists a sequence {xn}∞n=1 ⊆ E which converges
strongly to p and limn→∞ ‖J–1Txn – xn‖ = 0 if and only if p ∈ F̃(J–1T).

Therefore, F̃(J–1T) = F̃J (T).
Now, T is a relatively weak J-nonexpansive map if
(1) F̃J (T) = FJ (T) 
= ∅,
(2) φ(p, J–1Tx) ≤ φ(p, x), ∀x ∈ E and p ∈ FJ (T).

In addition, J–1T is a relatively weak nonexpansive map if
(1) F̃(J–1T) = F(J–1T) 
= ∅,
(2) φ(p, J–1Tx) ≤ φ(p, x), ∀x ∈ E and p ∈ F(J–1T).

To show that T : E → E∗ is relatively weak J-nonexpansive map if and only if the map J–1T :
E → E is relatively weak nonexpansive map, it suffices to show from the definitions above
that FJ (T) = F(J–1T) and F̃(J–1T) = F̃J (T). Moreover, we have already shown that FJ (T) =
F(J–1T) and F̃(J–1T) = F̃J (T). Hence, T : E → E∗ is a relatively weak J-nonexpansive map
if and only if the map J–1T : E → E is relatively weak nonexpansive. �

We now prove the following lemma.

Lemma 3.7 Let E be a uniformly smooth and 2-uniformly convex real Banach space with
dual space E∗. Let A : E → E∗ be an α-inverse strongly monotone map, and let T : E → E∗

be a relatively weak J-nonexpansive map. Assume that W := FJ (T)∩A–10 
= ∅. For arbitrary
x1 ∈ C1, let the sequence {xn}∞n=1 be iteratively defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E := C1,

un = J–1(Jxn – λAxn),

yn = J–1Tun,

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1 x1, ∀n ≥ 1,

(3.2)

where J : E → E∗ is the normalized duality map, λ ∈ (0, α
2L ) and L > 0 denotes a Lipschitz

constant of J–1. Then, the sequences {xn}∞n=1 and {un}∞n=1 converge strongly to some x∗ ∈ W .

Proof Since T is a relatively weak J-nonexpansive map, it follows from Lemma 3.6 that
J–1T is relatively weak nonexpansive and FJ (T) = F(J–1T). Using Theorem 1.8, we have
that the sequences {xn}∞n=1 and {un}∞n=1 converge strongly to some x∗ ∈ W . �

4 Strong convergence theorems for countable families of maps
Lemma 4.1 Let E be a uniformly smooth and uniformly convex real Banach space with
dual space E∗. Let Ti : E → E∗, for each i = 1, 2, . . . , be a countable family of relatively
weak J-nonexpansive maps such that

⋂∞
i=1 FJ (Ti) 
= ∅. Let a map T : E → E∗ be defined by

Tx =
∑∞

i=1 δiTix, for each x ∈ E, where {δi}∞i=1 is a sequence in (0, 1) such that
∑∞

i=1 δi = 1.
Then, T is relatively weak J-nonexpansive and FJ (T) =

⋂∞
i=1 FJ (Ti).

Proof Given that the map T is defined by Tx =
∑∞

i=1 δiTix, for each x ∈ E. This implies that
J–1Tx = J–1(

∑∞
i=1 δiJ(J–1Ti)x). Using the fact that Ti is relatively weak J-nonexpansive for

each i, it follows from Lemma 3.6 that J–1Ti, for each i, is relatively weak nonexpansive
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and FJ (Ti) = F(J–1Ti). By applying Lemma 2.3, we obtain that J–1T is relatively weak non-
expansive and F(J–1T) =

⋂∞
i=1 F(J–1Ti). It follows from Lemma 3.6 that T is relatively weak

J-nonexpansive, and FJ (T) = F(J–1T) =
⋂∞

i=1 F(J–1Ti) =
⋂∞

i=1 FJ (Ti). �

Lemma 4.2 Let E be a uniformly convex and uniformly smooth real Banach space with
dual space E∗. Let Ai : E → E∗, for each i = 1, 2, . . . , be a countable family of αi-inverse
strongly monotone maps such that α := infi≥1 αi > 0 and

⋂∞
i=1 A–1

i (0) 
= ∅. Let a map A :
E → E∗ be defined by Ax =

∑∞
i=1 βiAix, for each x ∈ E, where {βi}∞i=1 is a sequence in (0, 1)

such that
∑∞

i=1 βi = 1. Then, (i) A is well defined, (ii) A is α-inverse strongly monotone,
(iii) A–1(0) =

⋂∞
i=1 A–1

i (0).

Proof (i) Let x ∈ E and x∗ ∈ ⋂∞
i=1 A–1

i (0). Since Ai, for each i = 1, 2, . . . , is Lipschitz, we
obtain ‖βiAix‖ = ‖βi(Aix – Aix∗)‖ ≤ 1

α
‖x – x∗‖. Hence, for each x ∈ E, the series

∑∞
i=1 βiAix

converges absolutely. This shows that the map A is well defined.
(ii) Let x, y ∈ E. Then, using the fact that Ai, for each i = 1, 2, . . . , is αi-inverse strongly

monotone and a result of Nilsrakoo and Saejung [42], we have that

〈x – y, Ax – Ay〉 =
∞∑

i=1

βi〈x – y, Aix – Aiy〉

≥
∞∑

i=1

βiαi‖Aix – Aiy‖2

≥ α

∥∥∥∥∥

∞∑

i=1

βiAix –
∞∑

i=1

βiAiy

∥∥∥∥∥

2

= α‖Ax – Ay‖2.

This yields that A is α-inverse strongly monotone.
(iii) It is obvious that

⋂∞
i=1 A–1

i (0) ⊆ A–1(0). We now show that A–1(0) ⊆ ⋂∞
i=1 A–1

i (0).
Let x ∈ A–1(0). We show that x ∈ ⋂∞

i=1 A–1
i (0). Let y0 ∈ ⋂∞

i=1 A–1
i (0). This implies that y0 ∈

A–1(0). From the definition of A, we get

0 = 〈x – y0, Ax – Ay0〉 =
∞∑

i=1

βi〈x – y0, Aix – Aiy0〉. (4.1)

By applying the fact that Ai, for each i = 1, 2, . . . , is monotone and
∑∞

i=1 βi = 1, it follows
from Eq. (4.1) that

〈x – y0, Aix – Aiy0〉 = 0, for each i = 1, 2, . . . . (4.2)

Using the fact that Ai, for each i = 1, 2, . . . , is αi-inverse strongly monotone and y0 ∈
⋂∞

i=1 A–1
i (0), we obtain

0 = 〈x – y0, Aix – Aiy0〉 ≥ αi‖Aix – Aiy0‖2 ≥ α‖Aix‖2.

This implies that Aix = 0, for each i = 1, 2, . . . , so x ∈ ⋂∞
i=1 A–1

i (0). Thus, A–1(0) ⊆
⋂∞

i=1 A–1
i (0). Hence, A–1(0) =

⋂∞
i=1 A–1

i (0). This completes the proof. �
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We now prove the following theorem.

Theorem 4.3 Let E be a uniformly smooth and 2-uniformly convex real Banach space
with dual space E∗. Let Ai : E → E∗, for each i = 1, 2, . . . , be a countable family of αi-inverse
strongly monotone maps such that α := infi≥1 αi > 0 and

⋂∞
i=1 A–1

i (0) 
= ∅. Let Ti : E → E∗,
for each i = 1, 2, . . . , be a countable family of relatively weak J-nonexpansive maps such
that

⋂∞
i=1 FJ (Ti) 
= ∅. Let {βi}∞i=1 and {δi}∞i=1 be sequences in (0, 1) such that

∑∞
i=1 βi = 1,

∑∞
i=1 δi = 1, and W := FJ (

∑∞
i=1 δiTi) ∩ (

∑∞
i=1 βiAi)–10 
= ∅. For arbitrary x1 ∈ C1, let the se-

quence {xn}∞n=1 be iteratively defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E := C1,

un = J–1(Jxn – λ(
∑∞

i=1 βiAi)xn),

yn = J–1(
∑∞

i=1 δiTi)un,

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1 x1, ∀n ≥ 1,

(4.3)

where J : E → E∗ is the normalized duality map, λ ∈ (0, α
2L ), and L > 0 denotes a Lipschitz

constant of J–1. Then, the sequences {xn}∞n=1 and {un}∞n=1 converge strongly to some x∗ ∈ W .

Proof We observe from Lemma 4.1 that the map T : E → E∗ defined by Tx :=
∑∞

i=1 δiTix,
for each x ∈ E, where {δi}∞i=1 is a sequence in (0, 1) such that

∑∞
i=1 δi = 1, is relatively weak

J-nonexpansive and FJ (T) =
⋂∞

i=1 FJ (Ti). Also, consider the map A : E → E∗ defined by
Ax =

∑∞
i=1 βiAix, for each x ∈ E where {βi}∞i=1 is a sequence in (0, 1) such that

∑∞
i=1 βi = 1.

Then, we have the following by Lemma 4.2: (i) A is well defined, (ii) A is α-inverse strongly
monotone, (iii) A–1(0) =

⋂∞
i=1 A–1

i (0). It follows by Lemma 3.7 that the sequences {xn}∞n=1
and {un}∞n=1 converge strongly to some x∗ ∈ W := FJ (

∑∞
i=1 δiTi) ∩ (

∑∞
i=1 βiAi)–10 
= ∅. �

Corollary 4.4 Let E = Lp,	p, and W p
m, 1 < p ≤ 2. Let Ai : E → E∗, for each i = 1, 2, . . . , be

a countable family of αi-inverse strongly monotone maps such that α := infi≥1 αi > 0 and
⋂∞

i=1 A–1
i (0) 
= ∅. Let Ti : E → E∗, for each i = 1, 2, . . . , be a countable family of relatively

weak J-nonexpansive maps such that
⋂∞

i=1 FJ (Ti) 
= ∅. Let {βi}∞i=1 and {δi}∞i=1 be sequences
in (0, 1) such that

∑∞
i=1 βi = 1,

∑∞
i=1 δi = 1, and W := FJ (

∑∞
i=1 δiTi) ∩ (

∑∞
i=1 βiAi)–10 
= ∅. For

arbitrary x1 ∈ C1, let the sequence {xn}∞n=1 be iteratively defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ E := C1,

un = J–1(Jxn – λ(
∑∞

i=1 βiAi)xn),

yn = J–1(
∑∞

i=1 δiTi)un,

Cn+1 = {v ∈ Cn : φ(v, yn) ≤ φ(v, xn)},
xn+1 = ΠCn+1 x1, ∀n ≥ 1,

(4.4)

where J : E → E∗ is the normalized duality map, λ ∈ (0, α
2L ), and L > 0 denotes a Lipschitz

constant of J–1. Then, the sequences {xn}∞n=1 and {un}∞n=1 converge strongly to some x∗ ∈ W .

Proof We observe that E is a 2-uniformly convex and uniformly smooth real Banach space.
It follows from Theorem 4.3 that the sequences {xn}∞n=1 and {un}∞n=1 converge strongly to
some x∗ ∈ W := FJ (

∑∞
i=1 δiTi) ∩ (

∑∞
i=1 βiAi)–10 
= ∅. �
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Corollary 4.5 Let E = H be a real Hilbert space. Let Ai : H → H , for each i = 1, 2, . . . , be
a countable family of αi-inverse strongly monotone maps such that α := infi≥1 αi > 0 and
⋂∞

i=1 A–1
i (0) 
= ∅. Let Ti : H → H , for each i = 1, 2, . . . , be a countable family of nonexpan-

sive maps such that
⋂∞

i=1 F(Ti) 
= ∅. Let {βi}∞i=1 and {δi}∞i=1 be sequences in (0, 1) such that
∑∞

i=1 βi = 1,
∑∞

i=1 δi = 1, and W := FJ (
∑∞

i=1 δiTi)∩ (
∑∞

i=1 βiAi)–10 
= ∅. For arbitrary x1 ∈ C1,
let the sequence {xn}∞n=1 be iteratively defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ H := C1,

un = xn – λ(
∑∞

i=1 βiAi)xn,

yn = (
∑∞

i=1 δiTi)un,

Cn+1 = {v ∈ Cn : ‖v – yn‖ ≤ ‖v – xn‖},
xn+1 = PCn+1 x1, ∀n ≥ 1,

(4.5)

where λ ∈ (0, α
2 ) and PCn+1 denotes the projection map from H onto Cn+1. Then, the se-

quences {xn}∞n=1 and {un}∞n=1 converge strongly to some x∗ ∈ W .

Proof The map T : H → H defined by Tx =
∑∞

i=1 δiTix, for each x ∈ H , where {δi}∞i=1 is a
sequence in (0, 1) such that

∑∞
i=1 δi = 1, is nonexpansive by Remark 4. It suffices to show

that if T is nonexpansive in a Hilbert space, then T is relatively weak J-nonexpansive.
We only need to show that F̂(T) ⊂ F(T) since for any map, T , F(T) ⊂ F̃(T) ⊂ F̂(T).
Let p ∈ F̂(T). Then, E contains a sequence {xn}∞n=1 which converges weakly to p and
limn→∞ ‖Txn –xn‖ = 0. The fact that T is nonexpansive map gives by Lemma 2.2 that (I –T)
is demiclosed at zero. Thus, we obtain Tp = p, i.e., p ∈ F(T). Thus, F̂(T) ⊂ F(T). Since H is
a real Hilbert space and the map T is nonexpansive, it follows that φ(Tx, Ty) ≤ φ(x, y), for
all x, y ∈ H . Hence, T is a relatively nonexpansive map, so T is a relatively weak nonexpan-
sive map. This implies that T is relatively weak J-nonexpansive. It follows by Theorem 4.3
that the sequences {xn}∞n=1 and {un}∞n=1 converge strongly to some x∗ ∈ W . �

5 Numerical illustration
We now present a numerical example to illustrate the convergence of the sequence gen-
erated by our algorithm in Theorem 4.3.

Example 4 Let E = R and C = [a, b], for a, b ∈ R. Let Ai : R → R, for each i = 1, 2, . . . ,
be defined by Aix = 2x. Let a map A : R → R be defined by Ax =

∑∞
i=1 βiAix = 2x, for

each x ∈ R, where βi = 1
2i is a sequence in (0, 1) and

∑∞
i=1 βi = 1. Let Ti : R → R, for each

i = 1, 2, . . . , be defined by Tix = 4
7 x. Let a map T : R →R be defined by Tx =

∑∞
i=1 δiTix = 4

7 x,
for each x ∈ R, where δi = 1

2i is a sequence in (0, 1) and
∑∞

i=1 δi = 1. It is clear that A is 1
2 -

inverse strongly monotone map and T is nonexpansive map with zero as its unique fixed
point, so T is relatively nonexpansive map. We observe that the intersection of the set of
zeros of A and the fixed points of T is zero. We consider two different initial values x1 = 1.8
and x1 = –1.8 with λ = 1

8 and define a map

PCx =

⎧
⎪⎪⎨

⎪⎪⎩

a, if x < a,

x, if x ∈ C,

b, if x > b,
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Figure 1 Convergence of the sequence {xn} with
two different initial values x1 = 1.8, –1.8

Figure 2 Convergence of the sequence {xn} with
two different initial values x1 = 1.8, –1.8

where PC denotes the projection map from H onto C. It follows by Theorem 4.3 that the
sequence generated by algorithm (3.2) converges to zero. The sketch of the numerical
example is given in Figs. 1 and 2, where the y-axis represents the value of xn – 0, while the
x-axis represents the number of iterations n.

Conclusion. It is obvious that our algorithm (3.2) can be implemented from Figs. 1 and 2
and that the sequence {xn} converges to the solution we desire.

5.1 Analytical representations of duality maps in Lp, lp, and Wp
m spaces, 1 < p < ∞

The analytical representations of duality maps are known in a number of Banach spaces.
In particular, they are known in Lp, lp, and W p

m, 1 < p < ∞, (see, e.g., Alber and Ryazantseva
[3], page 36).

6 Conclusion
In this paper, we introduced and studied a new class of maps called relatively weak J-
nonexpansive maps from a real normed space E to its dual space E∗. An algorithm was
constructed to approximate a common element of J-fixed points for a countable family of
relatively weak J-nonexpansive maps and zeros of a countable family of inverse strongly
monotone maps in a 2-uniformly convex and uniformly smooth real Banach space. We
proved a strong convergence theorem and gave a numerical example to illustrate the con-
vergence of the sequence generated by the algorithm.
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