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Abstract
In this paper, we introduce the structure of Sp-metric spaces as a generalization of
both S-metric and Sb-metric spaces. Also, we present the notions of˜S-contractive
mappings in the setup of ordered Sp-metric spaces and investigate the existence of a
fixed point for such mappings under various contractive conditions. We provide
examples to illustrate the results presented herein. An application to periodic
boundary value problems is presented.
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1 Introduction and preliminaries
There is a large number of generalizations of Banach contraction principle via using dif-
ferent forms of contractive conditions in various generalized metric spaces. Some of such
generalizations are obtained via contractive conditions expressed by rational terms (see,
e.g., [7, 9, 17, 19]).

Ran and Reurings initiated the studying of fixed point results on partially ordered sets in
[14]. Further, many researchers have focused on different contractive conditions in com-
plete metric spaces endowed with a partial order. For more details, we refer the reader to
[11, 12].

Parvaneh introduced in [13] the concept of extended b-metric spaces as follows.

Definition 1.1 ([13]) Let Ξ be a (nonempty) set. A function d̃ : Ξ ×Ξ → R+ is a p-metric
if there exists a strictly increasing continuous function Ω : [0,∞) → [0,∞) with Ω–1(t) ≤
t ≤ Ω(t) and Ω–1(0) = 0 = Ω(0) such that, for all ζ ,η,ω ∈ Ξ , the following conditions hold:

(˜d1) ˜d(ζ ,η) = 0 iff ζ = η,
(˜d2) ˜d(ζ ,η) =˜d(η, ζ ),
(˜d3) ˜d(ζ ,ω) ≤ Ω(˜d(ζ ,η) +˜d(η,ω)).

In this case, the pair (Ξ ,˜d) is called a p-metric space or an extended b-metric space.
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A b-metric [2] is a p-metric with Ω(t) = st for some fixed s ≥ 1, while a metric is a p-
metric when Ω(t) = t. We have the following proposition.

Proposition 1.2 ([13]) Let (Ξ , d) be a metric space, and let ˜d(ζ ,η) = ξ (d(ζ ,η)), where ξ :
[0,∞) → [0,∞) is a strictly increasing continuous function with t ≤ ξ (t) and 0 = ξ (0). In
this case, ˜d is a p-metric with Ω(t) = ξ (t).

The above proposition provides several examples of p-metric spaces.

Example 1.3 Let (Ξ , d) be a metric space, and let ˜d(ζ ,η) = ed(ζ ,η) sec–1(ed(ζ ,η)). Then ˜d is a
p-metric with Ω(t) = et sec–1(et).

In [16], Sedghi et al. introduced the notion of an S-metric space as follows.

Definition 1.4 ([16]) Let Ξ be a nonempty set and S : Ξ × Ξ × Ξ → R+ be a function
satisfying the following properties:

(S1) S(ζ ,η,ω) = 0 iff ζ = η = ω;
(S2) S(ζ ,η,ω) ≤ S(ζ , ζ , a) + S(η,η, a) + S(ω,ω, a) for all ζ ,η,ω, a ∈ Ξ (rectangle

inequality).
Then the function S is called an S-metric on Ξ and the pair (Ξ , S) is called an S-metric
space.

Example 1.5 ([16]) Let R be the real line. Then S(ζ ,η,ω) = |ζ –η|+ |ζ –ω| for all ζ ,η,ω ∈ R
is an S-metric on R. This S-metric on R is called the usual S-metric on R.

Souayaha and Mlaiki in [18], motivated by the concepts of b-metric and S-metric, in-
troduced the concept of Sb-metric spaces, and then they presented some basic properties
of such spaces.

The following is the definition of modified S-metric spaces, which is a proper general-
ization of the notions of S-metric spaces and Sb-metric spaces.

Definition 1.6 Let Ξ be a nonempty set and Ω : [0,∞) → [0,∞) be a strictly increasing
continuous function such that t ≤ Ω(t) for all t > 0 and Ω(0) = 0. Suppose that a mapping
˜S : Ξ × Ξ × Ξ → R+ satisfies:

(˜S1) ˜S(ζ ,η,ω) = 0 iff ζ = η = ω,
(˜S2) ˜S(ζ ,η,ω) ≤ Ω[˜S(ζ , ζ ,α) +˜S(η,η,α) +˜S(ω,ω,α)] for all ζ ,η,ω,α ∈ Ξ (rectangle in-

equality).
Then˜S is called an Sp-metric and the pair (Ξ ,˜S) is called an Sp-metric space.

Remark 1.7 In an Sp-metric space, we have ˜S(ζ , ζ ,η) ≤ Ω[˜S(η,η, ζ )] for all ζ ,η ∈ Ξ . In-
deed, putting (ζ , ζ ,η, ζ ) instead of (ζ ,η,ω,α) in (˜S2) and using (˜S1), we obtain the previous
inequality.

Each S-metric space is an Sp-metric space with Ω(t) = t and every Sb-metric space with
parameter s ≥ 1 is an Sp-metric space with Ω(t) = st.

Proposition 1.8 Let (Ξ , S) be an Sb-metric space with coefficient s ≥ 1, and let˜S(ζ ,η,ω) =
ξ (S(ζ ,η,ω)), where ξ : [0,∞) → [0,∞) is a strictly increasing continuous function with
t ≤ ξ (t) for all t > 0 and ξ (0) = 0. Then˜S is an Sp-metric with Ω(t) = ξ (st).
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Proof For all ζ ,η,ω, a ∈ Ξ ,

˜S(ζ ,η,ω) = ξ
(

S(ζ ,η,ω)
) ≤ ξ

(

sS(ζ , ζ , a) + sS(η,η, a) + sS(ω,ω, a)
)

≤ ξ (sξ
(

S(ζ , ζ , a)
)

+ sξ
(

S(η,η, a) + sξ
(

S(ω,ω, a)
))

= ξ
(

s˜S(ζ , ζ , a) + s˜S(η,η, a) + s˜S(ω,ω, a)
)

= Ω
(

˜S(ζ , ζ , a) +˜S(η,η, a) +˜S(ω,ω, a)
)

.

So,˜S is an Sp-metric with Ω(t) = ξ (st). �

The above proposition provides several examples of Sp-metric spaces.

Example 1.9 Let (Ξ , S) be an Sb-metric space with coefficient s ≥ 1. Then:
1. ˜S(ζ ,η,ω) = eS(ζ ,η,ω) sec–1(eS(ζ ,η,ω)) is an Sp-metric with Ω(t) = est sec–1(est).
2. ˜S(ζ ,η,ω) = [S(ζ ,η,ω) + 1] sec–1([S(ζ ,η,ω) + 1]) is an Sp-metric with

Ω(t) = [st + 1] sec–1([st + 1]).
3. ˜S(ζ ,η,ω) = eS(ζ ,η,ω) tan–1(eS(ζ ,η,ω) – 1) is an Sp-metric with Ω(t) = est tan–1(est – 1).
4. ˜S(ζ ,η,ω) = S(ζ ,η,ω) cosh(S(ζ ,η,ω)) is an Sp-metric with Ω(t) = st cosh(st).
5. ˜S(ζ ,η,ω) = eS(ζ ,η,ω) ln(1 + S(ζ ,η,ω)) is an Sp-metric with Ω(t) = est ln(1 + st).
6. ˜S(ζ ,η,ω) = S(ζ ,η,ω) + ln(1 + S(ζ ,η,ω)) is an Sp-metric with Ω(t) = st + ln(1 + st).

In all the given examples 1–6, it can be checked by routine calculation that the respec-
tive function ξ satisfies all the requirements given in Proposition 1.8, i.e., it is continuous,
strictly increasing, ξ (0) = 0, and ξ (t) > t for t > 0.

Definition 1.10 Let Ξ be an Sp-metric space. A sequence {ζn} in Ξ is said to be:
(1) Sp-Cauchy if, for each ε > 0, there exists a positive integer n0 such that, for all

m, n ≥ n0,˜S(ζm, ζn, ζn) < ε.
(2) Sp-convergent to a point ζ ∈ Ξ if, for each ε > 0, there exists a positive integer n0

such that, for all n ≥ n0,˜S(ζn, ζn, ζ ) < ε.
(3) An Sp-metric space Ξ is called Sp-complete if every Sp-Cauchy sequence is

Sp-convergent in Ξ .

In general, an Sp-metric mapping ˜S(ζ ,η,ω) with a nontrivial function Ω need not be
jointly continuous in all its variables (see [10]). Thus, in some proofs we will need the
following simple lemma about the Sp-convergent sequences.

Lemma 1.11 Let (Ξ ,˜S) be an Sp-metric space.
1. Suppose that {ζn} and {ηn} are Sp-convergent to ζ and η, respectively. Then we have

Ω–1[ 1
2Ω–1[˜S(ζ ,η,η)]]

2
≤ lim inf

n−→∞
˜S(ζn,ηn,ηn) ≤ lim sup

n−→∞
˜S(ζn,ηn,ηn)

≤ Ω
[

2Ω
[

˜S(ζ ,η,η)
]]

.

In particular, if ζ = η, then we have limn→∞˜S(ζn,ηn,ηn) = 0.
2. Suppose that {ζn} is Sp-convergent to ζ and ω ∈ Ξ is arbitrary. Then we have

Ω–1[˜S(ζ ,ω,ω)]
2

≤ lim inf
n−→∞

˜S(ζn,ω,ω) ≤ lim sup
n−→∞

˜S(ζn,ω,ω) ≤ Ω
[

2˜S(ζ ,ω,ω)
]

.
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Proof 1. Using the rectangle inequality in the Sp-metric space, it is easy to see that

˜S(ζ ,η,η) ≤ Ω
[

˜S(ζ , ζ , ζn) + 2˜S(η,η, ζn)
]

≤ Ω
[

˜S(ζ , ζ , ζn) + 2Ω
[

2˜S(η,η,ηn) +˜S(ηn, ζn, ζn)
]]

and

˜S(ζn,ηn,ηn) ≤ Ω
[

˜S(ζn, ζn, ζ ) + 2˜S(ηn,ηn, ζ )
]

≤ Ω
[

˜S(ζn, ζn, ζ ) + 2Ω
[

2˜S(ηn,ηn,η) +˜S(η, ζ , ζ )
]]

.

Taking the lower limit as n → ∞ in the first inequality and the upper limit as n → ∞ in
the second inequality, we obtain the desired result.

2. Using the rectangle inequality, we see that

˜S(ζ ,ω,ω) ≤ Ω
[

˜S(ζ , ζ , ζn) + 2˜S(ω,ω, ζn)
]

and

˜S(ζn,ω,ω) ≤ Ω
[

˜S(ζn, ζn, ζ ) + 2˜S(ω,ω, ζ )
]

. �

Let B denote the class of all real functions β : [0,∞) → [0, 1) satisfying the condition

β(tn) → 1 implies that tn → 0, as n → ∞.

In order to generalize the Banach contraction principle, Geraghty proved in 1973 the fol-
lowing result.

Theorem 1.12 ([5]) Let (Ξ , d) be a complete metric space, and let f : Ξ → Ξ be a self-
map. Suppose that there exists β ∈ B such that

d(f ζ , f η) ≤ β
(

d(ζ ,η)
)

d(ζ ,η)

holds for all ζ ,η ∈ Ξ . Then f has a unique fixed point ω ∈ Ξ and for each ζ ∈ Ξ the Picard
sequence {f nζ } converges to ω.

In 2010, Amini-Harandi and Emami [1] characterized the result of Geraghty in the set-
ting of a partially ordered complete metric space. In [4], some fixed point theorems for
mappings satisfying Geraghty-type contractive conditions were proved in various gener-
alized metric spaces. Also, Zabihi and Razani [19] and Shahkoohi and Razani [17] obtained
some fixed point results for rational Geraghty contractions in b-metric spaces.

Motivated by [9], in this paper we present some fixed point theorems for various con-
tractive mappings in tripled partially ordered modified S-metric spaces. Our results ex-
tend some existing results in the literature. Examples are provided to show the usefulness
of the results. In the last section, an application is given to a first-order boundary value
problem for differential equations.
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2 Main results
2.1 Fixed point results using Geraghty contractions
Let (Ξ ,˜S) be an Sp-metric space with function Ω , and let BΩ denote the class of all func-
tions β : [0,∞) → [0,Ω–1(1)) satisfying the following condition:

lim sup
n→∞

β(tn) = Ω–1(1) implies that tn → 0, as n → ∞.

Example 2.1
(1) Let Ξ = R and˜S(ζ ,η,ω) = e|ζ–η|+|η–ω| – 1 for all ζ ,η,ω ∈R, with Ω(t) = et – 1. Then,

by β(t) = (ln 2)e–t for t > 0 and β(0) ∈ [0, ln 2), a function β belonging to BΩ is given.
(2) Another example of a function in BΩ may be given by β(t) = W (1)e–t for t > 0 and

β(0) ∈ [0, W (1)), where˜S(ζ ,η,ω) = (|ζ – η| + |η – ω|)e|ζ–η|+|η–ω| for all ζ ,η,ω ∈R.
Here, W is the Lambert W -function (see, e.g., [3]).

Definition 2.2 Let (Ξ ,�,˜S) be an ordered Sp-metric space. A mapping f : Ξ → Ξ is
called an Sp-Geraghty contraction if there exists β ∈ BΩ such that

Ω2(2˜S(f ζ , f η, f ω)
) ≤ β

(

M(ζ ,η,ω)
)

M(ζ ,η,ω) (2.1)

for all mutually comparable elements ζ ,η,ω ∈ Ξ , where

M(ζ ,η,ω) = max

{

˜S(ζ ,η,ω),
Ω–1[˜S(ζ , f ζ , f η)]

2
,˜S(η, f η, f ω)

}

.

An ordered Sp-metric space (Ξ ,�,˜S) is said to have the s.l.c. property if, whenever {ζn}
is an increasing sequence in Ξ such that ζn → u ∈ Ξ , one has ζn � u for all n ∈N.

Theorem 2.3 Let (Ξ ,�,˜S) be an ordered Sp-complete Sp-metric space. Let f : Ξ → Ξ be
an increasing mapping with respect to � such that there exists an element ζ0 ∈ Ξ with
ζ0 � f ζ0. Suppose that f is an Sp-Geraghty contraction. If

(I) f is continuous, or
(II) (Ξ ,�,˜S) has the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f
has one and only one fixed point.

Proof Put ζn = f nζ0. Since ζ0 � ζ1 and f is increasing, we obtain by induction that the
sequence {ζn} is increasing w.r.t. �. We will show that limn→∞˜S(ζn, ζn+1, ζn+1) = 0. With-
out loss of generality, we may assume that ζn �= ζn+1 for all n ∈ N. Since ζn and ζn+1 are
comparable, then by (2.1) we have

˜S(ζn, ζn+1, ζn+1) =˜S(f ζn–1, f ζn, f ζn) ≤ β
(

M(ζn–1, ζn, ζn)
)

M(ζn–1, ζn, ζn), (2.2)

where

M(ζn–1, ζn, ζn)

= max

{

˜S(ζn–1, ζn, ζn),
1
2
Ω–1[

˜S(ζn–1, f ζn–1, f ζn)
]

,˜S(ζn, f ζn, f ζn)
}
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= max

{

˜S(ζn–1, ζn, ζn),
1
2
Ω–1[

˜S(ζn–1, ζn, ζn+1)
]

,˜S(ζn, ζn+1, ζn+1)
}

≤ max

{

˜S(ζn–1, ζn, ζn),
˜S(ζn–1, ζn–1, ζn) +˜S(ζn+1, ζn+1, ζn)

2
,˜S(ζn, ζn+1, ζn+1)

}

= max
{

˜S(ζn–1, ζn, ζn),˜S(ζn, ζn+1, ζn+1)
}

.

If max{˜S(ζn–1, ζn, ζn),˜S(ζn, ζn+1, ζn+1)} =˜S(ζn, ζn+1, ζn+1), then from (2.2) we have

˜S(ζn, ζn+1, ζn+1) ≤ β
(

M(ζn–1, ζn, ζn)
)

˜S(ζn, ζn+1, ζn+1)

< Ω–1(1)˜S(ζn, ζn+1, ζn+1)

≤˜S(ζn, ζn+1, ζn+1),

which is a contradiction.
Hence, max{˜S(ζn–1, ζn, ζn),˜S(ζn, ζn+1, ζn+1)} =˜S(ζn–1, ζn, ζn). So, from (2.2),

˜S(ζn, ζn+1, ζn+1) ≤ β
(

M(ζn–1, ζn, ζn)
)

˜S(ζn–1, ζn, ζn) <˜S(ζn–1, ζn, ζn). (2.3)

That is, {˜S(ζn, ζn+1, ζn+1)} is a decreasing sequence. Then there exists r ≥ 0 such that
limn→∞˜S(ζn, ζn+1, ζn+1) = r. We will prove that r = 0. Suppose, on the contrary, that r > 0.
Then, letting n → ∞, from (2.3) we have

r ≤ lim
n→∞β

(

M(ζn–1, ζn, ζn)
)

r ≤ Ω–1(1)r,

which implies that Ω–1(1) ≤ 1 ≤ limn→∞ β(M(ζn–1, ζn, ζn)) ≤ Ω–1(1). Now, as β ∈ BΩ ,
we conclude that M(ζn–1, ζn, ζn) → 0, which yields that r = 0, a contradiction. Hence, the
assumption that r > 0 is false. That is,

lim
n→∞

˜S(ζn, ζn+1, ζn+1) = lim
n→∞

˜S(ζn, ζn, ζn+1) = 0. (2.4)

Now, we prove that the sequence {ζn} is an Sp-Cauchy sequence. Suppose the contrary,
i.e., there exists ε > 0 for which we can find two subsequences {ζmi} and {ζni} of {ζn} such
that ni is the smallest index for which

ni > mi > i and ˜S(ζmi , ζni , ζni ) ≥ ε. (2.5)

This means that

˜S(ζmi , ζni–1, ζni–1) < ε. (2.6)

From the rectangular inequality, we get

˜S(ζmi , ζmi+1, ζni )

≤ Ω
[

˜S(ζmi , ζmi , ζni–1) +˜S(ζmi+1, ζmi+1, ζni–1) +˜S(ζni , ζni , ζni–1)
]

≤ Ω
[

˜S(ζmi , ζmi , ζni–1) + Ω
[

2˜S(ζmi+1, ζmi+1, ζmi ) +˜S(ζni–1, ζni–1, ζmi )
]

+˜S(ζni , ζni , ζni–1)
]

.
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Taking the upper limit as i → ∞ and by (2.4), we get

lim sup
i→∞

˜S(ζmi , ζmi+1, ζni ) ≤ Ω
(

ε + Ω(ε)
)

.

From the rectangular inequality, we get

ε ≤˜S(ζmi , ζni , ζni ) ≤ Ω
[

˜S(ζmi , ζmi , ζmi+1) +˜S(ζni , ζni , ζmi+1) +˜S(ζni , ζni , ζmi+1)
]

.

Taking the upper limit as i → ∞ and by (2.4), we get

1
2
Ω–1(ε) ≤ lim sup

i→∞
˜S(ζmi+1, ζni , ζni ).

From the definition of M(ζ ,η,ω) and the above limits,

lim sup
i→∞

M(ζmi , ζni–1, ζni–1)

= lim sup
i→∞

max

{

˜S(ζmi , ζni–1, ζni–1),
1
2
Ω–1[

˜S(ζmi , f ζmi , f ζni–1)
]

,

˜S(ζni–1, f ζni–1, f ζni–1)
}

= lim sup
i→∞

max

{

˜S(ζmi , ζni–1, ζni–1),
1
2
Ω–1[

˜S(ζmi , ζmi+1, ζni )
]

,

˜S(ζni–1, ζni , ζni )
}

≤ Ω(ε).

Now, since the sequence {ζn} is increasing, we can apply (2.1) and the above inequalities
to get

Ω(ε) = Ω2
(

2 · 1
2
Ω–1(ε)

)

≤ Ω2
[

lim sup
i→∞

2˜S(ζmi+1, ζni , ζni )
]

≤ lim sup
i→∞

β
(

M(ζmi , ζni–1, ζni–1)
)

lim sup
i→∞

M(ζmi , ζni–1, ζni–1)

≤ Ω(ε) · lim sup
i→∞

β
(

M(ζmi , ζni–1, ζni–1)
)

,

which implies that Ω–1(1) ≤ 1 ≤ limn→∞ β(M(ζmi , ζni–1, ζni–1)) ≤ Ω–1(1). Now, as β ∈BΩ

we conclude that M(ζmi , ζni–1, ζni–1) → 0, which yields that˜S(ζmi , ζni–1, ζni–1) → 0. Conse-
quently,

˜S(ζmi , ζni , ζni ) ≤ Ω
[

˜S(ζmi , ζmi , ζni–1) + 2˜S(ζni , ζni , ζni–1)
] → 0,

a contradiction with (2.5). Therefore, {ζn} is an Sp-Cauchy sequence. Sp-completeness of
Ξ yields that {ζn} Sp-converges to a point u ∈ Ξ .
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We will prove that u is a fixed point of f . First, let f be continuous. Then we have

u = lim
n→∞ ζn+1 = lim

n→∞ f ζn = fu.

Now, let (II) hold. Using the assumption on Ξ , we have that ζn � u for all n ∈ N. Now,
by Lemma 1.11,

Ω2
[

2
Ω–1[˜S(u, fu, fu)]

2

]

≤ Ω2
[

2 lim sup
n→∞

˜S(ζn+1, fu, fu)
]

≤ lim sup
n→∞

β
(

M(ζn, u, u)
)

lim sup
n→∞

M(ζn, u, u),

where

lim
n→∞ M(ζn, u, u) = lim

n→∞ max
{

˜S(ζn, u, u),˜S(ζn, ζn+1, fu),˜S(u, fu, fu)
}

=˜S(u, fu, fu).

Therefore, we deduce that˜S(u, fu, fu) = 0, so u = fu.
Finally, suppose that the set of fixed points of f is well ordered. Assume on the contrary,

that u and v are two fixed points of f such that u �= v. Then, by (2.1), we have

˜S(u, v, v) =˜S(fu, fv, fv) ≤ β
(

M(u, v, v)
)

M(u, v, v) = β
(

˜S(u, v, v)
)

˜S(u, v, v)

< Ω–1(1)˜S(u, v, v)

because M(u, v, v) =˜S(u, v, v). So, we get˜S(u, v, v) < Ω–1(1)˜S(u, v, v), a contradiction. Hence,
u = v, and f has a unique fixed point. Conversely, if f has a unique fixed point, then the set
of fixed points of f is trivially well ordered. �

2.2 Fixed point results via comparison functions
Let Ψ be the family of all nondecreasing functions ψ : [0,∞) → [0,∞) such that

lim
n→∞ψn(t) = 0

for all t > 0. It is easy to see that the following holds.

Lemma 2.4 (see, e.g., [15]) If ψ ∈ Ψ , then the following are satisfied:
(a) ψ(t) < t for all t > 0;
(b) ψ(0) = 0.

Definition 2.5 Let (Ξ ,�,˜S) be an ordered Sp-metric space. A mapping f : Ξ → Ξ is
called an Sp-ψ-contraction if there exists ψ ∈ Ψ such that

Ω2(2˜S(f ζ , f η, f ω)
) ≤ ψ

(

M(ζ ,η,ω)
)

(2.7)

for all mutually comparable elements ζ ,η,ω ∈ Ξ , where

M(ζ ,η,ω) = max

{

˜S(ζ ,η,ω),
1
2
Ω–1[

˜S(ζ , f ζ , f η)
]

,˜S(η, f η, f ω)
}

.
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Theorem 2.6 Let (Ξ ,�,˜S) be an ordered Sp-complete Sp-metric space. Let f : Ξ → Ξ be
an increasing mapping with respect to � such that there exists an element ζ0 ∈ Ξ with
ζ0 � f ζ0. Suppose that f is an Sp-ψ-contractive mapping. If

(I) f is continuous, or
(II) (Ξ ,�,˜S) has the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f
has one and only one fixed point.

Proof Put ζn = f nζ0.
Step 1. We will show that limn→∞˜S(ζn, ζn+1, ζn+1) = 0. We assume that ζn �= ζn+1 for all

n ∈ N (otherwise there is nothing to prove). As in the proof of Theorem 2.3, we have that
the sequence {ζn} is increasing. Hence, by (2.7) we have

˜S(ζn, ζn+1, ζn+1) =˜S(f ζn–1, f ζn, f ζn) ≤ Ω(2˜S
(

f (ζn–1, f ζn, f ζn)
)

≤ ψ
(

M(ζn–1, ζn, ζn)
) ≤ ψ

(

˜S(ζn–1, ζn, ζn)
)

<˜S(ζn–1, ζn, ζn) (2.8)

because

M(ζn–1, ζn, ζn+1) ≤ max
{

˜S(ζn–1, ζn, ζn),˜S(ζn, ζn+1, ζn+1)
}

,

and it is easy to see that max{˜S(ζn–1, ζn, ζn),˜S(ζn, ζn+1, ζn+1)} = ˜S(ζn–1, ζn, ζn). So, from
(2.8) we conclude that {˜S(ζn, ζn+1, ζn+1)} is decreasing. Then there exists r ≥ 0 such that
limn→∞˜S(ζn, ζn+1, ζn+2) = r. It is easy to verify that

r = lim
n→∞

˜S(ζn–1, ζn, ζn) = 0.

Step 2. Similarly as in the proof of Theorem 2.3, if {ζn} were not an Sp-Cauchy sequence,
then there would exist ε > 0 for which we can find two subsequences {ζmi} and {ζni} of {ζn}
such that (2.5) and (2.6) hold. Then we would have

lim sup
i→∞

M(ζmi , ζni–1, ζni–1) ≤ Ω(ε).

Now, from (2.7) and the mentioned inequalities, we have

Ω(ε) = Ω2
(

2 · 1
2
Ω–1ε

)

≤ Ω2
[

lim sup
i→∞

(

2˜S(ζmi+1, ζni , ζni )
)

]

≤ lim sup
i→∞

ψ
(

M(ζmi , ζni–1, ζni–1)
)

< Ω(ε),

which is a contradiction. Hence, {ζn} is a Sp-Cauchy sequence and Sp-completeness of ζ

yields that {ζn} Sp-converges to a point u ∈ Ξ .
Step 3. u is a fixed point of f . This step is proved as in the proof of Theorem 2.3 with

some elementary changes. �
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If in the above theorem we take ψ(t) = sinh t and ˜S(ζ ,η,ω) = sinh(Sb(ζ ,η,ω)), then we
have the following corollary in the framework of Sb metric spaces.

Corollary 2.7 Let (Ξ ,�, Sb) be an ordered Sb-complete Sb-metric space with coefficient
s > 1. Let f : Ξ → Ξ be an increasing mapping with respect to � such that there exists an
element ζ0 ∈ Ξ with ζ0 � f ζ0. Suppose that

sinh
(

s · sinh
(

s · 2 sinh
(

Sb(f ζ , f η, f ω)
))) ≤ sinh

(

M(ζ ,η,ω)
)

for all mutually comparable elements ζ ,η,ω ∈ Ξ , where

M(ζ ,η,ω) = max

{

sinh
(

Sb(ζ ,η,ω)
)

,
Sb(ζ , f ζ , f η)

2s
, sinh

(

Sb(η, f η, f ω)
)

}

.

If
(I) f is continuous, or

(II) (Ξ ,�, Sb) enjoys the s.l.c. property,
then f has a fixed point.

2.3 Fixed point results related to JS-contractions
Jleli et al. [8] introduced the class Θ0 consisting of all functions θ : (0,∞) → (1,∞) satis-
fying the following conditions:

(θ1) θ is nondecreasing;
(θ2) for each sequence {tn} ⊆ (0,∞), limn→∞ θ (tn) = 1 if and only if limn→∞ tn = 0;
(θ3) there exist r ∈ (0, 1) and � ∈ (0,∞] such that limt→0+ θ (t)–1

tr = �;
(θ4) θ is continuous.
They proved the following result.

Theorem 2.8 ([8, Corollary 2.1]) Let (Ξ , d) be a complete metric space, and let T : Ξ → Ξ

be a given mapping. Suppose that there exist θ ∈ Θ0 and k ∈ (0, 1) such that

ζ ,η ∈ Ξ , d(Tx, Ty) �= 0 
⇒ θ
(

d(Tx, Tη)
) ≤ θ

(

d(ζ ,η)
)k .

Then T has a unique fixed point.

From now on, we denote by Θ the set of all functions θ : [0,∞) → [1,∞) satisfying the
following conditions:

θ1. θ is a continuous strictly increasing function;
θ2. for each sequence {tn} ⊆ (0,∞), limn→∞ θ (tn) = 1 if and only if limn→∞ tn = 0.

Remark 2.9 ([6]) It is clear that f (t) = et does not belong to Θ0, but it belongs to Θ . Other
examples are f (t) = cosh t, f (t) = 2 cosh t

1+cosh t , f (t) = 1 + ln(1 + t), f (t) = 2+2 ln(1+t)
2+ln(1+t) , f (t) = etet , and

f (t) = 2etet

1+etet for all t > 0.

Definition 2.10 Let (Ξ ,�,˜S) be an ordered Sp-metric space. A mapping f : Ξ → Ξ is
called an Sp rational-JS-contraction if

θ
(

Ω
[

2˜S(f ζ , f η, f ω)
]) ≤ θ

(

M(ζ ,η,ω)
)k (2.9)
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for all mutually comparable elements ζ ,η,ω ∈ ζ , where θ ∈ Θ , k ∈ [0, 1) and

M(ζ ,η,ω) = max

{

˜S(ζ ,η,ω),
˜S(ζ , ζ , f ζ )˜S(η,η, f η)

1 +˜S(ζ ,η,η) +˜S(ζ ,ω,ω)
,

˜S(η,η, f η)˜S(ω,ω, f ω)
1 +˜S(η, f ω, f ω) +˜S(η, ζ , ζ )

}

.

Theorem 2.11 Let (Ξ ,�,˜S) be an ordered Sp-complete Sp-metric space. Let f : Ξ → Ξ

be an increasing mapping with respect to � such that there exists an element ζ0 ∈ Ξ with
ζ0 � f ζ0. Suppose that f is an Sp-rational JS-contractive mapping. If

(I) f is continuous, or
(II) (Ξ ,�,˜S) enjoys the s.l.c. property,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f
has one and only one fixed point.

Proof Put ζn = f nζ0.
Step 1. We will show that limn→∞˜S(ζn, ζn+1, ζn+1) = 0. Without loss of generality, we may

assume that ζn �= ζn+1 for all n ∈ N. Since ζn–1 � ζn for each n ∈N, then by (2.9) we have

θ
(

˜S(ζn, ζn+1, ζn+1)
) ≤ θ

(

Ω
[

2˜S(ζn, ζn+1, ζn+1)
])

= θ
(

˜S(f ζn–1, f ζn, f ζn)
)

≤ θ
(

M(ζn–1, ζn, ζn)
)k ≤ θ

(

˜S(ζn–1, ζn, ζn)
)k (2.10)

because

M(ζn–1, ζn, ζn) = max

{

˜S(ζn–1, ζn, ζn),
˜S(ζn–1, ζn–1, f ζn–1)˜S(ζn, ζn, f ζn)

1 +˜S(ζn–1, ζn, ζn) +˜S(ζn–1, ζn, ζn)
˜S(ζn, ζn, f ζn)˜S(ζn, ζn, f ζn)

1 +˜S(ζn, f ζn, f ζn) +˜S(ζn, ζn–1, ζn–1)

}

= max

{

˜S(ζn–1, ζn, ζn),
˜S(ζn–1, ζn–1, ζn)˜S(ζn, ζn, ζn+1)

1 +˜S(ζn–1, ζn, ζn) +˜S(ζn–1, ζn, ζn)
˜S(ζn, ζn, ζn+1)˜S(ζn, ζn, ζn+1)

1 +˜S(ζn, ζn+1, ζn+1) +˜S(ζn, ζn–1, ζn–1)

}

≤ max
{

˜S(ζn–1, ζn, ζn),˜S(ζn, ζn, ζn+1)
}

.

From (2.10) we deduce that

θ
(

˜S(ζn, ζn+1, ζn+1)
) ≤ θ

(

˜S(ζn–1, ζn, ζn)
)k .

Therefore,

1 ≤ θ
(

˜S(ζn, ζn+1, ζn+1)
) ≤ θ

(

˜S(ζn–1, ζn, ζn)
)k ≤ · · · ≤ θ

(

˜S(ζ0, ζ1, ζ1)
)kn

. (2.11)

Taking the limit as n → ∞ in (2.11), we have

lim
n→∞ θ

(

˜S(ζn, ζn+1, ζn+1)
)

= 1,

and since θ ∈ Θ , we obtain limn→∞˜S(ζn, ζn+1, ζn+1) = 0. Therefore, we have

lim
n→∞

˜S(ζn+1, ζn, ζn) = 0.
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Step 2. Similarly as in the proof of Theorem 2.3, if {ζn} were not an Sp-Cauchy sequence,
then there would exist ε > 0 for which we can find two subsequences {ζmi} and {ζni} of {ζn}
such that (2.5) and (2.6) hold. Hence,

˜S(ζmi , ζmi , ζni–1) < ε.

From the rectangular inequality, we get

ε ≤˜S(ζmi , ζni , ζni ) ≤ Ω
[

˜S(ζmi , ζmi , ζmi+1) + 2˜S(ζmi+1, ζni , ζni )
]

.

By taking the upper limit as i → ∞, we get

1
2
Ω–1(ε) ≤ lim sup

i→∞
˜S(ζmi+1, ζni , ζni ).

From the definition of M(ζ ,η,ω) and the above limits,

lim sup
i→∞

M(ζmi , ζni–1, ζni–1) = lim sup
i→∞

max

{

˜S(ζmi , ζni–1, ζni–1),

˜S(ζmi , ζmi , f ζmi )˜S(ζni–1, ζni–1, f ζni–1)
1 +˜S(ζmi , ζni–1, ζni–1) +˜S(ζmi , ζni–1, ζni–1)

˜S(ζni–1, ζni–1, f ζni–1)˜S(ζni–1, ζni–1, f ζni–1)
1 +˜S(ζni–1, f ζni–1, f ζni–1) +˜S(ζni–1, ζmi , ζmi )

}

≤ ε.

Now, from (2.9) and the above inequalities, we have

θ

(

Ω

[

2 · 1
2
Ω–1(ε)

])

≤ lim sup
i→∞

θ
(

Ω
[

2˜S(ζmi+1, ζni , ζni )
])

≤ lim sup
i→∞

θ
(

M(ζmi , ζni–1, ζni–1)
)k

≤ θ (ε)k ,

which implies that ε = 0, a contradiction. So, we conclude that {ζn} is an Sp-Cauchy se-
quence. By Sp-completeness of Ξ , it follows that {ζn} Sp-converges to a point u ∈ Ξ .

Step 3. u is a fixed point of f .
When f is continuous, the proof is straightforward.
Now, let (II) hold. Using the assumption on Ξ , we have ζn � u. By Lemma 1.11,

θ

(

Ω

[

2 · Ω–1[˜S(u, u, fu)]
2

])

≤ lim sup
n→∞

θ
(

Ω
[

2˜S(ζn+1, ζn+1, fu)
])

≤ lim sup
n→∞

θ
(

M(ζn, ζn, u)
)k ,
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where

lim
n→∞ M(ζn, ζn, u) = lim

n→∞ max

{

˜S(ζn, ζn, u),
˜S(ζn, ζn, f ζn)˜S(ζn, ζn, f ζn)

1 +˜S(ζn, ζn, ζn) +˜S(ζn, u, u)
,

˜S(ζn, ζn, f ζn)˜S(u, u, fu)
1 +˜S(ζn, fu, fu) +˜S(ζn, ζn, ζn)

}

= 0.

Therefore, we deduce that˜S(u, fu, fu) = 0, so u = fu.
Finally, suppose that the set of fixed points of f is well ordered. Assume, on the contrary,

that u and v are two fixed points of f such that u �= v. Then, by (2.9), we have

θ
[

˜S(u, v, v)
]

= θ
[

˜S(fu, fv, fv)
] ≤ θ

(

M(u, v, v)
)k = θ

(

˜S(u, v, v)
)k .

So, we get˜S(u, v, v) = 0, a contradiction. Hence u = v, and f has a unique fixed point. �

If in the above theorem we take θ (t) = 2etet

1+etet and ˜S(ζ ,η,ω) = eSb(ζ ,η,ω) – 1, then we have
the following corollary in the framework of Sb metric spaces.

Corollary 2.12 Let (Ξ ,�, Sb) be an ordered Sb-complete Sb-metric space with coefficient
s > 1. Let f : Ξ → Ξ be an increasing mapping with respect to � such that there exists an
element ζ0 ∈ Ξ with ζ0 � f ζ0. Suppose that

2e[es·[2eSb(f ζ ,f η,f ω)–1]–1]ees·[2eSb(f ζ ,f η,f ω)–1]–1

1 + e[es·[2eSb(f ζ ,f η,f ω)–1]–1]ees·[2eSb(f ζ ,f η,f ω)–1]–1
≤

√

2eM(ζ ,η,ω)eM(ζ ,η,ω)

1 + eM(ζ ,η,ω)eM(ζ ,η,ω)

for all mutually comparable elements ζ ,η,ω ∈ Ξ , where

M(ζ ,η,ω) = max

{

eSb(ζ ,η,ω) – 1,
[eSb(ζ ,ζ ,f ζ ) – 1][eSb(η,η,f η) – 1]

1 + eSb(ζ ,η,η) – 1 + eSb(ζ ,ζ ,f η) – 1
,

[eSb(η,η,f η) – 1][eSb(ω,ω,f ω) – 1]
1 + eSb(η,f ω,f ω) – 1 + eSb(η,ζ ,ζ ) – 1

}

.

If
(I) f is continuous, or

(II) (Ξ ,�, Sb) enjoys the s.l.c. property,
then f has a fixed point.

3 Examples
Example 3.1 Let Ξ = {0, 1

2 , 1
3 , 1

5 } be equipped with the partial order � given as

�:=
{

(0, 0),
(

0,
1
2

)

,
(

0,
1
3

)

,
(

0,
1
5

)

,
(

1
2

,
1
2

)

,
(

1
3

,
1
3

)

,
(

1
5

,
1
5

)}

.

Define a metric d on Ξ by

d(ζ ,η) =

⎧

⎨

⎩

0, if ζ = η,

ζ + η, if ζ �= η,
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and let˜S(ζ ,η,ω) = sinh[d(ζ ,ω) + d(η,ω)]. It is easy to see that (Ξ ,˜S) is an Sp-complete Sp-
metric space. Indeed, in the same way as the usual S-metric is formed in Example 1.5, an
S-metric S(ζ ,η,ω) = d(ζ ,ω) + d(η,ω) is formed, and using the function ξ (t) = sinh t, as in
Proposition 1.8, one obtains the Sp-metric˜S.

Define a self-map f by

f =

(

0 1
2

1
3

1
5

0 1
5 0 0

)

.

We see that f is an increasing mapping w.r.t. � and (Ξ ,�,˜S) enjoys the s.l.c. property.
Also, 0 � f 0.

Define θ : [0,∞) → [1,∞) by θ (t) = cosh(t) and take k = 2
3 . One can easily check that

f is an Sp-rational JS-contractive mapping. Indeed, as a sample, we check some cases as
follows:

1. (ζ ,η,ω) = (0, 0, 1
2 ). Then

θ
[

Ω
(

2˜S(f ζ , f η, f ω)
)]

= cosh

[

sinh 2 sinh 2
(

f 0 + f
1
2

)]

= cosh

[

sinh 2 sinh 2
(

0 +
1
5

)]

≈ 1.451 ≤ 1.465 ≈ 3

√

cosh

[

sinh 2
(

0 +
1
2

)]2

= 3
√

θ
(

M(ζ ,η)
)2.

2. (ζ ,η,ω) = (0, 1
2 , 1

2 ). Then

θ
[

Ω
(

2˜S(f ζ , f η, f ω)
)]

= cosh

[

sinh sinh 2
(

f 0 + f
1
2

)]

= cosh

[

sinh sinh 2
(

0 +
1
5

)]

≈ 1.087 ≤ 1.091 ≈ 3

√

cosh

[

sinh

(

0 +
1
2

)]2

= 3
√

θ
(

M(ζ ,η)
)2.

3. (ζ ,η,ω) = (0, 0, 1
3 ). Then

θ
[

Ω
(

2˜S(f ζ , f η, f ω)
)]

= cosh

[

sinh sinh 2
(

f 0 + f
1
3

)]

= cosh
[

sinh sinh 2(0 + 0)
]

= 0 ≤ 1.172 ≈ 3

√

cosh

[

sinh 2
(

0 +
1
3

)]2

= 3
√

θ
(

M(ζ ,η)
)2.
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4. (ζ ,η,ω) = (0, 1
5 , 1

5 ). Then

θ
[

Ω
(

2˜S(f ζ , f η, f ω)
)]

= cosh

[

sinh 2 sinh

(

f 0 + f
1
5

)]

= cosh
[

sinh sinh 2(0 + 0)
]

= 0 ≤ 1.0135 ≈ 3

√

cosh

[

sinh

(

0 +
1
5

)]2

= 3
√

θ
(

M(ζ ,η)
)2.

The rest of the cases can be checked similarly. Thus, all the conditions of Theorem 2.11
are satisfied and hence f has a fixed point. Indeed, 0 is the fixed point of f .

Example 3.2 Let Ξ = [0, 1.5] be equipped with the Sp-metric

˜S(ζ ,η,ω) = e|ζ–ω|+|η–ω| – 1

for all ζ ,η,ω ∈ Ξ , where Ω(t) = et – 1 (the mapping˜S is obtained from the usual S-metric
(Example 1.5) using the function ξ (t) = et – 1). Define a relation � on Ξ by ζ � η iff η ≤ ζ ,
a mapping f : Ξ → Ξ by

f ζ =
ζ

8
e– ζ

2

and a function β by β(t) = 1
2 < 0.882 ≈ Ω–1(1). For all mutually comparable elements

ζ ,η,ω ∈ Ξ , we have

˜S(f ζ , f η, f ω) = e|f ζ–f ω|+|f η–f ω| – 1 = e| ζ
8 e– ζ

2 – ω
8 e– ω

2 |+| η
8 e– η

2 – ω
8 e– ω

2 | – 1

≤ e
1
8 |ζ–ω|+ 1

8 |η–ω| – 1 ≤ 1
8
(

e|ζ–ω|+|η–ω| – 1
)

=
1
8
˜S(ζ ,η,ω).

So,

Ω2[2˜Ssp(f ζ , f η, f ω)
] ≤ Ω2

(

1
4
˜S(ζ ,η,ω)

)

= e(e
1
4˜S(ζ ,η,ω)–1) – 1 ≤ e

1
2 (e

1
2˜S(ζ ,η,ω)–1) – 1

≤ 1
2
˜S(ζ ,η,ω) = β

(

M(ζ ,η,ω)
)

˜S(ζ ,η,ω).

Therefore, it follows from Theorem 2.3 that f has a fixed point (which is u = 0).

Example 3.3 Let Ξ = [0, 3] be equipped with the Sp-metric

˜S(ζ ,η,ω) = e|ζ–ω|+|η–ω| – 1
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as in the previous example. Define a relation � on Ξ by ζ � η iff η ≤ ζ , a mapping f : Ξ →
Ξ by

f ζ = ln(ζ + 12),

and a function ψ by ψ(t) = 1
4 (et – 1). For all mutually comparable elements ζ ,η,ω ∈ Ξ , by

the mean value theorem, we have

˜S(f ζ , f η, f ω) = e| ln(ζ+12)–ln(ω+12)|+| ln(η+12)–ln(ω+12)| – 1

= e| ln ζ+12
ω+12 |+| ln η+12

ω+12 | – 1 =
∣

∣

∣

∣

ζ + 12
ω + 12

· η – ω

ω + 12

∣

∣

∣

∣

– 1

≤ 1
12

(|ζ – ω| · |η – ω| – 1
) ≤ 1

12
(

e|ζ–ω|+|η–ω| – 1
)

=
1

12
˜S(ζ ,η,ω).

So,

Ω2[2˜S(f ζ , f η, f ω)
] ≤ Ω2

(

1
6
˜S(ζ ,η,ω)

)

= e(e
1
6
˜S(ζ ,η,ω)–1) – 1

≤ e
1
4˜S(ζ ,η,ω) – 1 = ψ

(

˜S(ζ ,η,ω)
)

.

Therefore, from Theorem 2.6, f has a fixed point.

Example 3.4 Let˜S : Ξ × Ξ × Ξ →R
+ be defined on Ξ = [0, 20] by

˜S(ζ ,η,ω) = e
1
3 (|ζ–η|+|η–ω|+|ω–ζ |) – 1

for all ζ ,η,ω ∈ Ξ (the mapping˜S is obtained from the S-metric

S(ζ ,η,ω) =
1
3
(|ζ – η| + |η – ω| + |ω – ζ |)

using the function ξ (t) = et –1). Then (Ξ ,˜S) is an Sp-complete Sp-metric space with Ω(t) =
et – 1. Define θ ∈ Θ by θ (t) = etet . Let Ξ be endowed with the standard order ≤, and let
f : Ξ → Ξ be defined by f ζ = arctan( ζ

32 ). It is easy to see that f is an ordered increasing
and continuous self-map on ζ and 0 ≤ f 0. For any mutually comparable ζ ,η,ω ∈ Ξ , we
have

˜S(f ζ , f η, f ω) = e
1
3 (|f ζ–f η|+|f η–f ω|+|f ω–f ζ |) – 1

= e
1
3 (| arctan ζ

32 –arctan η
32 |+| arctan η

32 –arctan ω
32 |+| arctan ω

32 –arctan ζ
32 |) – 1

≤ e
1
3 (| ζ

32 – η
32 |+| η

32 – ω
32 |+| ω

32 – ζ
32 |) – 1 ≤ 1

32
(

e
1
3 (|ζ–η|+|η–ω|+|ω–ζ |) – 1

)

=
1

32
˜S(ζ ,η,ω).
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So,

Ω
[

2˜S(f ζ , f η, f ω)
]

= e2˜S(f ζ ,f η,f ω) – 1 ≤ e
1

16
˜S(ζ ,η,ω) – 1

≤ 1
8
˜S(ζ ,η,ω).

Therefore,

θ
(

Ω
[

2˜S(f ζ , f η, f ω)
])

= eΩ[2˜S(f ζ ,f η,f ω)]eΩ[2˜S(f ζ ,f η,f ω)] ≤ e
1
8˜S(ζ ,η,ω)e

1
8˜S(ζ ,η,ω)

≤ [

e˜S(ζ ,η,ω)e˜S(ζ ,η,ω)] 1√
2 =

[

θ
(

˜S(ζ ,η,ω)
)]

1√
2 .

Thus, (2.9) is satisfied with k = 1√
2 . Hence, all the conditions of Theorem 2.11 are satisfied.

We see that 0 is the unique fixed point of f .

4 Application
In this section we present an application of Theorem 2.6. This application is inspired by
[12].

Let Ξ = C(I) be the set of all real continuous functions on I = [0, T]. Obviously, this set
with the p-metric given by

d(ζ ,η) = sinh
(

max
t∈I

∣

∣ζ (t) – η(t)
∣

∣

)

for all ζ ,η ∈ Ξ is a p-complete p-metric space with Ω(t) = sinh t (in the sense of [13]).
Then ˜S(ζ ,η,ω) = d(ζ ,ω) + d(η,ω) is an Sp-metric on Ξ as sinh t is super-additive. (Ξ ,˜S)
can also be equipped with the order given by

ζ � η iff ζ (t) ≤ η(t) for all t ∈ I.

Moreover, as in [12], it can be proved that (C(I),�,˜S) has the s.l.c. property.
Consider the first-order periodic boundary value problem

⎧

⎨

⎩

ζ ′(t) = f (t, ζ (t)),

ζ (0) = ζ (T),
(4.1)

where t ∈ I and f : I × R → R is a continuous function. A lower solution for (4.1) is a
function α ∈ C1(I) such that

⎧

⎨

⎩

α′(t) ≤ f (t,α(t)),

α(0) ≤ α(T),

where t ∈ I . Assume that there exists λ > 0 such that, for all ζ ,η ∈ Ξ and t ∈ I , we have

∣

∣f
(

t, ζ (t)
)

+ λζ (t) – f
(

t,η(t)
)

– λη(t)
∣

∣ ≤ λ

8
∣

∣ζ (t) – η(t)
∣

∣. (4.2)
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We will show that the existence of a lower solution for (4.1) provides the existence of a
unique solution of (4.1). Problem (4.1) can be rewritten as

⎧

⎨

⎩

ζ ′(t) + λζ (t) = f (t, ζ (t)) + λζ (t) ≡ F(t, ζ (t)),

ζ (0) = ζ (T).

It is well known that this problem is equivalent to the integral equation

ζ (t) =
∫ T

0
G(t, s)F

(

s, ζ (s)
)

ds,

where G is the Green’s function given as

G(t, s) =

⎧

⎨

⎩

eλ(T+s–t)

eλT –1 , 0 ≤ s ≤ t ≤ T ,
eλ(s–t)

eλT –1 , 0 ≤ t ≤ s ≤ T .

Easy calculation gives

∫ T

0
G(t, s) ds =

1
λ

.

Now define an operator H : C(I) → C(I) as

Hζ (t) =
∫ T

0
G(t, s)F

(

s, ζ (s)
)

ds. (4.3)

It is easy to see that the mapping H is increasing w.r.t. �. Note that if u ∈ C1(I) is a fixed
point of H , then u is a solution of (4.1).

Let ζ ,ω ∈ Ξ be comparable. Then we have

d(Hx, Hz) = sinh
(

max
t∈I

∣

∣Hx(t) – Hz(t)
∣

∣

)

= sinh

(

max
t∈I

∣

∣

∣

∣

∫ T

0
G(t, s)F

(

s, ζ (s)
)

ds –
∫ T

0
G(t, s)F

(

s,ω(s)
)

ds
∣

∣

∣

∣

)

≤ sinh

(

max
t∈I

∫ T

0
G(t, s) · ∣∣F(

s, ζ (s)
)

– F
(

s,ω(s)
)∣

∣ds
)

≤ sinh

(

1
λ

max
s∈I

λ

8
∣

∣ζ (s) – ω(s)
∣

∣

)

= sinh

(

1
8

sinh–1 d(ζ ,ω)
)

≤ 1
8

d(ζ ,ω).

Therefore,

˜S(Hx, Hy, Hz) = d(Hx, Hz) + d(Hy, Hz) ≤ 1
8
(

d(ζ ,ω) + d(η,ω)
)

=
1
8
˜S(ζ ,η,ω).
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So,

Ω2(2˜S(Hx, Hy, Hz)
) ≤ Ω2

(

1
4
˜S(ζ ,η,ω)

)

= sinh

(

sinh

(

1
4
˜S(ζ ,η,ω)

))

= ψ
(

˜S(ζ ,η,ω)
) ≤ ψ

(

M(ζ ,η,ω)
)

,

where

M(ζ ,η) = max

{

˜S(ζ ,η,ω),
sinh–1(˜S(ζ , f ζ , f η))

2
,˜S(η, f η, f ω)

}

,

and ψ(t) = sinh(sinh(t/4)). Finally, if there exists a lower solution α of 4.1, the hypotheses
of Theorem 2.6 are satisfied. Therefore, there exists a fixed point ζ̂ ∈ C(I) of H , which is a
solution of the given boundary value problem.
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4. Ðukić, D., Kadelburg, Z., Radenović, S.: Fixed points of Geraghty-type mappings in various generalized metric spaces.

Abstr. Appl. Anal. 2011, Article ID 561245 (2011)
5. Geraghty, M.: On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)
6. Hussain, N., Kutbi, M.A., Salimi, P.: Fixed point theory in α-complete metric spaces with applications. Abstr. Appl. Anal.

2014, Article ID 280817 (2014)
7. Jaggi, D.S.: Some unique fixed point theorems. Indian J. Pure Appl. Math. 8(2), 223–230 (1977)
8. Jleli, M., Karapınar, E., Samet, B.: Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014,

439 (2014)
9. Latif, A., Kadelburg, Z., Parvaneh, V., Roshan, J.R.: Some fixed point theorems for G-rational Geraghty contractive

mappings in ordered generalized b-metric spaces. J. Nonlinear Sci. Appl. 8, 1212–1227 (2015)
10. Mustafa, Z., Roshan, J.R., Parvaneh, V.: Coupled coincidence point results for (ψ ,ϕ)-weakly contractive mappings in

partially ordered Gb-metric spaces. Fixed Point Theory Appl. 2013, 206 (2013)
11. Nieto, J.J., Rodríguez-López, R.: Contractive mapping theorems in partially ordered sets and applications to ordinary

differential equations. Order 22(3), 223–239 (2005)



Mustafa et al. Fixed Point Theory and Applications         (2019) 2019:16 Page 20 of 20

12. Nieto, J.J., Rodríguez-López, R.: Existence and uniqueness of fixed point in partially ordered sets and applications to
ordinary differential equations. Acta Math. Sin. 23(12), 2205–2212 (2007)

13. Parvaneh, V.: Fixed points of (ψ ,ϕ)Ω -contractive mappings in ordered p-metric spaces (submitted)
14. Ran, A.C.M., Reurings, M.C.B.: A fixed point theorem in partially ordered sets and some applications to matrix

equations. Proc. Am. Math. Soc. 132(5), 1435–1443 (2004)
15. Rus, I.A.: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)
16. Sedghi, S., Shobe, N., Aliouche, A.: A generalization of fixed point theorem in S-metric spaces. Mat. Vesn. 64, 258–266

(2012)
17. Shahkoohi, R.J., Razani, A.: Some fixed point theorems for rational Geraghty contractive mappings in ordered

b-metric spaces. J. Inequal. Appl. 2014, 373 (2014)
18. Souayah, N., Mlaiki, N.: A fixed point theorem in Sb-metric spaces. J. Math. Comput. Sci. 16, 131–139 (2016)
19. Zabihi, F., Razani, A.: Fixed point theorems for hybrid rational Geraghty contractive mappings in ordered b-metric

spaces. J. Appl. Math. 2014, Article ID 929821 (2014)


	Ordered Sp-metric spaces and some ﬁxed point theorems for contractive mappings with application to periodic boundary value problems
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Fixed point results using Geraghty contractions
	Fixed point results via comparison functions
	Fixed point results related to JS-contractions

	Examples
	Application
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


