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Abstract
In this paper, we establish a new iteration method, called an InerSP (an inertial
S-iteration process), by combining a modified S-iteration process with the inertial
extrapolation. This strategy is for speeding up the convergence of the algorithm. We
then prove the convergence theorems of a sequence generated by our new method
for finding a common fixed point of nonexpansive mappings in a Banach space. We
also present numerical examples to illustrate that the acceleration of our algorithm is
effective.
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1 Introduction
In the last half century, mathematicians have been studied the approximation methods
for fixed point problems and various iteration schemes for several classes of nonexpansive
mappings to solve some mathematical problems such as convex optimization problems,
convex feasibility problems, and variational inequalities problems. The details of those
studies can be found in [1–12].

In 2008, Mainge [13] studied convergence of the inertial Mann algorithm by combining
the Mann algorithm and the inertial extrapolation:

wn = xn + αn(xn – xn–1),

xn+1 = wn + βn
[
S(wn) – wn

]
,

(1)

for each n ≥ 1. The study is for speeding up the convergence of the given algorithm. The
author showed that the sequence {xn} converges weakly to a fixed point of the mapping
S under certain assumptions. The author also applied the method to convex feasibility
problems, fixed point problems and monotone inclusions.

Dong et al. [14] introduced a modified inertial Mann algorithm and an inertial CQ-
algorithm by unifying the accelerated Mann algorithm with the inertial extrapolation as
follows: Let T : H → H be a nonexpansive mapping such that Fix(T) �= ∅. Choose μ ∈
(0, 1), λ > 0 and x0, x1 ∈ H arbitrarily and set d0 := (T(x0) – x0)/λ. Compute dn+1 and xn+1
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as follows:

wn = xn + αn(xn – xn–1),

dn+1 =
1
λ

(
T(wn) – wn

)
+ βndn,

yn = wn + λdn+1,

xn+1 = μγnwn + (1 – μγn)yn,

(2)

for each n ≥ 1. Under some conditions they proved that the sequence {xn} generated by
this algorithm converges weakly to a fixed point of T . They also studied an inertial CQ-
algorithm by combining the CQ-algorithm and the inertial extrapolation defined as fol-
lows: Let H be a Hilbert space and T : H → H be a nonexpansive mapping such that
Fix(T) �= ∅. Let {αn}∞n=0 ⊂ [α1,α2], α1 ∈ (–∞, 0], α2 ∈ [0,∞), {βn}∞n=0 ⊂ [β1, 1], β1 ∈ (0, 1).
Set x0, x1 ∈H arbitrarily. Define the iterative sequence {xn} by the following iteration pro-
cess:

wn = xn + αn(xn – xn–1),

yn = (1 – βn)wn + βnTwn,

Cn =
{

z ∈H : ‖yn – z‖ ≤ ‖wn – z‖},

Qn =
{

z ∈H : 〈xn – z, xn – x0〉 ≤ 0
}

,

xn+1 = PCn∩Qn x0.

(3)

They showed that the sequence {xn} converges in norm to PFix(T)(x0). In this study, they
also performed numerical experiments to illustrate that the modified inertial Mann algo-
rithm and inertial CQ-algorithm significantly reduced the running time compared with
some previous methods without the inertial extrapolation. Some studies of the inertial
algorithm can be found in [15–23].

Suparatulatorn et al. [24] introduced a modified S-iteration process defined as follows:
x0 ∈ C and

yn = (1 – βn)xn + βnS1xn,

xn+1 = (1 – αn)S1(xn) + αnS2(yn),
(4)

n ≥ 0, where C is a nonempty subset of a real Banach space, two sequences {αn} and {βn}
are in the interval (0, 1) and S1, S2 : C → C are G-nonexpansive mappings. Under some
given conditions, they proved weak and strong convergence theorems of this iteration
process for finding common fixed points of two G-nonexpansive mappings in a uniformly
convex Banach space. They also provided an example from a numerical experiment which
supported the idea that the sequence generated by the modified S-iteration converges
faster than the one generated by an Ishikawa iteration. So, to obtain a faster algorithm
revised from a modified S-iteration process, it should be combined with the inertial ex-
trapolation as well.

Therefore, in this article, we focus on a combination of modified S-iteration process and
the inertial extrapolation to obtain a new method which accelerates the approximation of
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a fixed point of a nonexpansive mapping in a Banach space defined as follows: Let H be
a Banach space and S1, S2 : H → H be nonexpansive mappings such that F = Fix(S1) ∩
Fix(S2) �= ∅. Define

ωn = xn + γn(xn – xn–1),

yn = (1 – βn)ωn + βnS1(ωn),

xn+1 = (1 – αn)S1(ωn) + αnS2(yn),

(5)

n ≥ 1, where {γn}, {αn} and {βn} satisfy:
(D1)

∑∞
n=1 γn < ∞, {γn} ⊂ [0,γ ], 0 ≤ γ < 1, {αn}, {βn} ⊂ [δ, 1 – δ] for some δ ∈ (0, 0.5);

(D2) {Si(ωn) – ωn} is bounded for i = 1, 2;
(D3) {Si(ωn) – y} is bounded for any y ∈ F for i = 1, 2.
We prove, under some assumptions, the weak and strong convergence of our new iter-

ation process for finding common fixed points of S1 and S2.

2 Preliminaries
In this section we review some definitions and lemmas which will be used in the next
section. We start with the following identity that will be used several times in the paper:

∥∥αx + (1 – α)y
∥∥2 = α‖x‖2 + (1 – α)‖y‖2 – α(1 – α)‖x – y‖2, (6)

for all α ∈R, x, y ∈H.

Definition 2.1 A Banach space X is said to have Opial’s property if whenever a sequence
{xn} in X converges weakly to x, then

lim inf
n→∞ ‖xn – x‖ ≤ lim inf

n→∞ ‖xn – y‖,

for all y ∈ X, y �= x.

Definition 2.2 ([25]) Let C be a nonempty closed convex subset of a real uniformly convex
Banach space X. The mappings S1 and S2 on C are said to satisfy Condition B if there exists
a nondecreasing function f : [0,∞) → [0,∞) with f (0) = 0 and f (r) > 0 for r > 0 such that,
for all x ∈ C,

max
{∥∥x – S1(x)

∥∥,
∥∥x – S2(x)

∥∥} ≥ f
(
d(x, F)

)
,

where we denote F = Fix(S1) ∩ Fix(S2) and Fix(Si) is the set of fixed points of Si for all
i = 1, 2.

Definition 2.3 ([25]) Let C be a subset of a metric space (X, d). A mapping S : C → C
is semicompact if for a sequence {xn} in C with limn→∞ d(xn, S(xn)) = 0, there exists a
subsequence {xni} of {xn} such that xni → p ∈ C.

Lemma 2.4 ([26]) Let X be a uniformly convex Banach space, and αn be a sequence
in [δ, 1 – δ] for δ ∈ (0, 1). Suppose that sequences {xn} and {yn} in X are such that
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lim infn→∞ ‖xn‖ ≤ c, lim infn→∞ ‖yn‖ ≤ c and lim infn→∞ ‖αnxn + (1 – αn)yn‖ = c for some
c ≥ 0. Then lim infn→∞ ‖xn – yn‖ = 0.

In 2002, Berinde [27] compared the rate of convergence between the two iterative meth-
ods by using the following definition.

Definition 2.5 Let {an} and {bn} be two sequences of positive numbers that converges to
a and b, respectively. Assume there exists

lim
n→∞

|an – a|
|bn – b| = l.

i. If l = 0, then it is said that the sequence {an} converges to a faster than the sequence
{bn} to b.

ii. If 0 < l < ∞, then we say that the sequence {an} and {bn} have the same rate of
convergence.

Lemma 2.6 ([28]) Let X be a Banach space that has Opial’s property, and let {xn} be a
sequence in X. Let x, y in X be such that limn→∞ ‖xn – x‖ and limn→∞ ‖xn – y‖ exist. If {xnj}
and {xnk } are subsequences of {xn} that converge to x and y, respectively, then x = y.

Lemma 2.7 ([29]) Let {ψn}, {δn}, and {αn} be sequences in [0,∞) such that ψn+1 ≤ ψn +
αn(ψn – ψn–1) + δn for all n ≥ 1,

∑∞
n=1 δn < ∞ and there exists a real number α with 0 ≤

αn ≤ α < 1 for all n ≥ 1. Then the following hold:
1.

∑
n≥1[ψn – ψn–1]+ < ∞ where [t]+ = max{t, 0}.

2. there exists ψ∗ ∈ [0,∞) such that limn→∞ ψn = ψ∗.

Lemma 2.8 ([30]) Let C be a nonempty set of a real Hilbert space H and {xn} a sequence
in H such that the following two conditions hold:

1. for any x ∈ C, limn→∞ ‖xn – x‖ exists;
2. every sequential weak cluster point of {xn} is in C.

Then {xn} converges weakly to a point in C.

Lemma 2.9 ([30]) Let C be a nonempty closed convex subset of a real Hilbert space H,
T : C → H a nonexpansive mapping. Let {xn} be a sequence in C and x ∈ H such that
xn ⇀ x and Txn – xn → 0 as n → ∞. Then x ∈ Fix(T).

3 Results and discussions
In this section we prove the weak and strong convergence of a sequence generated by the
proposed algorithm for finding a common fixed point of two nonexpansive mappings.

Theorem 3.1 Let X be a uniformly convex Banach space. Let y ∈ F = Fix(S1) ∩ Fix(S2). Let
{xn} be a sequence defined by Eq. (5). If (D1), (D2) and (D3) hold, then

1. limn→∞ ‖xn – y‖ exists.
2. limn→∞ ‖xn – S1(xn)‖ = 0 = limn→∞ ‖xn – S2(xn)‖.
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Proof
1. By the triangle inequality and the nonexpansiveness of S1, we have

‖yn – y‖ =
∥∥(1 – βn)ωn + βnS1(ωn) – y

∥∥

≤ (1 – βn)‖ωn – y‖ + βn
∥∥(

S1(ωn) – y
)∥∥

≤ (1 – βn)‖ωn – y‖ + βn‖ωn – y‖
= ‖ωn – y‖. (7)

So

‖xn+1 – y‖ =
∥∥(1 – αn)S1(ωn) + αnS2(yn) – y

∥∥

=
∥∥(1 – αn)

(
S1(ωn) – y

)
+ αn

(
S2(yn) – y

)∥∥

≤ (1 – αn)
∥∥(

S1(ωn) – y
)∥∥ + αn

∥∥(
S2(yn) – y

)∥∥. (8)

Using the nonexpansiveness of S1, S2 and (7), we have

‖xn+1 – y‖ ≤ (1 – αn)
∥
∥(

S1(ωn) – y
)∥∥ + αn

∥
∥(

S2(yn) – y
)∥∥

≤ (1 – αn)‖ωn – y‖ + αn‖yn – y‖
≤ (1 – αn)‖ωn – y‖ + αn‖ωn – y‖
= ‖ωn – y‖. (9)

It is not difficult to see that {ωn – y} is bounded. Indeed, by the conditions (D2)
and (D3) and the triangle inequality,

‖ωn – y‖ =
∥
∥ωn – S1(ωn) + S1(ωn) – y

∥
∥

≤ ∥
∥S1(ωn) – ωn

∥
∥ +

∥
∥S1(ωn) – y

∥
∥

≤ K , (10)

for some K ∈ [0,∞). That is, {ωn – y} is bounded. Hence by (9), {xn – y} and
{xn – xn–1} are bounded. By the identity in (6),

‖ωn – y‖2 =
∥
∥(1 + γn)(xn – y) – γn(xn–1 – y)

∥
∥2

= (1 + γn)‖xn – y‖2 – γn‖xn–1 – y‖2 + γn(1 + γn)‖xn – xn–1‖2. (11)

This implies that

‖xn+1 – y‖2 ≤ ‖ωn – y‖2

= (1 + γn)‖xn – y‖2 – γn‖xn–1 – y‖2 + γn(1 + γn)‖xn – xn–1‖2. (12)

Denote Ψn := ‖xn – y‖2. Then (12) becomes

Ψn+1 ≤ Ψn + γn(Ψn – Ψn–1) + δn, (13)
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where δn = γn(1 + γn)‖xn – xn–1‖2. Observe that by (D1),

∞∑

n=1

δn =
∞∑

n=1

γn(1 + γn)‖xn – xn–1‖2

≤
∞∑

n=1

γn(1 + γ )(2K)2

< ∞. (14)

By Lemma 2.7(2), there exists Ψ ∗ ∈ [0,∞) such that limn→∞ Ψn = Ψ ∗. This means
that limn→∞ ‖xn – y‖2 exists and, therefore, limn→∞ ‖xn – y‖ exists. This completes
the proof of 1.

2. Set c = limn→∞ ‖xn – y‖. By the nonexpansiveness of S1 and S2, we get

∥∥xn – Si(xn)
∥∥ ≤ ‖xn – y‖ +

∥∥Si(xn) – y
∥∥

≤ ‖xn – y‖ + ‖xn – y‖
= 2‖xn – y‖. (15)

So, if c = 0, then ‖xn – Si(xn)‖ → 0. Now assume that c > 0. Note that
∑∞

n=1 γn < ∞ implies limn→∞ γn = 0. It follows from (11)

lim
n→∞‖ωn – y‖2 = lim

n→∞
(
(1 + γn)‖xn – y‖2 – γn‖xn–1 – y‖2

+ γn(1 + γn)‖xn – xn–1‖2)

= lim
n→∞‖xn – y‖2

= c2. (16)

That is, limn→∞ ‖ωn – y‖ = c. So, this forces
lim supn→∞ ‖yn – y‖ ≤ lim supn→∞ ‖ωn – y‖ = c. Next we will claim that
lim infn→∞ ‖yn – y‖ ≥ c. Since S1 and S2 are nonexpansive, by (6) we have

‖xn+1 – y‖2 = (1 – αn)
∥
∥(

S1(ωn) – y
)∥∥2 + αn

∥
∥(

S2(yn) – y
)∥∥2

– αn(1 – αn)
∥
∥S1(ωn) – S2(yn)

∥
∥2

≤ (1 – αn)‖ωn – y‖2 + αn‖yn – y‖2. (17)

Rearranging (17) and by (D1), we have

‖ωn – y‖2 ≤ ‖yn – y‖2 +
1
αn

(‖ωn – y‖2 – ‖xn+1 – y‖2)

≤ ‖yn – y‖2 +
1
δ

(‖ωn – y‖2 – ‖xn+1 – y‖2). (18)

By (18) and (9), it yields lim infn→∞ ‖yn – y‖2 ≥ c2 and so lim infn→∞ ‖yn – y‖ ≥ c.
Since

c ≤ lim inf
n→∞ ‖yn – y‖ ≤ lim sup

n→∞
‖yn – y‖ ≤ c,
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it follows that limn→∞ ‖yn – y‖ = c.
Since

lim sup
n→∞

∥
∥S1(ωn) – y

∥
∥ ≤ lim sup

n→∞
‖ωn – y‖ ≤ c,

lim sup
n→∞

∥
∥S2(yn) – y

∥
∥ ≤ lim sup

n→∞
‖yn – y‖ ≤ c,

lim
n→∞

∥
∥(1 – βn)(ωn – y) + βn

(
S1(ωn) – y

)∥∥ = lim
n→∞‖yn – y‖ = c,

and

lim
n→∞

∥
∥(1 – αn)

(
S1(ωn) – y

)
+ αn

(
S2(yn) – y

)∥∥ = lim
n→∞‖xn+1 – y‖ = c,

by Lemma 2.4,

lim
n→∞

∥∥S1(ωn) – ωn
∥∥ = 0 (19)

and

lim
n→∞

∥∥S1(ωn) – S2(yn)
∥∥ = 0. (20)

However, we know that yn – ωn = βn(S1(ωn) – ωn) and ωn – xn = γn(xn – xn–1)
which yield

0 ≤ lim
n→∞‖yn – ωn‖

= lim
n→∞βn

∥
∥S1(ωn) – ωn

∥
∥

≤ lim
n→∞

∥
∥S1(ωn) – ωn

∥
∥

= 0 (21)

and

lim
n→∞‖ωn – xn‖ = lim

n→∞γn‖xn – xn–1‖

= 0. (22)

Note that by (D2) and γn → 0 we have

lim
n→∞

∥∥S1(ωn) – xn
∥∥ ≤ lim

n→∞
∥∥S1(ωn) – ωn

∥∥ + lim
n→∞γn‖xn – xn–1‖

= 0. (23)

It follows that, by (20), (21), (22), (23) and the nonexpansiveness of S1 and S2, we
have

0 ≤ lim
n→∞

∥
∥S1(xn) – xn

∥
∥

≤ lim
n→∞

∥∥S1(xn) – S1(ωn)
∥∥ + lim

n→∞
∥∥S1(ωn) – xn

∥∥
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≤ lim
n→∞‖xn – ωn‖ + lim

n→∞
∥∥S1(ωn) – xn

∥∥

= 0 (24)

and

0 ≤ lim
n→∞

∥
∥S2(xn) – xn

∥
∥

≤ lim
n→∞

∥∥S2(xn) – S2(yn)
∥∥ + lim

n→∞
∥∥S2(yn) – S1(ωn)

∥∥ + lim
n→∞

∥∥S1(ωn) – xn
∥∥

≤ lim
n→∞‖xn – yn‖ + lim

n→∞
∥∥S2(yn) – S1(ωn)

∥∥ + lim
n→∞

∥∥S1(ωn) – xn
∥∥

≤ lim
n→∞‖xn – ωn‖ + lim

n→∞‖ωn – yn‖
= 0. (25)

Therefore, limn→∞ ‖S1(xn) – xn‖ = 0 = limn→∞ ‖S2(xn) – xn‖ as desired. �

Theorem 3.2 Let H be a Banach space having Opial’s property. Suppose that S1, S2 : H →
H are two nonexpansive mappings with F = Fix(S1) ∩ Fix(S2) �= ∅. Then the sequence {xn}
in (5) converges weakly to a common fixed point of S1 and S2.

Proof Let y ∈ F . By Theorem 3.1(1), limn→∞ ‖xn – y‖ exists. Hence {xn} is bounded. Let
{xnk } and {xnj} be subsequences of the sequence of {xn} with the two weak limits q1 and q2,
respectively. By Theorem 3.1(2), limn→∞ ‖xnk – Si(xnk )‖ = 0 and limn→∞ ‖xnj – Si(xnj )‖ =
0 for i = 1, 2. By Lemma (2.9), Si(q1) = q1 and Si(q2) = q2 for i = 1, 2. That is, q1, q2 ∈ F .
Applying Theorem 3.1(1) again, we have limn→∞ ‖xn – q1‖ and limn→∞ ‖xn – q2‖ exist and
both {xnk } and {xnj} are sequences converging to q1 and q2, respectively. By Lemma (2.6),
q1 = q2. Therefore, {xn} converges weakly to a common fixed point in F . �

Under certain conditions, we can deduce the strong convergence theorem as follows.

Theorem 3.3 Let H is a uniformly convex Banach space, Suppose that S1, S2 : H →H are
two nonexpansive mappings with F = Fix(S1) ∩ Fix(S2) �= ∅ and satisfy the Condition B.
Then the sequence {xn} in (5) converges strongly to a common fixed point of S1 and S2.

Proof Let y ∈ F . Now by (12), we get

inf
y∈F

{‖xn+1 – y‖2} ≤ inf
y∈F

{‖ωn – y‖2}

= inf
y∈F

{
(1 + γn)‖xn – y‖2} + inf

y∈F

{
–γn‖xn–1 – y‖2}

+ inf
y∈F

{
γn(1 + γn)‖xn – xn–1‖2}

≤ inf
y∈F

{‖xn – y‖2} + γn inf
y∈F

{‖xn – y‖2} – γn inf
y∈F

{‖xn–1 – y‖2}

+ γn(1 + γn)‖xn – xn–1‖2

= inf
y∈F

{‖xn – y‖2} + γn

[
inf
y∈F

{‖xn – y‖2} – inf
y∈F

{‖xn–1 – y‖2}
]

+ γn(1 + γn)‖xn – xn–1‖2. (26)
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Denote Ψn := infy∈F{‖xn – y‖2}. Then (26) becomes

Ψn+1 ≤ Ψn + γn(Ψn – Ψn–1) + δn, (27)

where δn = γn(1 – γn)‖xn – xn–1‖2. Observe that by (D1)

∞∑

n=1

δn =
∞∑

n=1

γn(1 + γn)‖xn – xn–1‖2

≤
∞∑

n=1

γn(1 + γ )(2K)2

< ∞. (28)

By Lemma 2.7(2), there exists Ψ ∗ ∈ [0,∞) such that limn→∞ Ψn = Ψ ∗.
That is, limn→∞ infy∈F{‖xn – y‖2} exists. Therefore, limn→∞ infy∈F{‖xn – y‖} exists. Since

S1 and S2 satisfy Condition B, by Theorem 3.1(2) it implies that

lim
n→∞ f

(
inf
y∈F

{‖xn – y‖}
)

= 0

and, thus,

lim
n→∞ inf

y∈F

{‖xn – y‖} = 0.

So, we can find a subsequence {xnj} of {xn} and a sequence {x∗
j } ⊂ F satisfying ‖xnj – x∗

j ‖ <
1
2j . Next we will show that {x∗

j } is a Cauchy sequence. Let ε > 0. Since limn→∞ infy∈F{‖xn –
y‖} = 0, there is N ∈ N such that infy∈F{‖xn – y‖} < ε

6 for all n ≥ N . For all m, n ≥ N , we
have

‖xm – xn‖ ≤ ‖xm – y‖ + ‖xn – y‖

for all y ∈ F . Thus,

‖xm – xn‖ ≤ inf
y∈F

{‖xm – y‖ + ‖xn – y‖} = inf
y∈F

{‖xm – y‖} + inf
y∈F

{‖xn – y‖} <
ε

6
+

ε

6
=

ε

3

for all m, n ≥ N . Also, there is j0 ∈ N such that 1
2j0 < ε

3 . Choose M = max{N , j0}. Then, for
all j > k ≥ M, we have

∥∥x∗
j – x∗

k
∥∥ ≤ ∥∥x∗

j – xnj

∥∥ + ‖xnj – xnk ‖ +
∥∥xnk – x∗

k
∥∥ <

ε

3
+

ε

3
+

ε

3
= ε.

Therefore, {x∗
j } is a Cauchy sequence and so there exists q ∈H such that x∗

j converges to q.
Since F is closed, q ∈ F . As a result, we see that xnj converges to q. Since limn→∞ ‖xn – q‖
exists by Theorem 3.1(1), the conclusion follows. �

Theorem 3.4 Let H is a uniformly convex Banach space, Suppose that S1, S2 : H →H are
two nonexpansive mappings with F = Fix(S1) ∩ Fix(S2) �= ∅ and one of Si is semicompact.
Then the sequence {xn} in (5) converges strongly to a common fixed point of S1 and S2.
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Proof From Theorem 3.1, {xn} is bounded and limn→∞ ‖xn – S1(xn)‖ = 0 = limn→∞ ‖xn –
S2(xn)‖. By the semicompactness of one of Si, there exists q ∈ H and a subsequence {xnj}
of {xn} such that xnj → q as j → ∞. Then

∥∥q – Si(q)
∥∥ ≤ ‖q – xnj‖ +

∥∥xnj – Si(xnj )
∥∥ +

∥∥Si(xnj ) – Si(q)
∥∥

≤ ‖q – xnj‖ +
∥∥xnj – Si(xnj )

∥∥ + ‖xnj – q‖
→ 0 as j → ∞. (29)

Thus, q ∈ F . As in the proof of Theorem 3.3, limn→∞ infy∈F{‖xn – y‖} exists. We observe
that infy∈F{‖xnj – y‖} ≤ ‖xnj – q‖ → 0 as j → ∞, hence limn→∞ infy∈F{‖xn – y‖} = 0. It
follows, as in the proof of Theorem 3.3, that {xn} converges strongly to a common fixed
point of S1 and S2. This completes the proof. �

4 Numerical illustrations
We next demonstrate the efficiency of the InerSP iteration and compare it with the MSP
iteration defined in [24] by giving some numerical examples. We use program MATLAB
R2017a running on Core i7 setup processor installed with 8.00 GB of RAM using Win-
dows 7. First, we apply our method to solve the following convex feasibility problem (see
[31]).

Problem 1 ([31]) For any nonempty closed convex set Ci ⊂ R
N for each i = 0, 1, . . . , m,

if C :=
m⋂

i=1

Ci �= ∅, find x∗ ∈ C.

Define a mapping T : RN →R
N by

T := P0

(
1
m

m∑

i=1

Pi

)

,

where Pi = PCi , i = 0, 1, 2, . . . , m is the metric projection onto Ci. Note that Pi is nonexpan-
sive for all i = 1, 2, . . . , m, so this implies that the mapping T is also nonexpansive. More-
over, it is straightforward to check that

Fix(T) = Fix(P0) ∩
m⋂

i=1

Fix(Pi) = C0 ∩
m⋂

i=1

Fix(Pi) = C.

We use the inertial S-iteration process (InerSP) and the modified S-iteration process
(MSP) to solve Problem 1. For InerSP, set S1 = S2 = T , γ = 0.98, δ = 0.1, γn =

{ 0.95, n ≤ 1010,
1

(n+1)2
, n > 1010,

and βn = αn = 0.65 + 1
(n+1)0.25 , where n denotes the number of iterations. For MSP, the con-

trol parameters are defined the same as InerSP except γ and γn, which are not parameters
in MSP. In the experiment, we set m = 30 and Ci, i = 0, 1, . . . , m as a closed ball with center
ci ∈R

N and radius ri > 0. Thus, for each i, Pi can be computed as

Pi(x) :=

⎧
⎨

⎩
ci + ri

‖ci–x‖ (x – ci) if ‖ci – x‖ > ri,

x if ‖ci – x‖ ≤ ri.
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Table 1 Convergence comparison of MSP and InerSP for the given function in Problem 1

n MSP iteration Error ‖zn‖∞ InerSP iteration Error ‖xn‖∞
0 1 1
1 0.146860263 0.146905257
2 0.144519281 0.169202619
3 0.142508272 0.224124309
4 0.140748768 0.240030476

...
...

...
271 0.058053817 0.010021818
272 0.057968808 0.010009268
273 0.057884185 0.009996786

...
...

12,664 0.010000328
12,665 0.009999947
CPU times (sec) 25.023275 0.660640

Choose ri := 1 for all i = 0, 1, . . . , m, c0 := 0, c1 = [1, 0, . . . , 0], and c2 = [–1, 0, . . . , 0]. For 3 ≤
i ≤ m, ci ∈ (–1/

√
N , 1/

√
N) are randomly chosen. From the choice of c1, c2 and r1, r2, we

have Fix(T) = {0}. We select initial points x0 = rand(N , 10) and x1 = x0 + rand(N ,1)
10,000 where

N = 30. Since Fix(T) = {0}, we can consider the error as

‖xn‖∞ = max
{∣∣xn(1)

∣∣,
∣∣xn(2)

∣∣, . . . ,
∣∣xn(N)

∣∣} < ε = 0.01,

and take it to be the stopping criterion. In Table 1, n denotes the number of iterations, {xn}
and {zn} denote the sequence of approximated fixed points generated by InerSP and MSP,
respectively. The results are shown in Table 1.

The results are listed in Table 1, which illustrate that the errors for both the MSP iter-
ation and the InerSP iteration reduce, which means that the approximated solutions for
both methods converge to the fixed point 0. In addition, from Table 1 and Fig. 1, we can
see that ‖xn‖∞ ≤ ‖zn‖∞ and limn→∞ ‖xn‖∞

‖zn‖∞ = 0 so the InerSP iteration behaves better than
the MSP and the sequence {xn} converges faster than {zn}. Moreover, the running CPU
time for finding the fixed point using InerSP is much less than MSP.

In the next example, we perform a numerical experiment to find a common fixed point
of two nonexpansive mappings.

Problem 2 Define S1, S2 : R2 →R
2 by

S1(x, y) =
(

1 + x
2

, 1 +
y
2

)

and

S2(x, y) =
(

x, 3 –
y
2

)
.

It is easy to check that both S1 and S2 are nonexpansive on R
2. In this problem, for InerSP

we set γ = 0.98, δ = 0.1, γn =
{ 0.25, n ≤ 1010

1
(n+1)2

, n > 1010 , and βn = αn = 0.65 + 1
(n+1)0.25 . For MSP we set

γn = 0, βn = αn = 0.65 + 1
(n+1)0.25 . We note that x∗ = (1, 2) is the commom fixed point of S1
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Figure 1 Error comparison between MSP and InerSP

Table 2 Convergence comparison of MSP and InerSP for the given function in Problem 2

Iteration MSP zn = (z1n , z2n) InerSP xn = (x1n , x2n) Error ‖xn – x0‖2
n z1n z2n x1n x2n MSP InerSP

1 721 –5 721 –5 720.0340 720.0340
2 393.4 3.3825 423.5113 53.0044 392.4024 425.5787
3 232.8733 1.8392 206.7190 –5.6175 231.8733 205.8600
4 140.6855 2.0138 92.2796 3.9063 139.6856 91.2944
...

...
...

...
...

...
...

13 2.6602 2 1.0007 2 1.0177 0.0007
14 2.0177 2 0.6239
...

...
...

...
29 1.0007 2 0.0007
CPU times (sec) 0.010388 0.001049

and S2. Set x0 = (500, 1000) and x1 = (721, –5) as the initial values. Let {zn} and {xn} be se-
quences generated by MSP and InerSP, respectively, where zn = (z1n, z2n) and xn = (x1n, x2n)
are inR

2. Moreover, we take err = ‖xn –x∗‖2 to be the error of the iterative algorithm where
‖ · ‖2 is the Euclidean norm. The results are shown in Table 2.

From Table 2, we see that both {zn} and {xn} converge to fixed point x∗ = (1, 2). If we
iterate until the error is less than 0.001 the MSP converges to fixed point in 29 iterations
and InerSP converges in 13 iterations. From Table 2 and Fig. 2, it can be observed that
‖xn – x∗‖ ≤ ‖zn – x∗‖ for all n ≥ 2 and limn→∞ ‖xn–x∗‖2

‖zn–x∗‖2
= 0 so the sequence {xn} converges

faster than {zn}. In addition, the running time to find the common fixed point using InerSP
is 10 times less than MSP. As illustrated in the two examples, we can perceive that the
InerSP iteration has a better behavior than the MSP iteration.

5 Conclusions
In this work, we introduce a new iteration method, namely InerSP, by combining a modi-
fied S-iteration (MSP) with the inertial extrapolation. We also analyze the behavior of our
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Figure 2 Error comparison between MSP and InerSP

InerSP method. Although the number of steps of the iteration process of the InerSP is
higher than MSP, the numerical examples show that sequences generated by InerSP itera-
tion converge to fixed points more rapidly than MSP iteration when using the number of
iterations and CPU running times as measures.
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