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Abstract

In this paper, we study the class of further generalized hybrid mappings due to Khan
(Fixed Point Theory Appl. 2018:8, 2018) in the setting of Hadamard spaces. We prove a
demiclosed principle for such mappings in Hadamard spaces. Furthermore, we also
prove the A-convergence of the sequence generated by the S-iteration process for
finding attractive points of further generalized hybrid mappings in Hadamard spaces
satisfying the (S) property and the (Q4) condition. Moreover, we provide a numerical
example to illustrate the convergence behavior of the studied iteration and
numerically compare the convergence of the studied iteration scheme with the
existing schemes. Our results extend some known results which appeared in the
literature.
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1 Introduction

In 2011, Takahashi and Takeuchi [2] introduced the concept of attractive points for non-
linear mappings in a Hilbert space: Let H be a Hilbert space and C be a nonempty subset
of H. Let T be a mapping from C into H. Let A(T) denote the set of all attractive points
of T,ie,

A(T)=|zeH:||Tx-z| < |x—z|,¥x € C}.

In 2012, Takahashi et al. [3] introduced the class of normally generalized hybrid map-
pings in a Hilbert space.

Definition 1.1 A mapping T : C — H is called normally generalized hybrid if there exist
o, B,y,8 € R such that
(i) a+B+y+86=0;

(ii) «+B>00ra+y >0;and

(iii) ol Tx = TylI* + Bl = TylI* + y I Te = ylI* + 8llx - yII> < 0, ¥a,y € C.
Such a mapping T can be called an («, 8, y, §)-normally generalized hybrid mapping.
© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


https://doi.org/10.1186/s13663-019-0653-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-019-0653-8&domain=pdf
mailto:withun_ph@yahoo.com

Cuntavepanit and Phuengrattana Fixed Point Theory and Applications (2019) 2019:3 Page 2 of 15

They also proved the weak convergence theorem of Mann type for normally generalized
hybrid mappings in real Hilbert spaces without convexity assumption on the domain of

mappings. To be more precise, they obtained the following result.

Theorem 1.2 Let H be a real Hilbert space and C be a nonempty convex subset of H. Let
T : C — C be a normally generalized hybrid mapping. Assume that A(T) # {. For x; € C,

the sequence {x,} generated by
X1 =1 —ay)x, + o, Tx,, neN, (1)

where {a,} is a sequence in [0,1] such that liminf,_, » o, (1 — «,) > 0. Then the sequence
{x.} converges weakly to a point z € A(T). Moreover, z = lim,,_, oo Pa(1)X,,, Where Pacry is a
projection of H onto A(T).

In 2015, Kaewkhao et al. [4] extended the results of Takahashi et al. [3] from Hilbert
spaces to Hadamard spaces.

In 2018, Khan [1] gave the concept of further generalized mappings (see Definition 1.3
below) which constitutes a generalization of normally generalized hybrid mappings due
to Takahashi et al. [3] (see Definition 1.1 above).

Definition 1.3 ([1]) A mapping T : C — H is called further generalized hybrid if there
exist a, 8,7,8, € € R such that
(i) a+B+y+8=>0,e>0;
(i) «+B>00ra+y>0;and
(ill) @ Tx— TyI” + Bllx — Tyl + y [ Te = y11* + Slla = g2 + €lx — Tl|> <0, ¥,y € C.

Obviously, by above definitions, further generalized hybrid is a generalization of nor-
mally generalized hybrid when € = 0. It is noteworthy that it contains the class of general-
ized hybrid, quasi-nonexpansive mappings, quasi-contractive mappings and contractive
mappings.

Recently, Khan [1] obtained a weak convergence theorem of Picard—Mann hybrid iter-
ative process [5] for further generalized hybrid mappings in real Hilbert spaces without
convexity assumption on the domain of mappings. The iterative process of Khan [1] is
faster than Mann, Ishikawa and S-iteration process of Agarwal et al. [6] as shown by him
in [5]. However, his results are in a Hilbert space and we want to have some results in
Hadamard spaces. Note that no results are available at the moment for further general-
ized hybrid mappings even for Mann iterative process in Hadamard spaces. We further
note that S-iteration process is also faster than Mann and Ishikawa iteration processes
(but not Picard—Mann hybrid).

Motivated by the above works, we define a class of further generalized hybrid mappings
and prove the demiclosed principle for such mapping in Hadamard spaces. Furthermore,
we also obtain a A-convergence theorem of S-iteration process for further generalized
hybrid mappings in Hadamard spaces satisfying the (S) property and the (Q,) condition.
Finally, we provide a numerical example to illustrate the convergence behavior of the S-
iteration and numerically compare the convergence of the S-iteration schemes with the

existing schemes.
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2 Methods

The paper is organized as follows. Section 3 contains the preliminaries, including defini-
tions and lemmas with corresponding references that will be used in the sequel. Section 4
contains the main result of the paper. In Sect. 5, we provide a numerical example to il-
lustrate the convergence behavior of the S-iteration and numerically compare the conver-
gence of the S-iteration schemes with the existing schemes.

3 Preliminaries
Let (X, d) be a metric space. A geodesic from x to y is a map y from the closed interval
[0,d(x,y)] C R to X such that y(0) = x, y(d(x,5)) = y and d(y(t1), y(£2)) = |¢; — t,| for all
t1,ty € [0,d(x,)]. The image of y is called a geodesic (or metric) segment joining x and y.
When it is unique, this geodesic segment is denoted by [x,y]. The space X is said to be a
geodesic metric space if every two points of X are joined by a geodesic, and X is said to
be uniquely geodesic metric space if there is exactly one geodesic joining x and y for each
x,7 € X. A subset C of X is said to be convex, if for any two points x,y € C, the geodesic
joining x and y is contained in C.

Let X be a uniquely geodesic metric space. For each x,y € X and for each « € [0,1],
there exists a unique point z € [x, y] such that d(x,z) = (1 — a)d(x,y) and d(y,z) = ad(x, y).
We denote the unique point z by ax @ (1 — a)y.

Lemma 3.1 ([7]) Let X be a uniquely geodesic metric space. The following are equivalent:
(i) X isa CAT(0) space.
(ii) X satisfies the (CN) inequality: If x,y € X and @ is the midpoint of x and y, then

x@dy\> 1 1 1
d(z, 5 y> < Ed(z,x)2 + Ed(z,y)2 - Ed(x,y)z, forallz e X.

Lemma 3.2 ([7, 8]) Let X be a CAT(0) space, x,y,z € X and , € [0,1]. Then
(i) d(z,Ax® (1 -A)y) < rd(z,x) + (1 - N)d(z,y);
(ii) d(z,Ax @® (1 -1)y)? < Ad(z,x)* + (1 = M)d(z,9)* = A1 = A)d(x, ).

A complete CAT(0) space is called an Hadamard space.

It is well known that any complete, simply connected Riemannian manifold having non-
positive sectional curvature is an Hadamard space. Other examples include Euclidean
spaces [E2, Hilbert spaces, the Hilbert ball [9], hyperbolic spaces [10], R-trees [11], and
many others. The fixed point theory in Hadamard spaces was first studied by Kirk [12] in
2003. Since then many authors have published papers on the existence and convergence
of fixed points for nonlinear mappings in such spaces (e.g., see [13, 14]).

The notion of the asymptotic center can be introduced in the general setting of an
Hadamard space X as follows: Let {x,} be a bounded sequence in X. For x € X, we de-
fine a mapping r(-, {x,}) : X — [0, 00) by

r(x, {x,,}) = limsup d(x, x,,).

n— 00

The asymptotic radius of {x,} is given by

r({xa}) = inf{r(x, {x.}) :x € X},
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and the asymptotic center of {x,} is the set

A({xn}) = {x eX: r(x, {xn}) = r({xn})}.

For another way of describing the asymptotic center, see [13]. It is known (see [15]) that
in an Hadamard space, the asymptotic center A({x,}) consists of exactly one point.

We now give the definition and collect some basic properties of the A-convergence
which will be used in the sequel.

Definition 3.3 ([16]) A sequence {x,} in an Hadamard space X is said to A-converge to
x € X if x is the unique asymptotic center of {u,} for every subsequence {u,} of {x,}. In
this case, we write A-lim,,_, o x,, = x and call x the A-limit of {x,}.

Lemma 3.4 ([16]) Every bounded sequence in an Hadamard space has a A-convergent
subsequence.

Lemma 3.5 ([17]) Let C be a nonempty closed convex subset of an Hadamard space X. If
{x,} is a bounded sequence in C, then the asymptotic center of {x,} is in C.

Lemma 3.6 ([8]) Let {x,} be a sequence in an Hadamard space X with A({x,}) = {x}. If
{u,} is a subsequence of {x,} with A({u,,}) = {u} and {d(x,, u)} converges, then x = u.

In 2008, Berg and Nikolaev [18] introduced the concept of quasilinearization in an
Hadamard space X as follows:

—
Denote a pair (a,b) € X x X by ab and call it a vector. The quasilinearization is a map
() 1 (X x X) X (X x X) > R defined by

- = 1
(ab, cd) = 5 (d(a,d)* + d(b,c)* - d(a,c)* - d(b,d)?)
foranya,b,c,d € X.
We say that X satisfies the Cauchy—Schwarz inequality if

- —
(ab, cd) < d(a,b)d(c,d)

for any a, b, c,d € X. It is known that a geodesically connected metric space is a CAT(0)
space if and only if it satisfies the Cauchy—Schwarz inequality; see [18].
Consider the map ® : R x X x X — C(X;R) defined by

Ot a,b)(x) = t{ab, ax)

for all x € X, where C(X; R) is the space of all continuous real-valued functions on X. Then
the Cauchy—Schwarz inequality implies that ©(¢,a, b) is the Lipschitz function with the
Lipschitz seminorm L((t,, b)) = td(a, b), where t € R, a,b € X and L(¢) = sup{ 25500 ;
x,y € X,x #y} is the Lipschitz seminorm for any function ¢ : X — R.

In 2010, Kakavandi and Amini [19] defined a pseudometric D on R x X x X by

D((t,a,b), (s,u,v)) = L(O(t,a,b) - O(s,u,v)).
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%
For an Hadamard space X, it is obtained that D((t, 4, b), (s, u,v)) = O ifand only if £{ab, ?y) =
s(ﬁ)/, a?y) for all x,y € X. Then, D can impose an equivalent relation on R x X x X, where

the equivalence class of (¢, a, b) is
— —
[tab] = {S;l)/ : t(ab,@)/) = 5(51)},;5/)}.

%
The set X* = {[tab] : (t,a,b) € R x X x X} is a metric space with metric D, which is called
the dual metric space of X.
In 2013, Kakavandi [20] introduced the concept of (S) property for an Hadamard space

as follows.

Definition 3.7 An Hadamard space X satisfies the (S) property if for any (x,y) € X x X
there exists a point y, € X such that [zz] = Wc].

Moreover, Kakavandi also proved the characterization of A-convergence for Hadamard

spaces satisfying the (S) property as follows.
Lemma 3.8 Let X be an Hadamard space, {x,} be a bounded sequence in X and x € X. If
X satisfies the (S) property, then A-lim,_, o x, = x if and only if lim,_, o (m, z/) =0 for all

yeX.

In 2008, Kirk and Panyanak [16] introduced a geometric condition on Hadamard spaces

called the (Q4) condition as follows.

Definition 3.9 An Hadamard space X is said to satisfy the (Qu) condition if for all
x%,9,p,q €X,

dp,x)<dx,q) and d(p,y)<d(y,q) imply d(p,m)<d(m,q), VYme[xy].
In 2013, Kakavandi [20] modified the (Q4) condition as follows.

Definition 3.10 An Hadamard space X is said to satisfy the (Q4) condition if for any
%9,0q € X,

dlp,x) <d(x,q) and d(p,y) <d(y,q) imply d(p,m)<d(m,q), VYme [xy].

We can see that Hilbert spaces and every Hadamard space of constant curvature satisfy
the (Q4) condition. Anyway, since (Q4) implies (Q4), there are some Hadamard spaces that

do not satisfy such a condition. The following results were obtained by Kaewkhao et al. [4].

Lemma 3.11 Let X be an Hadamard space satisfying the (Q,) condition. Let C be a
nonempty subset of X. Then, for any mapping T : C — X, A(T) is closed and convex.

Lemma 3.12 Let X be an Hadamard space and C be a closed convex subset of X. Let x € X
andy € C. Then y = Pcx if and only Lf(z/, )72)) >0forallzeC.
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We recall the concept of Banach limit, which plays a major role in our results. Let 1
be a continuous linear functional on [*°, the Banach space of bounded real sequences
with supremum norm, and (x1,%,...) € [*°. We write u,(x,) instead of u((x1,%3,...)). We
call u a Banach limit if u satisfies ||| = u(1,1,...) = 1 and p,(x,) = w,(x,,1) for each
(x1,%9,...) € [°°. For a Banach limit u, we know that

liminfx, < pu,(x,) <limsupx,

n—00 n—00
for all (x1,%5,...) € [*°. So if (x1,%3,...) € [*° with lim,_, ., x,, = ¢, then w,(x,) = ¢; see [21]
for more details.

We also need the following lemmas due to Kaewkhao et al. [4].

Lemma 3.13 Let C be a nonempty subset of an Hadamard space X. Let {x,,} be a bounded
sequence in C and T : C — C be a mapping such that lim,,_, o d(x,, Tx,) = 0. Then

(i) the sequences {d(x,,y)} and {d(Tx,,y)} are bounded for all y € C;

(i) pund(xu,y) = wnd(Txy,y) for any Banach limit (v, on [°°.

Lemma 3.14 Let X be an Hadamard space and C be a closed convex subset of X. Let {x,,}
be a bounded sequence in X. If d(x,,1,2z) < d(x,,z) forall z € C, thenlim,_, o Pcx, = z9 € C,
where Pc is the metric projection from X onto C.

4 Results and discussion

In this section, we prove A-convergence theorems of S-iteration to the set of attractive
points of further generalized hybrid mappings in Hadamard spaces satisfying the (S) prop-
erty and the (Q4) condition. We first consider the notion of the set of attractive points for
any mapping 7 : C — X, where X is an Hadamard space and C is a nonempty subset of X
defined as

A(T) = {ze€ X :d(Tx,2) <d(x,2),¥x € C}.

Moreover, in Hadamard spaces, a further generalized hybrid mapping is defined analo-
gously to Definition 1.3 as follows.

Definition 4.1 A mapping T : C — X is called further generalized hybrid if there exist
o, B,y,8,€ € R such that
(i) a+B+y+8>0,e>0;
(i) «+B>00ra+y>0;and
(iii) ad(Tx, Ty)* + Bd(x, Ty)* + yd(Tx,y)* + 8d(x,y)* + ed(x, Tx)* <0, Vx,y € C.

The following lemma is a demiclosedness principle for a further generalized hybrid map-

ping in an Hadamard space.

Lemma 4.2 Let X be an Hadamard space X satisfying the (S) property. Let C be a
nonempty subset of X and let T : C — C be a further generalized hybrid mapping. Let {x,}
be a bounded sequence in C such that lim,,_, o d(x,, Tx,) = 0 and A-lim,_,« x, = z. Then
ze€ A(T).
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Proof Since T is a further generalized hybrid mapping,
ad(Tx, Ty)* + Bd(x, Ty)* + yd(Tx,y)* + 8d(x,y)* + ed(x, Tx)> < 0,
for all x,y € C. Lemma 3.13(i) implies that {d(x,,y)} and {d(Tx,,y)} are bounded for all
yeC.
Ife + B8 >0, then
ad(Tx,, Ty)2 + Bd(x,, Ty)2 + )/a,’(Txn,y)2 + 8d(xn,y)2 + ed(x,, Txn)2 <0.
We apply a Banach limit x to both sides of this inequality. Thus, we have
@ nd(Ta, TV + Bind (s, T9)* + ¥ 11 @(T,9)* + S100d (%, 9)? + €105, T)* < 0.
Since w,d(x,, Tx,)? = 0, we get
(@ + B)tnd (6, V) + (v +8) tndl(x,,9)* < O
forallye C.Sincea + B+y +8 >0and  + 8 > 0, we have

—(y +9)

nd (%, Ty)? <
pnd (X, Ty)™ < Y

Mnd(xn;y)z =< ,U«nd(xmy)z-
If e +y >0, then
ad(Ty, Tx,)* + Bd(y, Tx,)* + yd(Ty,x,)* + 8d(y, x,)* + €d(y, Ty)* < 0.

We apply a Banach limit u to both sides of this inequality. Thus, by w,d(x,, Tx,)? = 0, we
have

(o + V)Mnd(Tyrxn)z + GMnd()/» Ty)2 = _(ﬂ + a)ﬂnd(yrxn)2~

It follows from € > 0 that

(o + ) nd(Ty, %) < (@ + V) ind(Ty, %,)* + € pnd(y, Ty)%,
< _(,B + S)ﬂnd(y’xn)z

forallye C.Sincea+ B+y +8 >0and « + y >0, we have

-(B+9)
o

wnd(Ty,x,)* < S nd (3 %)* < pnd(y, 2)°.

Therefore,

1nd (e, TY) < p1ndl(x,,9)? 2)
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for all y € C. Furthermore, Lemma 3.8 and A-lim,,_, » x,, = z imply that

lim (zx,,, z7) = 0.
n— o0

This implies that

lim (d(x,2)* - (@, 9)* + d(z,9)%) =0

n—00

for all y € X. Thus, we have

1n (A, 2)* = d(,9) + d(2,9)7) = 0 3)
for all y € X. By (2), we obtain that

~ (X, y)? < =6, TY).
By adding w,(d(x,, 2)* + d(z, ) + d(z, Ty)*) to both sides of the above inequality, we get

— Und (%, y)* + (A 2)* + d(2,9)* + d(z, T))

< —nd (%, TY)” + (A, 2)* + d(z,)” + d(z, T)?).
Then we have

d(z, Ty) + pn(d(x, 2)° — d(x,,9)* +d(2,9)%)

<d(z,y)” + un(d@n2)* - dxu, Ty)* + d(z, T9)?).
This implies by (3) that d(z, T¥) < d(z,y), and hence z € A(T). (I

In what follows we get a A-convergence theorem for a further generalized hybrid map-

ping in an Hadamard space.

Theorem 4.3 Let X be an Hadamard space satisfying the (S) property and the (Q4) condi-
tion. Let C be a nonempty convex subset of X and T : C — C be a further generalized hybrid
mapping with A(T) # 0. Let {a,}, {B.} be sequences of real numbers such that 0 < a < a,
Bu <b <1 forall n e N and for some a, b. Suppose that {x,} is the sequence generated by
the S-iteration process: let x1 = x € C and

Yn = (1- lgn)xn @ BuTx,
xp1 =1 —-0)Tx, ® Ty, VmeN.

(4)

Then the sequence {x,} A-converges to an element v € A(T), where v = lim,,_, o Pa(r)%, and
Py (1) is the metric projection from X onto A(T).
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Proof Step 1. We will show that lim,,_, » d(u, x,) exists for all u € A(T).
Let u € A(T). Then, by (4), we have

A, %p11) = d (1, (1 = ) Ty @ 00, Ty
<(1-a,)du, Tx,) + a,d(u, Ty,)

=< (1 - an)d(urxn) + and(u;yn)- (5)
Also, we get

d(u’yn) = d(u’ (1 - ,Bn)xn D ,8;1 Txn)
<1 -B.)d(u,x,) + Bnd(u, Tx,)
<d(u,xy). (6)

By (5) and (6), we obtain
du, xp1) < d(u, x,,).
This shows that the sequence {d(u,x,)} is decreasing and bounded below. Therefore,
limy,_, o0 d(u, x,) exists for any u € A(T) and so {x,} must be bounded.
Step 2. We will show that lim,,_, o, d(x,, Tx,) = 0.
Let
lim d(u,x,) =c. (7)
n—oQ
By (5), we have
d(, xn01) < (1= on)d(u, %) + @nd(ut, y).
This gives
and(u;xn) =< d(lfl’xn) + and(uryn) - d(u:xn+1)r
and so
1
d(u’xn) =< d(”;yn) + _(d(’/l¢ xn) - d(”¢ xn+1))
oy
1
< d(”;yn) + ;(d(u,xn) - d(u’x}’l+l))‘

Thus, we have

1
liminfd(u,x,) < lirninf(d(u,y,,) + - (d(u,x,,) - d(u,xn+1))>.
n—00 a

n—00

Since {d(u,y,)} is bounded and lim,,_, o d(u, x,,) exists, we obtain that

1
liminfd(u, x,) <liminfd(xu,y,) + lim <—(d(u,x,,) —d(u,xml))).
n—00 n—oo\ d

n—00
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So we get
¢ <liminfd(u,y,).
Hn— 00
By (6), we have

limsupd(u,y,) < liminfd(u,x,) = c.
n—00 n—00

Therefore,

lim d(u,y,) = c.

n—00

By Lemma 3.2, we obtain

A, y,)* = A1, (1~ B)y ® P Ti)”
< (1= B)d(u, x,)" + Bud(wt, Tx)* = (1 = B (s, Tn)?
< (1= Bu)d(t, %) + Budd (14, 60)* = Bu(1 = B)d (6, Ticn)?
= d(t,%,)* = Bu(1 = Bu)d (6, Tien)”.

Thus, we have

(s, Ty < ﬁ (2, — dw,,))

(d(u,acn)2 - d(u,yn)z).

=

1
a(l->b)

Using (7) and (8), we can conclude that

lim d(x,, Tx,) = 0.

n—00

)

Step 3. We will show that the sequence {x,} A-converges to an element in A(T). Indeed,

since {x,} is bounded, we can assume that A({x,}) = {v} for some v € X. It is sufficient

to show that A({x,, }) = {v} for any subsequence {x,, } of {x,}. Let {x,, } be a subsequence

of {x,} with A({x,,}) = {w}. Since {x,,} is bounded, there exists a subsequence {x,,}.} of

{#n;} such that {4} A-converges to z for some z € X. By (9) and Lemma 4.2, we have

z € A(T) and hence lim,,_, o, d(z,x,) exists. If z # w, then it follows from the uniqueness of

asymptotic center that
lim d(z,x,) = limsupd(z,x,,)
n—00 j—00 U

< limsup d(w, x”i)

j—oo

<limsupd(w,x,,)
k— 00

< limsupd(z,x,,)
k—o00

Page 10 of 15
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= lim d(z,x,),
n—oQ

which is a contradiction. Therefore, w = z € A(T). Suppose that v # w. Then
lim d(w,x,) = limsupd(w,x,,)
=00 k— 00

<limsupd(v,x,,)
k— o0

<limsupd(v,x,)
n—0Q

<limsupd(w,x,)

n— 00

= lim d(w,x,).
n—0oQ

This leads to a contradiction, and hence v = w € A(T). Therefore, {x,} A-converges to an
element v € A(T).

Step 4. We will show that v = lim,_, o Pa(1)%,. We can conclude from Step 1 that
d(x,1,2) <d(x,,z) for all z€ A(T) and n € N. Furthermore, we obtain from Lemma 3.14
that

lim Pyyx, =p (10)
n—0o0

for some p € A(T). From Step 1, we have that lim,,_, », d(p, x,,) exists. Since
d(xn+erA(T)xn+1) = d(xm—l;PA(T)xn) = d(xnr PA(T)xn)

for all m € N, we get that lim,_, o d(xy, Pa(r)%,) exists. By the triangle inequality, we have

A%, p) < A% Pacry%n) + A(PacryXn: p)

=< d(xn»P) + d(PA(T)me)'
Since limy,_, oo d(Pa(1)%n, p) = 0, we have

lim d(x,,p) < lim d(x,, Pacr)x,) < lim d(x,,p).

n—00

This implies
lim d(x,,p) = lim d(x,, Pacr)%,). (11)
n—0oQ n—0Q

Moreover, since {x,} A-converges to v e A(T), we can apply Lemma 3.8 to conclude that

1
0= lim (vx,, vz) = lim =
n—00 n—00 2

(A ) +d(v,2)? - d(,,2)%)
for all z € X. This implies

—d*(v,p) = lim (d(xy,, v)? - d(x,,,p)z).

n—00

Page 11 of 15
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So, by (10), (11) and Lemma 3.12, we have

~2d*(v,p) = nli)nolo(d(x,,,v)z —d(x,p)* - d(v,p)z)

= lim (d(xm V)2 - d(xn:PA(T)xn)Z - d(V, PA(T)xn)z)

n—0o0

= 1im (%, Pa(1)%n, Pa(r)%nv)

n—00

> 0.

This implies that d(v, p)2 <0, and hence v = p. Therefore, {x,} A-converges to v, where

v =lim,_, o0 Pa(1)%. O

Remark 4.4 Theorem 4.3 extends and improves the results of Kaewkhao et al. [4] from a
normally generalized hybrid mapping to a further generalized hybrid mapping. In fact, we
present the S-iteration process for solving the attractive point problem of further gener-
alized hybrid mappings in Hadamard spaces.

It is known that a Hilbert space satisfies both the (S) property and the (Q) condition.
Furthermore, A-convergence and weak convergence are the same in a Hilbert space. Thus,
we have the following theorem.

Theorem 4.5 Let X be a Hilbert space. Let C be a nonempty convex subset of X and T :
C — C be a further generalized hybrid mapping with A(T) # (. Let {«,}, {81} be sequences
of real numbers such that 0 < a < oy, B, <b <1 for all n € N and for some a, b. Suppose
that {x,} is the sequence generated by the S-iteration process: let x; = x € C and

Yn = (1- ,Bn)xn + BuTxy,
X1 = (1 — o) Ty + @, Ty, VmeN

Then the sequence {x,} converges weakly to an element v € A(T), where v = limy,_, oo Pa(1)%n
and Pyt is the metric projection from X onto A(T).

Moreover, the following example shows that there is an Hadamard space satisfying both
the (S) property and the (Q) condition, which is not a Hilbert space.

Example 4.6 ([4]) Consider H = {(x,y) € R?:y? —x% = 1 and y > 0}. Let d be a metric de-
fined by the function d : H x H — R that assigns to each pair of vectors u = (u;, 1) and
v = (v1, vp) the unique nonnegative number d(u,v) > 0 such that

coshd(u,v) = urvy — uqvy.

It is known that, in general, the metric space (H, d) is an Hadamard space and also a one-
dimensional hyperbolic space viewed from a hyperboloid model (for more details, see [7]).
Then (H, d) satisfies the (S) property and the (Q,) condition.

Remark 4.7 Theorem 4.5 extends and improves the results of Takahashi et al. [3] from a
normally generalized hybrid mapping to a further generalized hybrid mapping. In fact, we
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present the S-iteration process for solving the attractive point problem of further gener-

alized hybrid mappings in Hilbert spaces.

5 Numerical example for the main result
In this section, we give a numerical example supporting our main results and compare the
convergence of the studied method (4) with the Mann and Ishikawa iterations.

Recall that the Mann iteration [22] is defined by u; € C and

Up1 =1 —a,)u, +o,Tu,, neN, (12)

where {o,} is a sequence in (0, 1). The Ishikawa iteration [23] is defined by z; € C and

Wwn =1 - B)zn+ BTz,

Zni1 = (1 =)z, +a, Tw,, VmeN,

(13)

where {®,} and {8, } are sequences in (0, 1).

Example 5.1 Let X = R be a usual metric space with the metric d, which is also an

Hadamard space, and C = (-1, 1). We see that C is a convex subset of X. Define a mapping

T:C— Cby
T lz;x, xe(_lﬂo];
X =
“l xe(0,1).

forallx € C.Itis easy to see that T is a further generalized hybrid mapping witho =2, 8 =

y=-1,8=€e=0and A(T) = [1,00). Let a, = 5:27 and B3, = 18231 forall # € N. Let {x,} bea

sequence generated by S-iteration (4), {u,} be a sequence generated by Mann iteration (12)

and {z,} be a sequence generated by Ishikawa iteration (13). The numerical experiments
of all iterations for approximating the attractive point 1, where 1 = lim,,_, oo Pa(7)%,, and
convergence of {x,}, {u,} and {z,} are given in Tables 1 and 2.

From Tables 1 and 2, we see that both {x,}, {u,} and {z,} converge to 1 € A(T) and
observe that |x, — 1| < |u, — 1| and |x, — 1| < |z, — 1], so the sequence {x,} generated by S-
iteration converges faster than both {u,,} generated by Mann iteration and {z,} generated

by Ishikawa iteration.

6 Conclusions

The results presented in this paper modify, extend and improve the corresponding re-
sults of Takahashi et al. [3] and Kaewkhao et al. [4], and others. The main aim of this
paper is to prove the demiclosed principle for further generalized hybrid mapping and the
A-convergence of the sequence generated by the S-iteration process for finding attractive
points of such mappings in Hadamard spaces satisfying the (S) property and the (Q4) con-
dition. We also provide a numerical example to illustrate and support our results at the

end.
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Table 1 [terates of S-iteration, Mann iteration, and Ishikawa iteration for x; = u; =23 =-0.5

n S-iteration Mann iteration Ishikawa iteration
Xn [Xn = Xn-1] Un [un —up-1] Zn |Zn = Zp-1]

1 -0.5000000 - -0.5000000 - -0.5000000 -

2 0.6742424 1.1742e+00 —-0.0833333 4.1667e-01 —0.1590909 3.4091e-01

3 0.8462461 1.7200e-01 0.2107843 2.9412e-01 0.1550166 3.1411e-01

4 0.9271811 8.0935e-02 0.4260250 2.1524e-01 0.4077682 2.5275e-01

5 0.9654324 3.8251e-02 0.5960916 1.7007e-01 0.5982240 1.9046e-01
16 0.9999899 1.1023e-05 0.9962619 2.1566e-03 0.9974837 1.5930e-03
17 0.9999952 5.2699e-06 0.9976368 1.3749e-03 0.9984638 9.8015e-04
18 0.9999977 2.5201e-06 0.9985102 8.7334e-04 0.9990648 6.0091e-04
19 0.9999989 1.2054e-06 0.9990631 5.5292e-04 0.9994320 3.6724e-04
20 0.9999995 5.7667e-07 0.9994121 3.4904e-04 0.9996558 2.2380e-04
Table 2 [terates of S-iteration, Mann iteration, and Ishikawa iteration for x; = uy =2y =04
n S-iteration Mann iteration Ishikawa iteration

Xn [Xn = Xn-1] Un [un = up-1] Zn |20 = Zp-1]

1 0.4000000 - 0.4000000 - 0.4000000 -

2 0.7181818 3.1818e-01 0.5000000 1.0000e-01 0.5181818 1.1818e-01

3 0.8669850 1.4880e-01 0.6176471 1.1765e-01 0.6450471 1.2687e-01

4 0.9370031 7.0018e-02 0.7219251 1.0428e-01 0.7512207 1.0617e-01

5 0.9700950 3.3092e-02 0.8043177 8.2393e-02 0.8312256 8.0005e-02
16 0.9999913 9.5358e-06 0.9981890 1.0448e-03 0.9989430 6.6918e-04
17 0.9999958 4.5591e-06 0.9988551 6.6612e-04 0.9993547 4.1173e-04
18 0.9999980 2.1802e-06 0.9992782 4.2311e-04 0.9996071 2.5242e-04
19 0.9999990 1.0428e-06 0.9995461 2.6788e-04 0.9997614 1.5427e-04
20 0.9999995 4.988%¢-07 0.9997152 1.6910e-04 0.9998554 9.4011e-05
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