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Abstract

Applying the method consisting of a combination of the Brouwer and the Kakutani
fixed-point theorems to a discrete equation with a double singular structure, that is,
to a discrete singular equation of which the denominator contains another discrete
singular operator, we prove that the equation has a solution.
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1 Introduction

A large number of discrete models are constructed in natural and social sciences. Many
of them are expressed in terms of various kinds of discrete nonlinear equations (DNEs).
It is important to study the DNEs. Several DNEs have been studied mathematically (see,
e.g., [1-4] and [13]), but many DNEs have not been studied fully (see, e.g., [9, pp. 13-15]).
In particular, it is very difficult to study discrete singular equations (DSEs), and there have
been only a few studies on DSEs (see, e.g., [11, 12], and [16]).

Fixed-point theory can play an indispensable role in overcoming the difficulties thus
encountered. Moreover, it helps its own progress to apply fixed-point theory to various
DSEs. In light of the close and cooperative interaction between fixed-point theory and
DSEs, we find it beneficial to broaden the application of fixed-point theory to new DSEs.

On the basis of these considerations, we are concerned with applying fixed-point theory

to the existence of a solution to the following new DSE:

a(x)(i) = fi (%, fo(% a(x))) (@), i€D. (1)

Here x = x(i) denotes an unknown function contained in L, where L denotes the set of all
real-valued functions of i € D. By D we denote the set of all integers i such that 1 <i <N,
that is, D := {1,...,N}, where N is an arbitrary integer such that N > 2. We can regard L
as an N-dimensional Euclidean space, and each element of L can be regarded as a point of
the Euclidean space. However, for convenience, we refer to each element of L not as point
but as function of i € D. We define fi(u,v) = fi(u,v)(i), k = 1,2, as the following operators
© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.


https://doi.org/10.1186/s13663-018-0649-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-018-0649-9&domain=pdf
http://orcid.org/0000-0003-3876-7437
mailto:mnrtabata@luck.ocn.ne.jp

Tabata and Eshima Fixed Point Theory and Applications (2018) 2018:24 Page 2 of 14

which act on (u,v) = (u(i),v(i)) € L x L:

Selw,v) = filw, v)(0) = cx ZK(i,j)(%(j)bk(j)), ieDk=1,2, )
jeD

where K(i,/) is a known function of (i,j) € D x D, bi(j) € L, k = 1,2, are given functions
of j € D, and ¢, k = 1,2, are known constants. We define a(x) = a(x)(i) as an operator that
has the following form:

a(x)(i) := a;(x(i)), i€D, (3)

where a;(r) is a known function of r € R that satisfies the following conditions for each

ieD:
a;(r) isa continuous function of r € R, (4)
a;(r)>0 forallr>0, (5)
a;(0) =0, (6)
20 — +00 asr— 0+0. (7)

It follows from (3)-(7) and (2) with k = 2 that f5(x, a(x)) is a discrete singular operator
acting on x = x(i). Moreover, observing operator (2) with k = 1, we see that the right-hand
side of (1) is a discrete singular operator of which the denominator contains the discrete
singular operator f(x, a(x)). Hence, we can say that (1) has a double singular structure.

A large number of DSEs with the same singular structure as (1) have been constructed
in spatial economics. Hence DSE (1) is not a special one. However, fixed-point theory has
not been fully applied to such DSEs. Hence, in this paper, applying fixed-point theory to
DSE (1), we prove that DSE (1) has a solution. The main result of this paper is Theorem 1
that is stated in Sect. 3.

2 Methods

We propose a method consisting of a combination of the Brouwer and the Kakutani fixed-
point theorems. Making use of the method, we prove that DSE (1) has a positive solution.
This new method is widely applicable to DSEs with double singular structure (this appli-
cation is discussed in the Appendix).

In this paper we impose no condition on (3) in addition to (4)—(7). In Sect. 3, we impose
conditions on K(i, /), cx, k = 1,2, and bi(j), k = 1,2, and we state and discuss Theorem 1.
In Sect. 4 we prove estimates for the discrete singular operator contained in DSE (1). In
Sect. 5, making use of the Brouwer fixed-point theorem, we extend this discrete singular
operator to a set-valued operator with no singularity. In Sect. 6, applying the Kakutani
fixed-point theorem to this set-valued operator, we prove Theorem 1. Section 7 is the
conclusion section.

In this article, we make use of no advanced knowledge of DSEs and fixed-point theory.
Indeed we use the Brouwer and the Kakutani fixed-point theorems, but they are ones of
the most fundamental fixed-point theorems (see, e.g., [5] and [8]). In the Appendix we
make use of no advanced knowledge of spatial economics. Hence, this article can be easily
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understood even without having advanced knowledge of DSEs, fixed-point theory, and

spatial economics.

3 Results and discussion
In what follows, throughout the paper, we assume that

bi(i)>0 forallieD, (8)
by(i)=0 forallie D, )
0<c<cy, (10)
K(i,j)>0 forallijeD, (11)
K(i,j) = K(j,i) foralli,jeD. (12)

Indeed condition (9) is restrictive, but conditions (8) and (10)—(12) are sufficiently gen-
eral. By (3) and (9), we can rewrite DSE (1) as follows:

a;(x()) = ¢ /EXD:K(L j) (%) ieD, (13)
where
2 () =co kZK(j, KAy (x(k), jeD, (14)
eD
Ayr) = aL(r) ieD. (15)

Applying (7) to (15), we see that (14) is a discrete singular operator acting on x = x(i).
This discrete singular operator is contained in the denominator of the right-hand side of
(13). Hence, even if we assume condition (9), then DSE (13) retains the double singular
structure.

We define the following norm in L:

vl := max]|v(i)|. (16)
ieD
We define the following closed subset of L:
Lo, = {v=v(i) € L;v(i) = 0 for all i € D}. (17)

We divide this subset into two disjoint subsets as follows:

Lo, =LoUL,, (18)
where
Lo :={v=1v(i) € Lo,; (i) = 0 for some i € D}, (19)

L, = {v:v(i)eL0+;V(i)>Of0r alliED}. (20)
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It follows from (8) and (10) that

b= ( a )bl >0, (21)
C)—(C1
where
by = > bi(j). (22)
jeD

Making use of (17) and (21), we define the following simplex contained in Ly,:

S::{v:v(i)eL0+;Zv(j)=b}. (23)

jeD
Applying (5) to (15), and recalling definition (20), we see that

Ai(v(i)) el,, forallv=v(i)elL,. (24)
Applying this result, (10), and (11) to (14), we see that

gw(@) el, forallv=v(i)elL,. (25)
Hence, we see that

the right-hand sides of (13) and (14) can be defined for all x(i) € L,. (26)
However, recalling (6), we see easily that

no x(i) € Loy can be substituted in (14). (27)

Hence, we define that if x(i) € L, satisfies (13) for each i € D, then x(i) is a solution to (13).
The following theorem is the main result of this paper.

Theorem 1
(i) Equation (13) has a solution x = x(i) € L,.
(ii) If equation (13) has a solution x = x(i) € L., then

x=x(i) eS. (28)

Equation (13) is a new DSE that has not been fully studied. Theorem 1(i) implies that
(13) has a positive solution. It follows from Theorem 1(ii) that all positive solutions are
contained in the simplex (23). Theorem 1 is proved in Sect. 6.

Theorem 1 is widely applicable to many DSEs constructed in spatial economics, since
those DSEs have the same double singular structure as (13). For example, applying The-
orem 1 to DSEs [6, (5.3)—(5.5)] and [6, (7.1)—(7.8), (7.14)—(7.17), (14.1)-(14.12), (15.1)-
(15.4), (15 A.1)—(15 A.10), (16.1)—(16.8)], we can prove that there exist positive solutions
to the DSEs. This application is fully discussed in the Appendix.

Page 4 of 14
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Indeed we could prove the existence of solutions to DSE [6, (5.3)—(5.5)] more easily than
Theorem 1 [14, 15]. However, it is difficult to apply the method developed in [14] and [15]
to (13), since this method greatly depends on spatial economic properties of the known
functions contained in DSE [6, (5.3)—(5.5)]. In order to prove Theorem 1, we need the
method developed in this paper.

4 Estimates for operators
Replacing an unknown function x by # and v in the right-hand side of (13), we define the

following operator acting on u and v:

Fy(u,v) = Fiw,v)(i) =1 »_ K(i)) (M> ieD. (29)
P gm0

Making use of this operator, we rewrite (13) as follows:

ai(x(i)) = Fi(x,x)(), i€D. (30)
Multiplying both sides of (30) by (15) with r = x(i), we obtain

x(i) = Fo(%,x)(i), ie€D, (31)
where

Fa(u,v) = F>(u,v)(i) := A;(v(i))Fy(u,v) (i), i€ D. (32)
It follows from (24) that

ifx=x(i) € L,, then (13)isequivalent to (31). (33)
Hence, we have only to seek a fixed point of F,(x,x) in L,.

It follows from (8), (17), and (20) that

u(j) + b1(j) e L, forall u = u(j) € Lo,. (34)
Hence, observing (29) and (32), in the same way as (26) and (27) we see easily that

Fr(u,v), k=1,2,can be defined for all (#,v) € Lo, x L., (35)
but that

Fi(u,v), k=1,2,can be defined for no (u,v) € Ly, X Ly. (36)

Let us obtain estimates for Fi(u,v), k = 1,2, when

(u,v) € Loy X L,. (37)
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Lemma 1 If(37) holds, then

Fu,v)elL,, k=12, (38)

lim FEU,V)=Fd(u,v), k=1,2. (39)
(U,V)eLoy XLy (U, V)= (u,v)

Proof Applying (4), (5), (11), (15), (24), (25), (34), and (37) to (29) and (32), we obtain (38)
and (39). O

The following lemma is a key lemma of this paper (see (21)).

Lemma 2 If (37) holds, then

> Fa(u,v)(i) = M(u), (40)
ieD
where
(& i _a
M(u) := (C2> ,-EXD:M(/) + (1 Cz)b. (41)

Proof Substituting (29) and (32) in the left-hand side of (40), we see that

, Wi o[ 40+ bi()
ZFg(u, v)(@) = Z ZAi(v(l))I<(z,])<gT)(j1)).

ieD ieD jeD

Exchange ), and Zie p» and apply (12) to the right-hand side. Recalling definition (14)
with x = v, we see that the right-hand side of the equality thus obtained contains both
g()(j) and 1/g(v)(j), which cancel each other out. Hence, we see that

> Ea(wv)(0) = (i—) > () + b:6).

ieD 2/ jeD
Substituting (21) and (22) in the right-hand side, we obtain (40). O

Let us discuss this key lemma. Observing (14) and (29), we see that (32) is expressed in
terms of the double summation. Hence, the left-hand side of (40) is expressed in terms
of the triple summation with double singular structure. However, the right-hand side of
(40) is expressed in terms of the single summation (41) with no singularity. By (40) we
overcome the difficulty caused by the double singular structure of (13). We make use of
(40) to prove Lemma 3(i). We make use of Lemma 3(i) to prove Theorem 1(i). It is difficult
to prove that (29) satisfies a useful equality similar to (40). This is the reason why we define
(32) instead of (29).

Recalling definition (23), we see easily that

Sx(SNL,)C Ly, xL,. (42)
Combining this inclusion relation and (35), we see that

F>(u,v) can be defined for all (i,v) € S x (SN L,). (43)
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Let us obtain estimates for (32) when
(u,v)eSx (SNL,).

Lemma 3
(i) If (44) holds, then

Fy(u,v)eSNL,.

(ii) If (44) holds and di € D, k = 1,2, are nonempty, then

, a\ (b+bi\ (K [ Av() ,
0<Fuv)(i) < (a)< A )(K) (A(dg,v)) forallied,,

where
K := minK (i), K:= maxK (i,)),
Aldy,v) = Iilelg;Ai(V(i)),
and we denote the number of points of d C D by
|d].
Proof Applying (10) and definition (23) to (41), we deduce that

M(u)=b forallues.

(44)

(45)

(46)

(47)

(48)

(49)

(50)

Substituting this equality in (40), recalling definition (23), and making use of (38) with

k =2, we obtain (45).
Let us prove (ii). It follows from (11) and (47) that

0<K <K(,j) <K foralli,jeD.

(51)

It follows from (44) that (24) holds. Applying (10), (24), and (51) to (14), we see that each
term of the right-hand side of (14) with x = v is positive. Hence, replacing Z/e p and K (i, )

with ), and K, respectively, in the right-hand side of (14) with x = v, we obtain

gW(j) = oK Z Ak(v(k)) >0 foralljeD.
kedz

Applying (16), (24), (48), and (49) with d = d, to this inequality, we deduce that

1
< -
~ K|d>|Aldy,v)

F
gw)

(52)

(53)

Page 7 of 14
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Making use of (10), (34), (51), and (52), we see easily that each term of the right-hand
side of (29) is positive. Applying this result, (24), and (51) to (29) and (32), we obtain

1

0 < F(u,v)(i) < ClAi(V(i))I_(H 2z

Z(u(}) +b1(j)) for eachie D.

jeD

Applying (22), (23), and (53) to this inequality when i € d; € D, we obtain (46). Note that
the right-hand side of (46) is independent of u € S. O

5 Set-valued operators
The purpose of this section is to extend the discrete operator (32), which has the double
singular structure, to a set-valued operator with no singularity.

Letve SN L, be fixed. By (43) we regard F,(u,v) as an operator acting on « € S for each
fixed v € S N L,. Making use of (45), we see that this operator is an operator from S to
SN L,. We refer to the operator thus defined as the partially fixed operator. We denote it
by the same symbol F;(u, v). No confusion should arise. By (43) and (45), we define F(v)
as a set-valued operator that maps v € SN L, to the set of all fixed points of the partially

fixed operator F,(u,v) as follows:

Definition 1
F(v):= {ueS;u:Fz(u,v)} foreveryve SNL,. (54)

In the next section, we apply the Brouwer fixed-point theorem to the partially fixed
operator F,(u,v) for each v € SN L, in order to prove that F(v) is nonempty for every
veSNL,.

Recalling (36) with k = 2, we find it difficult to define (54) for each v € S N Ly. In order

to overcome such a difficulty, we define F(v) for each v € SN Ly as follows:

Definition 2
F(v):={u € S;Do(u) 2 D,(v)} foreveryve SN Ly, (55)
where
Do(v) := {i € D;v(i) =0}, (56)
D, (v) :={i € D;v(i) > 0}. (57)

Recalling (18), we see that F(v) defined in (54) and (55) is a set-valued operator from S
to 25.

6 Conditions of the Kakutani fixed-point theorem
Making use of the following lemma, we apply the Kakutani fixed-point theorem to the

set-valued operator F(v).
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Lemma 4
(i) S isa nonempty, compact, and convex subset of the N-dimensional Euclidean
space L.
(i) F(v) is nonempty for everyve SNL,.
(i) Fv) S SNL, forallve SNL,.
(iv) F(v) is nonempty for every v e SN Ly.
(v) F(v) S SN Ly forallve SN Ly.
(vi) F(v) is a convex subset of S for every v € S.
(vil) F =F(v) has a closed graph.
(viii) F = F(v) has no fixed point in SN Ly.

Proof of Lemma 4(i)—(vi) Applying (17) and (21) to (23), we see that S is a simplex con-
tained in Ly, . Hence, we obtain (i).

Let ve SN L, be fixed. Making use of (42), (45), and (39) with V = v, we see that the
partially fixed operator F(u,v) is a continuous operator from S to SN L, C S for each
fixed v € SN L,. Hence, making use of (i) of this lemma, we apply the Brouwer fixed-point
theorem to the partially fixed operator F(u,v) for each fixed v € SN L,. Hence, for each
ve SNL,,there exists u, € S such that u, = F(u,,v). Recalling (54), we obtain (ii).

Assume that u € S and v € SN L, satisfy that # € F(v). Applying this assumption to (54)
and applying (45) to the right-hand side of the equality mentioned in (54), we see that
u € SNL,.Hence, we obtain (iii).

Considering definitions (19), (21), (23), (56), and (57), we see easily that

Dy(v) and D, (v) are nonempty proper subsets of D for all v € SN L,. (58)

Making use of this result and recalling (49), we define the following function for each
vesSn L()Z

ug = ug(i) := for all i € Dy(v),

[Do(v)|
ug = uo(i):=0 forallieD,(v).

Recalling (23), (56), and (57), we see easily that iy € S and Dy(ug) = D, (v). Applying (55)
to this result, we see that u#y € F(v). Hence, we obtain (iv).

Assume that u € S and v € SN L satisfy that # € F(v). Applying (58) to (55), we see that
the right-hand side of the inclusion relation mentioned in (55) is nonempty. Hence, the
left-hand side Dy () is nonempty. Recalling definitions (19) and (56), we see that . € SN Ly.
Hence, we obtain (v).

Let v € SN L, be fixed. Observing (29) and (32), we see easily that the partially fixed
operator F,(u,v) is linear with respect to u(j) + b1(j). Applying this result to the equality
mentioned in (54), we easily obtain (vi) when v € SNL,. Assume that v € SN Ly. Consider-
ing definition (56) and the inclusion relation mentioned in (55), we easily obtain (vi) when
veSNLy. O
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Proof of Lemma 4(vii) Assume that {(«",v")} is a convergent sequence such that

{(u”, V”)} cSxS, (59)
u" €F(v") forallmeN. (60)

Applying (i) of this lemma to this sequence, we see that

(u>,v*)eS xS, (61)
where
(uoo, V°°) = nli)r}l@(u”, v”). (62)

Applying definition (57) to (62), we see that there exists 1 > 0 such that if n > ng, then

D, (uoo) CcD, (z/’), (63)
D.(vV*

(v"). (64)
We have only to prove that

u>™ € F(v™). (65)

Let us prove (65) when

v eSNL,. (66)
Applying definitions (20) and (57) to (66), we see that D, (v*°) = D. Substituting this equal-
ity in (64), we deduce that D, (v") = D for all n > ny, that is, that v € L, for all n > ny.
Combining this result and (59), we see that

vieSNL, foralln>ng. (67)

Applying this result, (iii) of this lemma, and (54) to (60), we deduce that if # > n, then

u'" = Fy(u",v"), (68)

(u",v") € (SNLy) x (SNLy). (69)
Making use of (42), (61), (62), (66), and (69), we can substitute

U, V,u,v) = (u",v", u>,v>)
in (39). Applying the equality thus obtained and (62) to (68), we deduce that

u™ = F(u™,v>). (70)

Applying this equality, (61), and (66) to (54), we obtain (65) when (66) holds.
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Let us prove (65) when
v esSn Lo. (71)

Making use of (18) and (iii), (v) of this lemma, we can divide the convergent sequence (59)
into two disjoint subsequences as follows:

() b= { (g o) b o (2 ), (72)

where
{(uf)’, Vg)} C(SNLy) x(SNLy), wuye F(vg) for all n, (73)
{(uf,vf)} CNL)x(SNL,), ufe F(Vf) for all n. (74)

At least one of these subsequences is a convergent infinite sequence.
Assume that (73) is a convergent infinite sequence. Applying (55) to (73), we see that

Do(u?) 2D, (). (75)
Taking the complements of both sides of (63), we deduce that if n > ng, then
Do(u™) 2 Do(u"). (76)

Recalling that (73) is a subsequence of (59), we replace (u”,v") with (uf,vj) in (64) and
(76). Combining the inclusion relations thus obtained and (75), we see that

Do(u™®) 2 D, (v™). (77)

Applying (55), (61), and (71) to this inclusion relation, we obtain (65).
Assume that (74) is a convergent infinite sequence. Applying (54) to (74), we obtain
ul = E(ul,v}). (78)
We need to obtain (65) from (78) when (71) holds. Noting that (37) is imposed on (39),
we see that (U, V,u,v) = (u},v},u,v™°) cannot be substituted in (39). Hence, we find it
difficult to perform the same calculations as done when obtaining (70) from (68). In order
to overcome this difficulty, we make use of (46) instead of (39).
Making use of (71), (74), and (58) with v = v*°, we can substitute
(dl,dz,l/t, V) = (D+(Voo)7DO(VOO): ufrvf)y (79)
in (44) and (46). Recall that (74) is a convergent infinite subsequence of (59). Considering
definition (56) with v = v*°, and applying (7) and (62) to (15) with r = v(i), where i €
Do(v™), we see that

lim A,'(vf(i)) =+o00 forallie Do(voo).

n—+00
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Applying this result to (48) with (79), we see easily that

. ') n\ _
nErPOOA(DO (v>®°),v?) = +oo0. (80)

Considering definition (57) with v = v* and making use of (4), (5), (62), and (64), we
deduce that

lim a;(vV}(i)) = a;(v ())) >0 for each i€ D, (v*).

n—+00

Applying this result and (62) to (15) with r = v (i), where i € D, (v*°), we deduce that

v (i)

Jm 4,(70) = 25

<+00 foreachieD, (v°°).

Applying this result and (80) to (46) with (79), we see that
lim F>(u],v!)(i) =0 forallie D,(v>).
n—+0Q

Applying this result and (62) to (78), we see that u*(i) = 0 for all i € D,(v*>°), that
is, that (77) holds. Applying (55), (61), and (71) to (77), we obtain (65). Therefore we
obtain (vii). O

Proof of Lemma 4(viii) Assume that there exists vy € SN Lo such that vy € F(vg). Applying
this assumption to (55), we see that Dy (vy) 2 D, (vp). Applying (58) with v = v, to this inclu-
sion relation, we deduce that both sides of this inclusion relation are nonempty. Recalling
definitions (56) and (57), we see that this inclusion relation leads us to a contradiction.

Hence, we obtain (viii). O

Proof of Theorem 1 Making use of Lemma 4(i), (ii), (iv), (vi), (vii) and (18), we apply the
Kakutani fixed-point theorem to F = F(v). Hence, we see that there exists x = x(i) € S such
that x € F(x). Applying (18), (54), and Lemma 4(viii) to this result, we deduce that x = x(i)
is contained in S N L, and satisfies (31). Recalling (33), we obtain (i).

Note that not (44) but (37) is imposed on (40). Assume that x € L, satisfies (31). Substi-
tuting (31) in the left-hand side of (40) with u = v = x, we see that

> x(j) = M(x).

jeD

Substituting (41) with u = x in the right-hand side of this equality, making use of (10), and
recalling definition (23), we obtain (28). O

7 Conclusions

Applying the method consisting of the combination of the Brouwer and the Kakutani
fixed-point theorems to the discrete equation with double singular structure, we prove
that the equation has a positive solution and that all positive solutions to the equation are
contained in the simplex (23) (Theorem 1).
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Appendix

Spatial economics is an interdisciplinary area between economics and geography. In about
1990, Krugman began seminal research in this area. His research has since grown into one
of the major branches of spatial economics, and now it is known as the New Economic Ge-
ography (NEG) (see, e.g., [6] and [7]). In 2008, Krugman was awarded the Nobel Memorial
Prize in Economic Sciences for his great contribution to spatial economics [10].

Many discrete models have been constructed in the NEG. Among those models, the
Krugman’s core-periphery model (KCP model) is one of the most important models. In the
KCP model, economic activities are conducted at each point of a finite set of points, and
each point represents a region. The economy consists of agriculture and manufacturing,
and the population consists of farmers and workers. The KCP model is described by a DSE
that is referred to as the wage equation [6, pp. 61-95].

Let us apply the result of this paper to the wage equation. We assume that the finite set of
points is equal to D defined in Sect. 1, that is, that each integer contained in D represents

a region. Substitute

x(i) = A()w(i), ieD,

ai(r) = (ﬁ)a ieDr>0, (81)
by (i) = (1_7“)¢(i), ieD,c =cop, (82)
K(i,j) = T@,j)"°Y, ijeD, (83)

in (13)—(15), where w(i) denotes an unknown function contained in L,, A(i), ¢(i), and
T(i,j) are known functions of i,j € D, and ¢ and p are known constants. In spatial eco-
nomics, w(i) denotes the distribution of nominal wages, and o and p denote the elasticity
of substitution and the manufacturing expenditure, respectively. Moreover, A(i), ¢(i), and
T(i,) denote the distribution of workers, the distribution of farmers, and the transport-
cost function, respectively. Then we obtain the following DSE, which is the wage equation
[6, (5.3)-(5.5)]:

w(@i)” = Y (w()Gw; )" (6, /), (84)

jeD
where

Y (w() 2= i G)w() + (1 - ) (),

N it 1
G = S AUy TG R D

We assume that

o>1, O<uc<l,

A0, ¢(i) € L.,

Page 13 of 14
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T(@i,j)>0 foralli,jeD,
T(i,j)=T(j,i) foralli,jeD.

These assumptions are the most general conditions in spatial economics [6, pp. 46—49].
It follows from these conditions that (81)—(83) satisfy (4)—(12). Hence, applying Theo-
rem 1(i) to the wage equation (84), we see that (84) has a positive solution w(i) € L,.

Performing calculations similar to those done above, we can prove that there exist posi-
tive solutions to DSEs [6, (7.1)—(7.8), (7.14)—(7.17), (14.1)—(14.12), (15.1)—(15.4), (15 A.1)—
(15 A.10), (16.1)—(16.8)], since these DSEs are constructed as extensions of the KCP
model.
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