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Abstract
Let C be a nonempty closed and convex subset of a uniformly smooth and
2-uniformly convex real Banach space E with dual space E∗. In this paper,
a Krasnoselskii-type subgradient extragradient iterative algorithm is constructed and
used to approximate a common element of solutions of variational inequality
problems and fixed points of a countable family of relatively nonexpansive maps. The
theorems proved are improvement of the results of Censor et al. (J. Optim. Theory
Appl. 148:318–335, 2011).
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1 Introduction
Let E be a real normed space with dual space E∗, and C be a nonempty closed and convex
subset of E. The variational inequality problem is to find an element v ∈ C such that

〈y – v, fv〉 ≥ 0, ∀y ∈ C, (1.1)

where f : E → E∗. The solution set of this variational inequality problem will be denoted
by VI(f , C). This problem has numerous applications in many areas of mathematics, such
as in partial differential equations, optimal control, optimization, mathematical program-
ming, and some other nonlinear problems (see, for example, [1] and the references con-
tained in them). The map f is called K-Lipschitz and monotone if

∥
∥f (x) – f (y)

∥
∥ ≤ K‖x – y‖, ∀x, y ∈ E,

and

〈

x – y, f (x) – f (y)
〉 ≥ 0, ∀x, y ∈ E,
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respectively, where K > 0 is a Lipschitz constant, and is called η-strongly monotone if there
exists η > 0 such that

〈

x – y, f (x) – f (y)
〉 ≥ η‖x – y‖2, ∀x, y ∈ E.

In the case that E is a real Hilbert space H , some authors have proposed and analyzed
several iterative methods for solving the variational inequality problem (1.1). The simplest
of them is the following projection method given by

⎧

⎨

⎩

x1 ∈ H ,

xk+1 = PC(xk – τ f (xk)), ∀k ≥ 1,
(1.2)

where f is Lipschitz and η-strongly monotone with τ ∈ (0, 2η

K2 ). Yao et al. [18] showed
that the projection gradient method (1.2) may not converge if the strong monotonicity
assumption is relaxed to plain monotonicity. To overcome this difficulty, Korpelevich [14]
proposed the following extragradient method:

⎧

⎪⎪⎨

⎪⎪⎩

x1 ∈ H ,

yk = PC(xk – τ f (xk)),

xk+1 = PC(xk – τ f (yk)),

(1.3)

for each k ≥ 1, which converges if f is monotone and Lipschitz. However, the weakness
of this extragradient method is that one needs to calculate two projections onto C in each
iteration process. It is known that if C is a general closed and convex set, this iteration
process might require a huge amount of computation time. To overcome this difficulty,
Censor et al. [6] introduced the subgradient extragradient method given by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 ∈ H ,

yk = PC(xk – τ f (xk)),

Tk = {w ∈ H : 〈xk – τ f (xk) – yk , w – yk〉 ≤ 0},
xk+1 = PTk (xk – τ f (yk)), ∀k ≥ 0,

(1.4)

replacing one of the projections onto C of the extragradient method by a projection onto
a specific constructible subgradient half-space Tk . This projection method has an advan-
tage in computing over the extragradient method proposed by Korpelevich [14] (see, e.g.,
Censor et al. [5], Dong et al. [9] and the references contained in them). They proved the
following theorem in a real Hilbert space.

Theorem 1.1 (Censor et al., [6]) Assume that f is monotone, Lipschitz and VI(f , C) �= ∅,
with τ < 1

K . Then any sequences {xk}∞k=0 and {yk}∞k=0 generated by (1.4) weakly converge to
the same solution u∗ ∈ VI(f , C) and, furthermore, u∗ = limk→∞ PVI(f ,C)xk .
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In addition, they introduced a modified subgradient extragradient method as follows:

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x0 ∈ H ,

yk = PC(xk – τ f (xk)),

Tk = {w ∈ H : 〈xk – τ f (xk) – yk , w – yk〉 ≤ 0},
xk+1 = αkxk + (1 – αk)SPTk (xk – τ f (yk)), ∀k ≥ 0,

(1.5)

and proved the following theorem in a real Hilbert space.

Theorem 1.2 (Censor et al., [6]) Assume that f is monotone, Lipschitz and VI(f , C) ∩
Fix(S) �= ∅, with τ < 1

K . Then any sequences {xk} and {yk} generated by (1.5) weakly converge
to the same solution u∗ ∈ VI(f , C) ∩ Fix(S) and, furthermore, u∗ = limk→∞ PVI(f ,C)∩Fix(S)xk .

Developing algorithms for solving variational inequality problems has continued to attract
the interest of numerous researchers in nonlinear operator theory. The reader may see the
following important related papers (Gang et al. [11], Anh and Hieu [3], Anh and Hieu [4],
Dong et al. [10] and the references contained in them).
Motivated by the result of Censor et al. [6], we propose in this paper a Krasnoselskii-type
subgradient extragradient algorithm and prove a weak convergence theorem for obtain-
ing a common element of solutions of variational inequality problems and common fixed
points for a countable family of relatively-nonexpansive maps in a uniformly smooth and
2-uniformly convex real Banach space. Our theorem is an improvement of the result of
Censor et al. [6], and a host of other results (see Sect. 5 below).

2 Methods
The paper is organized as follows. Section 3 contains the preliminaries to include defini-
tions and lemmas with corresponding references that will be used in the sequel. Section 4
contains the main result of the paper. In Sect. 5, we compare our theorems with important
recent results in the literature and, thereafter, conclude our findings.

3 Preliminaries
Let E be a real normed space with dual space E∗. We shall denote xk ⇀ x∗ and xk → x∗

to indicate that the sequence {xk} converges weakly to x∗ and converges strongly to x∗,
respectively.
A map J : E → 2E∗ defined by J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} is called the normal-
ized duality map on E. The following properties of the duality map will be needed in the
sequel (see, e.g., Chidume [7], Cioranescu [8] and the references contained in them):

(1) If E is a reflexive, strictly convex, and smooth real Banach space, then J is surjective,
injective, and single-valued.

(2) If E is uniformly smooth, then J is uniformly continuous on a bounded subset of E.
(3) If E = H , a real Hilbert space, then J is the identity map on H .

Remark 1 J is weakly sequentially continuous if, for any sequence {xk} ⊂ E such that xk ⇀

x∗ as k → ∞, then Jxk ⇀ Jx∗ as k → ∞. It is known that the normalized duality map on lp

spaces, 1 < p < ∞, is weakly sequentially continuous.
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Let E be a smooth real Banach space and φ : E × E → R be a map defined by φ(x, y) =
‖x‖2 – 2〈x, Jy〉 + ‖y‖2 for all x, y ∈ E. This map was introduced by Alber [1] and has been
extensively studied by a host of other authors. It is easy to see from the definition of φ that,
if E = H , a real Hilbert space, then φ(x, y) = ‖x – y‖2 for all x, y ∈ H . Furthermore, for any
x, y, z ∈ E and β ∈ (0, 1), we have the following properties.

(P1) (‖x‖ – ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2,∀x, y ∈ E.
(P2) φ(x, z) = φ(x, y) + φ(y, z) + 2〈y – x, Jz – Jy〉.
(P3) φ(x, J–1(βJy + (1 – β)Jz) ≤ βφ(x, y) + (1 – β)φ(x, z).

Definition 3.1 Let C be a nonempty closed and convex subset of a real Banach space E
and T be a map from C to E.

(a) x∗ is called an asymptotic fixed point of T if there exists a sequence {xk} ⊂ C such
that xk ⇀ x∗ and ‖Txk – xk‖ → 0, as k → ∞. We shall denote the set of asymptotic
fixed points of T by F̂(T).

(b) T is called relatively nonexpansive if the fixed point set of T is denoted by
F(T) = F̂(T) �= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C, p ∈ F(T).

Definition 3.2 (Rockafellar, [16]) The normal cone of C at v ∈ C denoted by NC(v) is given
by NC(v) := {w ∈ E∗ : 〈y – v, w〉 ≤ 0,∀y ∈ C}.

Definition 3.3 A map T : E → 2E∗ is called monotone if 〈ηx – ηy, x – y〉 ≥ 0,∀x, y ∈ E and
ηx ∈ Tx,ηy ∈ Tx. Furthermore, T is maximal monotone if it is monotone and the graph
G(T) := {(x, y) ∈ E × E∗ : y ∈ T(x)} is not properly contained in the graph of any other
monotone operator.

Definition 3.4 A convex feasibility problem is a problem of finding a point in the inter-
section of convex sets.

Lemma 3.5 (Rockafellar, [16]) Let C be a nonempty closed and convex subset of a reflexive
Banach space E. Let f : C → E∗ be a monotone and hemicontinuous map and T ⊂ E × E∗

be a map defined by

Tv =

⎧

⎨

⎩

f (v) + NC(v) if v ∈ C,

∅ if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ VI(f , C).

Remark 2 It is known that a monotone map T is maximal if given (x, y) ∈ E × E∗ and if
〈x – u, y – v〉 ≥ 0,∀(u, v) ∈ G(T), then y ∈ Tx.

Lemma 3.6 (Matsushita and Takahashi, [15]) Let E be a smooth, strictly convex, and re-
flexive Banach space and C be a nonempty closed convex subset of E. Then the following
hold:

(1) φ(x,�Cy) + φ(�Cy, y) ≤ φ(x, y),∀x ∈ C, y ∈ E.
(2) z = �Cx ⇐⇒ 〈z – y, Jx – Jz〉 ≥ 0,∀y ∈ C.
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Lemma 3.7 (Kamimura and Takahashi, [12]) Let E be a uniformly convex and uniformly
smooth real Banach space and {xn}∞n=1, {yn}∞n=1 be sequences in E such that either {xn}∞n=1 or
{yn}∞n=1 is bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn – yn‖ = 0.

Lemma 3.8 (Xu, [17]) Let E be a uniformly convex real Banach space. Let r > 0. Then
there exists a strictly increasing continuous and convex function g : [0,∞) → [0,∞) such
that g(0) = 0 and the following inequality holds:

∥
∥λx + (1 – λ)y

∥
∥

2 ≤ λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)g
(‖x – y‖), for all x, y ∈ Br(0),

where Br(0) := {v ∈ E : ‖v‖ ≤ r} and λ ∈ [0, 1].

Lemma 3.9 (Xu, [17]) Let E be a 2-uniformly convex real Banach space. Then there exists
a constant c2 > 0 such that, for every x, y ∈ E,

c2‖x – y‖2 ≤ 〈x – y, jx – jy〉 ≥ 0, ∀jx ∈ Jx, jy ∈ Jy.

Lemma 3.10 (Xu, [17]) Let E be a 2-uniformly convex and smooth real Banach space.
Then, for any x, y ∈ E and for some α > 0,

α‖x – y‖2 ≤ φ(x, y).

Without loss of generality, we may assume α ∈ (0, 1).

Lemma 3.11 (Kohsaka and Takahashi, [13]) Let C be a closed convex subset of a uniformly
convex and uniformly smooth Banach space E. Let Ti : C → E, i = 1, 2, . . . , be a countable
sequence of relatively nonexpansive maps such that

⋂∞
i=1 F(Ti) �= ∅. Suppose that {αi} ⊂

(0, 1) and {βi}∞i=1 ⊂ (0, 1) are sequences such that
∑∞

i=1 αi = 1 and U : C → E is defined by

Ux := J–1

( ∞
∑

i=1

αi
(

βiJx + (1 – βi)JTix
)

)

for each x ∈ C,

then U is relatively nonexpansive and F(U) =
⋂∞

i=1 F(Ti).

4 Main result
In the sequel, α ∈ (0, 1) is the constant appearing in Lemma 3.10.

4.1 The Krasnoselskii-type subgradient extragradient algorithm
Let E be a uniformly smooth and 2-uniformly convex real Banach space with dual space
E∗. Let C be a nonempty closed and convex subset of E. Let J be the normalized duality
maps on E.

Algorithm 1 Let {vk} be a sequence generated iteratively by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v1 ∈ E and τ > 0,

yk = �CJ–1(Jvk – τ f (vk)),

Tk = {w ∈ E : 〈w – yk , (Jvk – τ f (vk)) – Jyk〉 ≤ 0},
vk+1 = �Tk J–1(Jvk – τ f (yk)), ∀k ≥ 1.

(4.1)
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If vk = yk , we stop. Otherwise, replace k by (k + 1) and return to algorithm.
We shall make the following assumptions.

C1 The map f is monotone on E.
C2 The map f is Lipschitz on E, with constant K > 0.
C3 VI(f , C) �= ∅.

Lemma 4.1 If vk = yk in Algorithm 1, then vk ∈ VI(f , C).

Proof If vk = yk , then vk = �CJ–1(Jvk – τ f (vk)) ∈ C. Furthermore, by the characterization
of the generalized projection onto C, we obtain that

〈

w – vk , Jvk – τ f (vk) – Jvk
〉 ≤ 0, ∀w ∈ C

⇐⇒ τ
〈

w – vk , f (vk)
〉 ≥ 0, ∀w ∈ C, τ > 0.

(4.2)

Hence, vk ∈ VI(f , C). �

The following lemma is crucial for the proof of our main theorem.

Lemma 4.2 Let {vk}∞k=1 be the sequence defined in Algorithm 1. Assume conditions C1, C2,
and C3 hold with τ ∈ (0, α

K ). Then, for any v ∈ VI(f , C), the following inequality holds:

φ(v, vk+1) ≤ φ(v, vk) –
(

1 –
τK
α

)

φ(yk , vk) –
(

1 –
τK
α

)

φ(vk+1, yk), ∀k ≥ 1.

Proof Let v ∈ VI(f , C). Then we have that

〈

yk – v, f (yk) – f (v)
〉 ≥ 0, ∀k ≥ 1

�⇒ 〈

v – vk+1, f (yk)
〉 ≤ 〈

yk – vk+1, f (yk)
〉

.
(4.3)

Since vk+1 ∈ Tk , we have that 〈vk+1 – yk , Jvk – τ f (vk) – Jyk〉 ≤ 0,∀k ≥ 1. From the above
inequality, we obtain that

〈

vk+1 – yk , Jvk – τ f (yk) – Jyk
〉

=
〈

vk+1 – yk , Jvk – τ f (vk) – Jyk
〉

+ τ
〈

vk+1 – yk , f (vk) – f (yk)
〉

≤ τ
〈

vk+1 – yk , f (vk) – f (yk)
〉

. (4.4)

Set Jzk = Jvk – τ f (yk). Then we compute as follows:

φ(v, vk+1) ≤ φ(v, zk) – φ(vk+1, zk)

= ‖v‖2 – 2
〈

v, Jvk – τ f (yk)
〉

– ‖vk+1‖2 + 2
〈

vk+1, Jvk – τ f (yk)
〉

= φ(v, vk) – ‖vk‖2 + 2
〈

v, τ f (yk)
〉

– ‖vk+1‖2 + 2
〈

vk+1, Jvk – τ f (yk)
〉

= φ(v, vk) – φ(vk+1, vk) + 2τ
〈

v – vk+1, f (yk)
〉

.

From inequality (4.3) and property P2, it follows that

φ(v, vk+1) ≤ φ(v, vk) – φ(vk+1, vk) + 2τ
〈

yk – vk+1, f (yk)
〉
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= φ(v, vk) – φ(yk , vk) – φ(vk+1, yk) + 2
〈

vk+1 – yk , Jvk – τ f (yk) – Jyk
〉

.

From inequality (4.4), it follows that

φ(v, vk+1) ≤ φ(v, vk) – φ(yk , vk) – φ(vk+1, yk) + 2τ
〈

vk+1 – yk , f (vk) – f (yk)
〉

.

By condition C3 and Lemma 3.10 in the above inequality, it follows that

φ(v, vk+1) ≤ φ(v, vk) – φ(yk , vk) – φ(vk+1, yk) + 2τK‖vk+1 – yk‖‖vk – yk‖

≤ φ(v, vk) –
(

1 –
τK
α

)

φ(yk , vk) –
(

1 –
τK
α

)

φ(vk+1, yk).

This completes the proof. �

Theorem 4.3 Let E be a uniformly smooth and 2-uniformly convex real Banach space
with dual space E∗. Let C be a nonempty closed and convex subset of E and f : E → E∗ be a
map satisfying conditions C1 and C2 with τ ∈ (0, α

K ). Assume that condition C3 holds and J
is weakly sequentially continuous on E. Then the sequence {vk}∞k=1 generated iteratively by
Algorithm 1 converges weakly to some v∗ ∈ VI(f , C).

Proof Since VI(f , C) �= ∅, let v ∈ VI(f , C). Define γ := 1 – τK
α

, then γ ∈ (0, 1). By Lemma 4.2,
we have that limk→∞ φ(v, vk) exists, {φ(yk , vk)} is bounded and

φ(yk , vk) ≤ 1
γ

(

φ(v, vk) – φ(v, vk+1)
)

, ∀k ≥ 1.

Taking limit of both sides of the above inequality, we have that

lim
k→∞

φ(yk , vk) = 0. (4.5)

By Lemma (3.7), limn→∞ ‖yk – vk‖ = 0.
Next, we show that �ω(vk) ⊂ VI(f , C), where �ω(vk) is the set of weak sub-sequential

limit of {vk}. Let x∗ ∈ �ω(vk) and {vkj}∞j=1 be a subsequence of {vk}∞k=1 such that

vkj ⇀ x∗ as j → ∞. Consequently, ykj ⇀ x∗ as j → ∞. (4.6)

Let T : E → E∗ be a map defined by

Tv =

⎧

⎨

⎩

fv + NC(v) if v ∈ C,

∅ if v /∈ C,
(4.7)

where NC(v) is the normal cone to C at v ∈ C. Then T is maximal monotone and
T–1(0) = VI(f , C) (Rockafellar [16]). Let (v, w) ∈ G(T), where G(T) is the graph of T . Then
w ∈ Tv = fv + NC(v). Hence, we get that w – fv ∈ NC(v). This implies that 〈v – t, w – fv〉 ≥
0,∀t ∈ C. In particular,

〈

v – yk , w – f (v)
〉 ≥ 0. (4.8)
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Furthermore, yk = �CJ–1(Jvk – τ f (vk)),∀k ≥ 1. By characterization of the generalized pro-
jection map, we obtain that

〈

yk – v, Jvk – τ f (vk) – Jyk
〉 ≥ 0, ∀v ∈ C. (4.9)

This implies that

〈

v – yk ,
Jyk – Jvk

τ
+ f (vk)

〉

≥ 0, ∀v ∈ C. (4.10)

Using inequalities (4.8) and (4.10) for some M0 > 0, Cauchy–Schwarz inequality, and con-
dition C2, we have that

〈v – ykj , w〉
≥ 〈

v – ykj , f (v)
〉

≥ 〈

v – ykj , f (v)
〉

–
〈

v – ykj ,
Jykj – Jvkj

τ
+ f (vkj )

〉

=
〈

v – ykj , f (v) – f (ykj )
〉

+
〈

v – ykj , f (ykj ) – f (vkj )
〉

–
〈

v – ykj ,
Jykj – Jvkj

τ

〉

≥ –KM0‖ykj – vkj‖ – M0‖Jykj – Jvkj‖. (4.11)

Taking limit of both sides of inequality (4.11) and using the fact that J is uniformly con-
tinuous on bounded subset of E, we obtain that

〈

v – x∗, w
〉 ≥ 0. (4.12)

Since T is a maximal monotone operator, it follows that x∗ ∈ T–1(0) = VI(f , C), which
implies that �ω(vk) ⊂ VI(f , C).

Now, we show that vk ⇀ x∗ as k → ∞. Define xk := �VI(f ,C)vk . Then {xk} ⊂ VI(f , C).
Furthermore, by Lemmas 4.2 and 3.6, we have that

φ(xk , vk+1) ≤ φ(xk , vk) and φ(xk+1, vk+1) ≤ φ(xk , vk+1) – φ(xk , xk+1), (4.13)

which implies that {φ(xk , vk)} converges. From inequality (4.13) and for any m > k, we have
that

φ(xk , vm) ≤ φ(xk , vk) and φ(xk , xm) ≤ φ(xk , vm) – φ(xm, vm). (4.14)

Furthermore, limk→∞ φ(xk , xm) = 0. Hence, by Lemma 3.7, we obtain that limk,m→∞ ‖xk –
xm‖ = 0, which implies that {xk} is a Cauchy sequence in VI(f , C). Therefore, there exists
u∗ ∈ VI(f , C) such that limk→∞ xk = u∗.

Now, using the definition of xk = �VI(f ,C)vk ,∀k ≥ 0, it follows from Lemma 3.6 that for
any p ∈ VI(f , C), we have that

〈xk – p, Jxk – Jvk〉 ≥ 0. (4.15)
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Let {vki} be any subsequence of {vk}. We may assume without loss of generality that {vki}
converges weakly to some p∗ ∈ VI(f , C). By inequality (4.15), weak sequential continuity
of J , and the fact that limk→∞ xk = u∗, we obtain that

〈

u∗ – p∗, Jp∗ – Ju∗〉 ≥ 0. (4.16)

However, from the monotonicity of J , we obtain that

〈

u∗ – p∗, Ju∗ – Jp∗〉 ≥ 0. (4.17)

Combining inequalities (4.16) and (4.17), we have that

〈

u∗ – p∗, Ju∗ – Jp∗〉 = 0. (4.18)

By Lemma 3.9, we obtain that

∥
∥u∗ – p∗∥∥2 ≤ 1

c2

〈

u∗ – p∗, Ju∗ – Jp∗〉 = 0,

which implies that u∗ = p∗. Hence, vk ⇀ u∗ = limk→∞ xk . This completes the proof. �

4.2 The modified Krasnoselskii-type subgradient extragradient algorithm
Algorithm 2 Let {vk}∞k=1 be a sequence generated iteratively by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v1 ∈ E and τ > 0,

yk = �CJ–1(Jvk – τ f (vk)),

Tk = {w ∈ E : 〈w – yk , (Jvk – τ f (vk)) – Jyk〉 ≤ 0},
vk+1 = J–1(βJvk + (1 – β)JS�Tk J–1(Jvk – τ f (yk))), ∀k ≥ 1.

(4.19)

We shall make the following assumption.
C4 G := VI(f , C) ∩ F(S) �= ∅, F(S) is the set of fixed points of S.

The following lemma is crucial for the proof of the next theorem.

Lemma 4.4 Let E be a uniformly smooth and 2-uniformly convex real Banach space with
dual space E∗. Let C be a nonempty closed and convex subset of E. Let S : E → E be a
relatively nonexpansive map and f : E → E∗ be a map satisfying conditions C1 and C2 with
τ ∈ (0, α

K ), and let β ∈ (0, 1). Assume that condition C4 holds and J is weakly sequentially
continuous on E. Then the sequence {vk}∞k=1 generated iteratively by Algorithm 2 converges
weakly to some v∗ ∈ G .

Proof
Denote tk = �Tk J–1(Jvk – τ f (yk)),∀k ≥ 1, Jzk := Jvk – τ f (yk), and γ = 1 – τK

α
.

Since G �= ∅, let u ∈ G . Then we have that

φ(u, tk) ≤ φ(u, zk) – φ(tk , zk)
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= ‖u‖2 – 2
〈

u, Jvk – τ f (yk)
〉

– ‖tk‖2 + 2
〈

tk , Jvk – τ f (yk)
〉

= φ(u, vk) – φ(tk , vk) + 2τ
〈

u – tk , f (yk)
〉

= φ(u, vk) – φ(tk , vk) + 2τ
〈

u – yk , f (yk) – f (u)
〉

+ 2τ
〈

yk – tk , f (yk)
〉

+ 2τ
〈

u – yk , f (u)
〉

.

By C1, 〈u – yk , f (yk) – f (u)〉 ≤ 0,∀k ≥ 1. Consequently, 〈u – yk , f (u)〉 ≤ 0,∀k ≥ 1. Thus, from
the last line of the above inequality and by inequality (4.4), we obtain that

φ(u, tk) ≤ φ(u, vk) – φ(tk , vk) + 2τ
〈

yk – tk , f (yk)
〉

= φ(u, vk) – φ(yk , vk) – φ(tk , yk) + 2
〈

tk – yk , Jvk – τ f (yk) – Jyk
〉

≤ φ(u, vk) – φ(yk , vk) – φ(tk , yk) + 2τ
〈

tk – yk , f (vk) – f (yk)
〉

. (4.20)

By condition C2 and Lemma 3.10, we have that

φ(u, tk) ≤ φ(u, vk) – φ(yk , vk) – φ(tk , yk) +
τK
α

(

φ(tk , yk) + φ(yk , vk)
)

= φ(u, vk) – γφ(tk , yk) – γφ(yk , vk) ≤ φ(u, vk). (4.21)

Applying Lemma 3.8, inequality (4.21), and relative nonexpansivity of S, we obtain that

φ(u, vk+1) = φ
(

u, J–1(βJvk + (1 – β)J(Stk)
)

≤ βφ(u, vk) + (1 – β)φ(u, tk)
)

– β(1 – β)g
(∥
∥Jvk – J(Stk)

∥
∥
)

(4.22)

≤ βφ(u, vk) + (1 – β)
(

φ(u, vk) – γφ(tk , yk) – γφ(yk , vk)
) ≤ φ(u, vk). (4.23)

This implies that limk→∞ φ(u, vk) exists. Consequently, {vk}∞k=1 is bounded. From inequal-
ity (4.21), {tk}∞k=1 is bounded. Also, from inequality (4.22), we obtain that

φ(yk , vk) ≤ 1
γ (1 – β)

(

φ(u, vk) – φ(u, vk+1)
)

and

φ(tk , yk) ≤ 1
γ (1 – β)

(

φ(u, vk) – φ(u, vk+1)
)

.

From these inequalities, we obtain that

lim
k→∞

φ(yk , vk) = 0 and lim
k→∞

φ(tk , yk) = 0. (4.24)

By Lemma 3.7, it follows that lim‖yk – vk‖ = 0 and lim‖tk – yk‖ = 0. Consequently, we
obtain limk→∞ ‖vk – tk‖ = 0.

Next, we show that �ω(vk) ⊂ G = F(S) ∩ VI(f , C), where �ω(vk) is the set of weak sub-
sequential limit of {vk}. Let x∗ ∈ �ω(vk) and {vkj}∞j=1 be a subsequence of {vk}∞k=1 such that

vkj ⇀ x∗ as j → ∞. Consequently, tkj ⇀ x∗ as j → ∞.
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By definition of S, {Stk}∞k=1 is bounded. From inequalities (4.22) and (4.23), we have that

g
(∥
∥Jvk – J(Stk)

∥
∥
) ≤ 1

β(1 – β)
(

φ(u, vk) – φ(u, vk+1)
)

. (4.25)

Applying the property of g , we obtain that

lim
k→∞

∥
∥Jvk – J(Stk)

∥
∥ = 0.

By the uniform continuity of J–1 on a bounded subset of E∗, we get that

lim
k→∞

‖vk – Stk‖ = 0, (4.26)

so that

‖Stk – tk‖ ≤ ‖Stk – vk‖ + ‖vk – tk‖ → 0 as k → ∞, (4.27)

which implies that Sx∗ = x∗. Hence, x∗ ∈ F(S).
Next, we show that x∗ ∈ VI(f , C). Following the same line of argument as in the proof of

Theorem 4.3, we have that x∗ ∈ VI(f , C), and this implies that �ω(vk) ⊂ G .
Define xk := �Gvk . Then {xk} ⊂ G . Now, following the same line of argument as in the

proof of Theorem 4.3, we obtain that u∗ = p∗. Hence, vk ⇀ u∗ = limk→∞ xk .This proof is
complete. �

4.3 A convergence theorem for a convex feasibility problem
In what follows, we shall make the following assumption.

C5 V :=
⋂∞

i=1 F(Ti) ∩ VI(f , C) �= ∅, where F(Ti) := {x ∈ E : Tix = x,∀i ≥ 1}.
We now prove the following theorem.

Theorem 4.5 Let E be a uniformly smooth and 2-uniformly convex real Banach space
with dual space E∗. Let C be a nonempty closed and convex subset of E. Let Ti : E → E,
i = 1, 2, . . . , be a countable family of relatively nonexpansive maps and f : E → E∗ be a map
satisfying conditions C1 and C2 with τ ∈ (0, α

K ), and let β ∈ (0, 1). Assume that condition
C5 holds and J is weakly sequentially continuous on E.Then the sequence {vk}∞k=1 generated
iteratively by Algorithm 2 converges weakly to some v∗ ∈ V , where

Sx = J–1

( ∞
∑

i=1

δi
(

γiJx + (1 – γi)JTix
)

)

,
∞

∑

i=1

δi = 1 and {γi}∞i=1 ⊂ (0, 1).

Proof By Lemma 3.11, S is relatively nonexpansive and F(S) =
⋂∞

i=1 F(Ti). Also, by
Lemma 4.4, the result of Theorem 4.5 follows. �

Corollary 4.6 Let H be a real Hilbert space, and let C be a nonempty closed and convex
subset of H . Let Ti : H → H , i = 1, 2, . . . , be a countable family of nonexpansive maps and
f : H → H be a monotone and K-Lipschitz map. Let the sequence {vk}∞k=1 be generated
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iteratively by

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

v1 ∈ E and τ > 0,

yk = PC(vk – τ f (vk)),

Tk = {w ∈ E : 〈w – yk , (vk – τ f (vk)) – yk〉 ≤ 0},
vk+1 = (βvk + (1 – β)SPTk (vk – τ f (yk)), ∀k ≥ 1.

. (4.28)

Assume that C1, C2, and C5 hold with τ ∈ (0, 1
K ), and let β ∈ (0, 1). Then {vk}∞k=1 converges

weakly to v∗ ∈ V :=
⋂∞

i=1 F(Ti) ∩ VI(f , C), where Sx = (
∑∞

i=1 δi(γix + (1 – γi)Tix)),
∑∞

i=1 δi = 1
and {γi}∞i=1 ⊂ (0, 1).

Proof In a Hilbert space, J is the identity map and φ(y, z) = ‖y – z‖2,∀y, z ∈ H . Thus, the
conclusion follows from Theorem 4.5. �

Annotations. The result of Corollary 4.6 is an immediate consequence of Theorem 4.5.

5 Discussion
All the theorems of this paper are applicable in lp spaces, 1 < p ≤ 2, since these spaces are
uniformly smooth and 2-uniformly convex, and on these spaces, the normalized duality
map is weakly sequentially continuous. The analytical representations of the duality map
in these spaces, where p–1 + q–1 = 1 (see, e.g., Theorem 4.3, Alber and Ryazantseva [2];
p. 36) are:

Jx = ‖x‖2–p
lp y ∈ lp, y =

{|x1|p–2x1, |x2|p–2x2, . . .
}

, x = {x1, x2, . . .},
J–1x = ‖x‖2–q

lq y ∈ lq, y =
{|x1|q–2x1, |x2|q–2x2, . . .

}

, x = {x1, x2, . . .}.

• Theorem 4.3, which approximates a solution of a variational inequality problem,
extends Theorem 5.1 of Censor et al. [6] from a Hilbert space to the more general
uniformly smooth and 2-uniformly convex real Banach space with weakly sequentially
continuous duality map.

• Theorem 4.5, which approximates a common solution of a variational inequality
problem and a common fixed point of a countable family of relatively nonexpansive
maps, extends Theorem 7.1 of Censor et al. [6] from a Hilbert space to a uniformly
smooth and 2-uniformly convex real Banach space with weakly sequentially
continuous duality map, and from a single nonexpansive map to a countable family of
relatively nonexpansive maps.

• The control parameters in Algorithm 2 of Theorem 4.5 are two arbitrarily fixed
constants β ∈ (0, 1) and τ ∈ (0, 1) which are to be computed once and then used at
each step of the iteration process, while the parameters in equation (1.5) studied by
Censor et al. [6] are αk ∈ (0, 1) and τ ∈ (0, 1), and αk is to be computed at each step of
the iteration process. Consequently, the sequence of Algorithm 2 is of Krasnoselskii
type and the sequence defined by equation (1.5) is of Mann type. It is well known that
a Krasnoselskii-type sequence converges as fast as a geometric progression, which is
slightly better than the convergence rate obtained from any Mann-type sequence.
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6 Conclusion
In this paper, we considered Krasnoselskii-type subgradient extragradient algorithms for
approximating a common element of solutions of variational inequality problems and
fixed points of a countable family of relatively nonexpansive maps in a uniformly smooth
and 2-uniformly convex real Banach space. A weak convergence of the sequence gener-
ated by our algorithm is proved. Furthermore, results obtained are applied in lp-spaces,
1 < p ≤ 2.
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