
Hanjing and Suantai Fixed Point Theory and Applications  (2018) 2018:14 
https://doi.org/10.1186/s13663-018-0639-y

R E S E A R C H Open Access

The split common fixed
point problem for infinite families
of demicontractive mappings
Adisak Hanjing1 and Suthep Suantai2,3*

*Correspondence:
suthep.s@cmu.ac.th
2Center of Excellence in
Mathematics and Applied
Mathematics, Department of
Mathematics, Faculty of Science,
Chiang Mai University, Chiang Mai,
Thailand
3Center of Excellence in
Mathematics, CHE, Bangkok,
Thailand
Full list of author information is
available at the end of the article

Abstract
In this paper, we propose a new algorithm for solving the split common fixed point
problem for infinite families of demicontractive mappings. Strong convergence of the
proposed method is established under suitable control conditions. We apply our
main results to study the split common null point problem, the split variational
inequality problem, and the split equilibrium problem in the framework of a real
Hilbert space. A numerical example supporting our main result is also given.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let I denote the
identity mapping. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator with adjoint oper-
ator A∗.

The split feasibility problem (SFP), which was first introduced by Censor and Elfving [1],
is to find

v∗ ∈ C such that Av∗ ∈ Q. (1)

Let PC and PQ be the orthogonal projections onto the sets C and Q, respectively. Assume
that (1) has a solution. It known that v∗ ∈ H1 solves (1) if and only if it solves the fixed
point equation

v∗ = PC
(
I + γ A∗(PQ – I)A

)
v∗,

where γ > 0 is any positive constant.
SFP has been used to model significant real-world inverse problems in sensor networks,

radiation therapy treatment planning, antenna design, immaterial science, computerized
tomography, etc. (see [2–4]).
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The split common fixed point problem (SCFP) for mappings T and S, which was first
introduced by Censor and Segal [5], is to find

v∗ ∈ F(T) such that Av∗ ∈ F(S), (2)

where T : H1 → H1 and S : H2 → H2 are two mappings satisfying F(T) = {x ∈ H1 :
Tx = x} �= ∅ and F(S) = {x ∈ H2 : Sx = x} �= ∅, respectively. Since each closed and convex
subset may be considered as a fixed point set of a projection onto the subset, the SCFP is a
generalization of the SFP. Recently, the SFP and SCFP have been studied by many authors;
see, for example, [6–11].

In 2010, Moudafi [11] introduced the following algorithm for solving (2) for two demi-
contractive mappings:

⎧
⎪⎨

⎪⎩

x1 ∈ H1 choose arbitrarily,
un = xn + γαA∗(S – I)Axn,
xn+1 = (1 – βn)un + βnTun, n ∈ N.

(3)

He proved that {xn} converges weakly to some solution of SCFP.
The multiple set split feasibility problem (MSSFP), which was first introduced by Censor

et al. [4], is to find

v∗ ∈
m⋂

i=1

Ci such that Av∗ ∈
r⋂

i=1

Qi, (4)

where {Ci}m
i=1 and {Qi}r

i=1 are families of nonempty closed convex subsets of real Hilbert
spaces H1 and H2, respectively. We see that if m = r = 1, then problem (4) reduces to prob-
lem (1).

Recently, Eslamian [12] considered the problem of finding a point

v∗ ∈
m⋂

i=1

F(Ui) such that A1v∗ ∈
m⋂

i=1

F(Si) and A2v∗ ∈
m⋂

i=1

F(Ti), (5)

where A1, A2 : H1 → H2 are bounded linear operators, and Ui : H1 → H1, Ti : H2 → H2

and Si : H2 → H2, i = 1, 2, . . . , m. He also presented a new algorithm to solve (5) for finite
families of quasi-nonexpansive mappings:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 ∈ H1 choose arbitrarily,
un = xn +

∑m
i=1

1
mηβA∗

1(Si – I)A1xn,
yn = un +

∑m
i=1

1
mη′β ′A∗

2(Ti – I)A2un,
zn = αn,0yn +

∑m
i=1 αn,iUiyn,

xn+1 = θnγ f (xn) + (I – θnB)zn, n ∈N.

(6)

He proved that {xn} converges strongly to some solution of (5) under some control con-
ditions.

Question. Can we modify algorithm (6) to a simple one for solving the problem of finding

v∗ ∈
∞⋂

i=1

F(Ui) such that A1v∗ ∈
∞⋂

i=1

F(Si) and A2v∗ ∈
∞⋂

i=1

F(Ti), (7)
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where A1, A2 : H1 → H2 are bounded linear operators, and {Ui : H1 → H1 : i ∈ N},
{Ti : H2 → H2 : i ∈ N} and {Si : H2 → H2 : i ∈ N} are infinite families of k3-, k2-, and k1-
demicontractive mappings, respectively.

In this work, we introduce a new algorithm for solving problem (7) for infinite families of
demicontractive mappings and prove its strong convergence to a solution of problem (7).

2 Preliminaries
Throughout this paper, we adopt the following notations.

(i) “→” and “⇀” denote the strong and weak convergence, respectively.
(ii) ωω(xn) denotes the set of the cluster points of {xn} in the weak topology, that is,

∃{xni} of {xn} such that xni ⇀ x.
(iii) 	 is the solution set of problem (7), that is,

	 =

{

v∗ ∈
∞⋂

i=1

F(Ui) : A1v∗ ∈
∞⋂

i=1

F(Si) and A2v∗ ∈
∞⋂

i=1

F(Ti)

}

.

A mapping PC is said to be a metric projection of H onto C if for every x ∈ H , there exists
a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – z‖, ∀z ∈ C.

It is known that PC is a firmly nonexpansive mapping. Moreover, PC is characterized by the
following property: 〈x – PCx, y – PCx〉 ≤ 0 for all x ∈ H , y ∈ C. A bounded linear operator
B : H → H is said to be strongly positive if there is a constant ξ > 0 such that

〈Bx, x〉 ≥ ξ‖x‖2 for all x ∈ H .

Definition 2.1 The mapping T : H → H is said to be
(i) L-Lipschitzian if there exists L > 0 such that

‖Tu – Tv‖ ≤ L‖u – v‖ for all u, v ∈ H ;

(ii) α-contraction if T is α-Lipschitzian with α ∈ [0, 1), that is,

‖Tu – Tv‖ ≤ α‖u – v‖ for all u, v ∈ H ;

(iii) nonexpansive if T is 1-Lipschitzian;
(iv) quasi-nonexpansive if F(T) �= ∅ and

‖Tu – v‖ ≤ ‖u – v‖ for all u ∈ H , v ∈ F(T);

(v) firmly nonexpansive if

‖Tu – Tv‖2 ≤ ‖u – v‖2 –
∥
∥(u – v) – (Tu – Tv)

∥
∥2 for all u, v ∈ H ;

or equivalently, for all u, v ∈ H ,

‖Tu – Tv‖2 ≤ 〈Tu – Tv, u – v〉;
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(vi) λ-inverse strongly monotone if there exists λ > 0 such that

〈u – v, Tu – Tv〉 ≥ λ‖Tu – Tv‖2 for all u, v ∈ H ;

(vii) k-demicontractive if F(T) �= ∅ and there exists k ∈ [0, 1) such that

‖Tu – v‖2 ≤ ‖u – v‖2 + k‖u – Tu‖2 for all u ∈ H , v ∈ F(T).

The following example is an infinite family of k-demicontractive mappings in R
2.

Example 2.2 For i ∈N, let Ui : R2 →R
2 be defined for all x1, x2 ∈R by

Ui(x1, x2) =
(

–2i
i + 1

x1, x2

)
,

and ‖ · ‖ is the Euclidean norm on R
2. Observe that F(Ui) = 0 × R for all i ∈ N, that is, if

x = (x1, x2) ∈R×R and p = (0, p2) ∈ F(Ui), then

‖Uix – p‖2 =
∥∥
∥∥

(
–2i
i + 1

x1, x2

)
– (0, p2)

∥∥
∥∥

2

=
(

–2i
i + 1

)2

|x1|2 + |x2 – p2|2

≤ 4|x1|2 + |x2 – p2|2

= |x1|2 +
3
4

(1 + 1)2|x1|2 + |x2 – p2|2

≤ ‖x – p‖2 +
3
4

(
1 +

2i
i + 1

)2

|x1|2

= ‖x – p‖2 +
3
4
‖Uix – x‖2.

So, Ui are 3
4 -demicontractive mappings for all i ∈N.

Definition 2.3 The mapping T : H → H is said to be demiclosed at zero if for any sequence
{un} ⊂ H with un ⇀ u and Tun → 0, we have Tu = 0.

Lemma 2.4 ([13]) Assume that B is a self-adjoint strongly positive bounded linear operator
on a Hilbert space H with coefficient ξ > 0 and 0 < μ ≤ ‖B‖–1. Then ‖I – μB‖ ≤ 1 – ξμ.

Lemma 2.5 ([14]) Let H be a real Hilbert space. Then the following results hold:
(i) ‖u + v‖2 = ‖u‖2 + 2〈u, v〉 + ‖v‖2 ∀u, v ∈ H ;

(ii) ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉 ∀u, v ∈ H .

Lemma 2.6 ([15]) Let {an} be a sequence of nonnegative real numbers satisfying the fol-
lowing relation:

an+1 ≤ (1 – γn)an + δn, n ∈N,

where
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(i) {γn} ⊂ (0, 1),
∑∞

n=1 γn = ∞;
(ii) lim supn→∞

δn
γn

≤ 0 or
∑∞

n=1 |δn| < ∞.
Then limn→∞ an = 0.

Lemma 2.7 ([16]) Let {κn} be a sequence of real numbers that does not decrease at infinity,
that is, there exists at a subsequence {κni} of {κn} that satisfies κni < κni+1 for all i ∈ N. For
every n ≥ no, define the integer sequence {τ (n)} as follows:

τ (n) = max{l ∈N : l ≤ n,κl < κl+1},

where no ∈N is such that {l ≤ no : κl < κl+1} �= ∅. Then:
(i) τ (no) ≤ τ (no + 1) ≤ · · · , and τ (n) → ∞;

(ii) for all n ≥ no, max{κn,κτ (n)} ≤ κτ (n)+1.

3 Results and discussion
In this section, we propose a new algorithm, which is a modification of (6) and prove its
strong convergence under some suitable conditions. We start with the following important
lemma.

Lemma 3.1 For two real Hilbert spaces H1 and H2, let A : H1 → H2 be a bounded linear
operator with adjoint operator A∗. If T : H2 → H2 is a k-demicontractive mapping, then

∥∥x + δA∗(T – I)Ax – x∗∥∥2 ≤ ∥∥x – x∗∥∥2 – δn
(
1 – k – δ‖A‖2)∥∥(T – I)Ax

∥∥2

for all x∗ ∈ H1 such that Ax∗ ∈ F(T).

Proof Suppose that T : H2 → H2 is a k-demicontractive mapping and let x∗ ∈ H1 be such
that Ax∗ ∈ F(T). Then we have

∥∥x – x∗ + δA∗(T – I)Ax
∥∥2 ≤ ∥∥x – x∗∥∥2 + 2δ

〈
x – x∗, A∗(T – I)Ax

〉

+ δ2‖A‖2∥∥(T – I)Ax
∥
∥2. (8)

Since A is a bounded linear operator with adjoint operator A∗ and T is a k-demicontractive
mapping, by Lemma 2.5(ii) we deduce that

〈
x – x∗, A∗(T – I)Ax

〉
=
〈
Ax – Ax∗, (T – I)Ax

〉

=
〈
TAx – Ax∗, TAx – Ax

〉
–
∥
∥(T – I)Ax

∥
∥2

=
1
2
[∥∥TAx – Ax∗∥∥2 + ‖TAx – Ax‖2 –

∥∥Ax – Ax∗∥∥2]

–
∥
∥(T – I)Ax

∥
∥2

≤ 1
2
[∥∥Ax – Ax∗∥∥2 + k‖TAx – Ax‖2

+ ‖TAx – Ax‖2 –
∥
∥Ax – Ax∗∥∥2] –

∥
∥(T – I)Ax

∥
∥2

=
k – 1

2
∥∥(T – I)Ax

∥∥2. (9)
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From (8) and (9) we get

∥
∥x + δA∗(T – I)Ax – x∗∥∥2 ≤ ∥∥x – x∗∥∥2 – δ

(
1 – k – δ‖A‖2)∥∥(T – I)Ax

∥
∥2.

This completes the proof. �

Lemma 3.2 For two real Hilbert spaces H1 and H2, let A : H1 → H2 be a bounded linear
operator with adjoint operator A∗, and let {Ti : H2 → H2 : i ∈ N} be an infinite family of
k-demicontractive mappings. Let {xn} be sequence in H1, and let

un = xn +
n∑

i=1

αn,iδnA∗(Ti – I)Axn, ∀n ∈N, (10)

where {αn,i} is a real sequence in [0, 1] satisfying
∑n

i=1 αn,i = 1. Then we have

∥∥un – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 –
n∑

i=1

αn,iδn
(
1 – k – δn‖A‖2)∥∥(Ti – I)Axn

∥∥2

for all x∗ ∈ H1 such that Ax∗ ∈⋂∞
i=1 F(Ti).

Proof Let x∗ ∈ H1 be such that Ax∗ ∈⋂∞
i=1 F(Ti). From (10) and Lemma 3.1 we obtain

∥
∥un – x∗∥∥2 ≤

n∑

i=1

αn,i
∥
∥xn – x∗ + δnA∗(Ti – I)Axn

∥
∥2

≤
n∑

i=1

αn,i
[∥∥xn – x∗∥∥2 – δn

(
1 – k – δn‖A‖2)∥∥(Ti – I)Axn

∥
∥2]

=
∥
∥xn – x∗∥∥2 –

n∑

i=1

αn,iδn
(
1 – k – δn‖A‖2)∥∥(Ti – I)Axn

∥
∥2.

This completes the proof. �

Lemma 3.3 Let {Ti : H1 → H1 : i ∈N} be an infinite family of k-demicontractive mappings
from a Hilbert space H1 to itself. Let {xn} be sequence in H1, and let

un = xn +
n∑

i=1

αn,iδn(Ti – I)xn, ∀n ∈N, (11)

where {αn,i} is a real sequence in [0, 1] satisfying
∑n

i=1 αn,i = 1. Then we have

∥
∥un – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 –

n∑

i=1

αn,iδn(1 – k – δn)
∥
∥(Ti – I)xn

∥
∥2

for all x∗ ∈⋂∞
i=1 F(Ti).

Proof The statement directly follows from Lemma 3.2 by putting H1 = H2 and A = I . �
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Now, we introduce a new algorithm for solving problem (7) for an infinite family of
demicontractive mappings and then prove its strong convergence.

Theorem 3.4 Let H1 and H2 be two real Hilbert spaces, and let A1, A2 : H1 → H2 be two
bounded linear operators with adjoint operators A∗

1 and A∗
2, respectively. Let f : H1 → H1

be a ρ-contraction mapping, and let B be a self-adjoint strongly positive bounded linear op-
erator on H1 with coefficient ξ > 2ρ and ‖B‖ = 1. Let {Si : H2 → H2 : i ∈N}, {Ti : H2 → H2 :
i ∈ N}, and {Ui : H1 → H1 : i ∈ N} be infinite families of k1-, k2-, and k3-demicontractive
mappings such that Si – I , Ti – I , and Ui – I are demiclosed at zero, respectively. Suppose that
	 = {v∗ ∈⋂∞

i=1 F(Ui) : A1v∗ ∈⋂∞
i=1 F(Si) and A2v∗ ∈⋂∞

i=1 F(Ti)} �= ∅. For arbitrary x1 ∈ H1,
let {un}, {vn}, {yn}, and {xn} be generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn +
∑n

i=1 αn,iδnA∗
1(Si – I)A1xn,

vn = un +
∑n

i=1 βn,iθnA∗
2(Ti – I)A2un,

yn = vn +
∑n

i=1 γn,iτn(Ui – I)vn,
xn+1 = σnf (yn) + (I – σnB)yn, n ∈N,

(12)

where {δn}, {θn}, {τn}, {σn}, {αn,i}, {βn,i}, and {γn,i} are sequences in [0, 1] satisfying the fol-
lowing conditions:

(C1)
∑n

i=1 αn,i =
∑n

i=1 βn,i =
∑n

i=1 γn,i = 1 for all n ∈ N;
(C2) lim infn→∞ αn,i > 0, lim infn→∞ βn,i > 0, and lim infn→∞ γn,i > 0 for all i ∈N;
(C3) limn→∞ σn = 0 and

∑∞
n=1 σn = ∞;

(C4) 0 < a1 ≤ δn ≤ a2 < 1–k1
‖A1‖2 ;

(C5) 0 < b1 ≤ θn ≤ b2 < 1–k2
‖A2‖2 ;

(C6) 0 < c1 ≤ τn ≤ c2 < 1 – k3.
Then the sequence {xn} converges strongly to x∗ = P	(f + I – B)x∗.

Proof For any u, v ∈ H1, by Lemma 2.4 we have

∥∥P	(f + I – B)u – P	(f + I – B)v
∥∥≤ ∥∥(f + I – B)u – (f + I – B)v

∥∥

≤ ∥∥f (u) – f (v)
∥∥ + ‖I – B‖‖u – v‖

≤ ρ‖u – v‖ + (1 – ξ )‖u – v‖
≤ (1 – ρ)‖u – v‖,

that is, the mapping P	(f + I – B) is a contraction. So, by the Banach contraction principle
there is a unique element x∗ ∈ H1 such that x∗ = P	(f + I – B)x∗.

Let x∗ = P	(f + I – B)x∗, that is, x∗ ∈⋂∞
i=1 F(Ui) is such that A1x∗ ∈⋂∞

i=1 F(Si) and A2x∗ ∈
⋂∞

i=1 F(Ti). From Lemmas 3.2 and 3.3 and from (12) we obtain

∥∥un – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 –
n∑

i=1

αn,iδn
(
1 – k1 – δn‖A1‖2)∥∥(Si – I)A1xn

∥∥2, (13)

∥
∥vn – x∗∥∥2 ≤ ∥∥un – x∗∥∥2 –

n∑

i=1

βn,iθn
(
1 – k2 – θn‖A2‖2)∥∥(Ti – I)A2un

∥
∥2, (14)
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and

∥∥yn – x∗∥∥2 ≤ ∥∥vn – x∗∥∥2 –
n∑

i=1

λn,iτn(1 – k3 – τn)
∥∥(Ui – I)vn

∥∥2. (15)

Therefore

∥∥yn – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 –
n∑

i=1

αn,iδn
(
1 – k1 – δn‖A1‖2)∥∥(Si – I)A1xn

∥∥2

–
n∑

i=1

βn,iθn
(
1 – k2 – θn‖A2‖2)∥∥(Ti – I)A2un

∥∥2

–
n∑

i=1

λn,iτn(1 – k3 – τn)
∥∥(Ui – I)vn

∥∥2. (16)

By conditions (C4), (C5), and (C6) we have

∥∥yn – x∗∥∥≤ ∥∥xn – x∗∥∥. (17)

By condition (C3) we may assume that σn ∈ (0,‖B‖–1) for all n ∈ N. By Lemma 2.4 we get
‖I – σnB‖ ≤ 1 – σnξ . From (12) and (17) we get

∥∥xn+1 – x∗∥∥ =
∥∥σnf (yn) + (I – σnB)yn – x∗∥∥

=
∥∥σn
(
f (yn) – Bx∗) + (I – σnB)

(
yn – x∗)∥∥

≤ σn
[∥∥f (yn) – f

(
x∗)∥∥ +

∥∥f
(
x∗) – Bx∗∥∥] + ‖I – σnB‖∥∥yn – x∗∥∥

≤ σnρ
∥∥yn – x∗∥∥ + σn

∥∥f
(
x∗) – Bx∗∥∥ + (1 – σnξ )

∥∥yn – x∗∥∥

≤ (1 – σn(ξ – ρ)
)∥∥xn – x∗∥∥ + σn(ξ – ρ)

‖f (x∗) – Bx∗‖
ξ – ρ

≤ max

{∥
∥xn – x∗∥∥,

‖f (x∗) – Bx∗‖
ξ – ρ

}

...

≤ max

{∥∥x1 – x∗∥∥,
‖f (x∗) – Bx∗‖

ξ – ρ

}
. (18)

Therefore {xn} is bounded, and we also have that {yn} and {f (yn)} are bounded. To this end,
we consider the following two cases.

Case 1. Suppose that {‖xn – x∗‖}∞n=no is nonincreasing for some no ∈N. Then we get that
limn→∞ ‖xn – x∗‖ exists. By (16), (17), and Lemma 2.5(i) we get

∥∥xn+1 – x∗∥∥2 =
∥∥σn
(
f (yn) – Bx∗) + (I – σnB)

(
yn – x∗)∥∥2

≤ σn
∥
∥f (yn) – Bx∗∥∥2 + (1 – σnξ )

∥
∥yn – x∗∥∥2

+ 2σn(1 – σnξ )
∥
∥f (yn) – Bx∗∥∥∥∥yn – x∗∥∥

≤ σnM +
∥∥xn – x∗∥∥2
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–
n∑

i=1

αn,iδn
(
1 – k1 – δn‖A1‖2)∥∥(Si – I)A1xn

∥∥2

–
n∑

i=1

βn,iθn
(
1 – k2 – θn‖A2‖2)∥∥(Ti – I)A2un

∥∥2

–
n∑

i=1

λn,iτn(1 – k3 – τn)
∥∥(Ui – I)vn

∥∥2,

where

M = sup
n

{∥∥f (yn) – Bx∗∥∥2 + 2
∥∥f (yn) – Bx∗∥∥∥∥xn – x∗∥∥}.

This implies, for j = 1, 2, . . . , n,

αn,jδn
(
1 – k1 – δn‖A1‖2)∥∥(Sj – I)A1xn

∥
∥2

≤
n∑

i=1

αn,iδn
(
1 – k1 – δn‖A1‖2)∥∥(Si – I)A1xn

∥∥2

≤ σnM +
∥∥xn – x∗∥∥2 –

∥∥xn+1 – x∗∥∥2, (19)

βn,jθn
(
1 – k2 – θn‖A2‖2)∥∥(Tj – I)A2un

∥
∥2

≤
n∑

i=1

βn,iθn
(
1 – k2 – θn‖A2‖2)∥∥(Ti – I)A2un

∥∥2

≤ σnM +
∥∥xn – x∗∥∥2 –

∥∥xn+1 – x∗∥∥2, (20)

and

λn,jτn(1 – k3 – τn)
∥
∥(Uj – I)vn

∥
∥2 ≤

n∑

i=1

λn,iτn(1 – k3 – τn)
∥
∥(Ui – I)vn

∥
∥2

≤ σnM +
∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2. (21)

From (19), (20), (21), and conditions (C2)–(C6) we obtain

lim
n→∞

∥∥(Sj – I)A1xn
∥∥ = lim

n→∞

n∑

i=1

αn,i
∥∥(Si – I)A1xn

∥∥2 = 0, (22)

lim
n→∞

∥∥(Tj – I)A2un
∥∥ = lim

n→∞

n∑

i=1

βn,i
∥∥(Ti – I)A2un

∥∥2 = 0, (23)

and

lim
n→∞

∥
∥(Uj – I)vn

∥
∥ = lim

n→∞

n∑

i=1

λn,i
∥
∥(Ui – I)vn

∥
∥2 = 0. (24)

Next, we show that

lim sup
n→∞

〈
f
(
x∗) – Bx∗, xn – x∗〉≤ 0, where x∗ = P	(f + I – B)x∗.
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To see this, choose a subsequence {xnp} of {xn} such that

lim sup
n→∞

〈
f
(
x∗) – Bx∗, xn – x∗〉 = lim

p→∞
〈
f
(
x∗) – Bx∗, xnp – x∗〉.

Since the sequence {xnp} is bounded, there exists a subsequence {xnpj
} of {xnp} such that

xnpj
⇀ z ∈ H1. Without loss of generality, we may assume that xnp ⇀ z ∈ H1. Since A1 is a

bounded linear operator, this yields that A1xnp ⇀ A1z. By the demiclosedness principle of
Si – I at zero and (22) we get A1z ∈⋂∞

i=1 F(Si). By (12) and (22) we have

‖un – xn‖2 =

∥
∥∥
∥∥

xn +
n∑

i=1

αn,iδnA∗
1(Si – I)A1xn – xn

∥
∥∥
∥∥

2

≤
n∑

i=1

αn,iδn‖A1‖2∥∥(Si – I)A1xn
∥∥2 → 0 as n → ∞.

Similarly, we also have ‖vn – un‖ → 0 as n → ∞. Using the fact that xnp ⇀ z and
‖un – xn‖ → 0, we conclude that unp ⇀ z. Since A2 is a bounded linear operator, we
get that A2unp ⇀ A2z. By the demiclosedness principle of Ti – I at zero and (23) we get
A2z ∈⋂∞

i=1 F(Ti). Again, since unp ⇀ z and ‖vn –un‖ → 0, we conclude that vnp ⇀ z. By the
demiclosedness principle of Ui – I at zero and (24) we also have z ∈⋂∞

i=1 F(Ui). Therefore
z ∈ 	.

Since x∗ = P	(f + I – B)x∗ and z ∈ 	, we get

lim sup
n→∞

〈
f
(
x∗) – Bx∗, xn – x∗〉 = lim

p→∞
〈
f
(
x∗) – Bx∗, xnp – x∗〉

=
〈
f
(
x∗) – Bx∗, z – x∗〉≤ 0. (25)

Using Lemma 2.5 and (17), we have

∥∥xn+1 – x∗∥∥2 =
∥∥σn
(
f (yn) – Bx∗) + (I – σnB)

(
yn – x∗)∥∥2

≤ (1 – σnξ )
∥∥yn – x∗∥∥2 + 2σn

〈
f (yn) – Bx∗, xn+1 – x∗〉

≤ (1 – σnξ )
∥∥xn – x∗∥∥2 + 2ρσn

∥∥yn – x∗∥∥∥∥xn+1 – x∗∥∥

+ 2σn
〈
f
(
x∗) – Bx∗, xn+1 – x∗〉

≤ (1 – σnξ )
∥∥xn – x∗∥∥2 + ρσn

[∥∥xn – x∗∥∥2 +
∥∥xn+1 – x∗∥∥2]

+ 2σn
〈
f
(
x∗) – Bx∗, xn+1 – x∗〉

=
(
1 – σn(ξ – ρ)

)∥∥xn – x∗∥∥2 + ρσn
∥
∥xn+1 – x∗∥∥2

+ 2σn
〈
f
(
x∗) – Bx∗, xn+1 – x∗〉.

This implies that

∥∥xn+1 – x∗∥∥2 ≤
[

1 –
σn(ξ – ρ)
1 – σnρ

]∥∥xn – x∗∥∥2 +
2σn

1 – σnρ

〈
f
(
x∗) – Bx∗, xn+1 – x∗〉. (26)

By (25), (26), and Lemma 2.6 we conclude that xn → x∗ as n → ∞.
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Case 2. Suppose that there exists an integer mo such that

∥∥xmo – x∗∥∥≤ ∥∥xmo+1 – x∗∥∥.

Put κn = ‖xn – x∗‖ for all n ≥ mo. Then we have κmo ≤ κmo+1. Let {μ(n)} be the sequence
defined by

μ(n) = max{l ∈N : l ≤ n,κl ≤ κl+1}

for all n ≥ mo. By Lemma 2.7 we obtain that {μ(n)} is a nondecreasing sequence such that

lim
n→∞μ(n) = ∞ and κμ(n) ≤ κμ(n)+1 for all n ≥ mo.

By the same argument as in case 1 we obtain

lim
n→∞

∥
∥(Si – I)A1xμ(n)

∥
∥ = 0, lim

n→∞
∥
∥(Ti – I)A2uμ(n)

∥
∥ = 0,

and

lim
n→∞

∥∥(Ui – I)vμ(n)
∥∥ = 0.

By the demiclosedness principle of Si – I , Ti – I , and Ui – I at zero, we have ωω(xμ(n)) ⊂ 	.
This implies that

lim sup
n→∞

〈
f
(
x∗) – Bx∗, xμ(n) – x∗〉≤ 0.

By a similar argument from (26) we also have

κ2
μ(n)+1 ≤

[
1 –

σμ(n)(ξ – ρ)
1 – σμ(n)ρ

]
κ2

μ(n) +
2σμ(n)

1 – σμ(n)ρ

〈
f
(
x∗) – Bx∗, xμ(n)+1 – x∗〉.

So, we get limn→∞ κμ(n) = 0 and also have limn→∞ κμ(n)+1 = 0. By Lemma 2.7 we have

0 ≤ κn ≤ max{κn,κμ(n)} ≤ κμ(n)+1.

Therefore xn → x∗ as n → ∞. This completes the proof. �

By setting Ti = I for all i ∈N in Theorem 3.4 we obtain the following result.

Corollary 3.5 Let H1 and H2 be two real Hilbert spaces, let A1 : H1 → H2 be a bounded
linear operator with adjoint operator A∗

1. Let f : H1 → H1 be a ρ-contraction mapping,
and let B be a self-adjoint strongly positive bounded linear operator on H1 with coefficient
ξ > 2ρ and ‖B‖ = 1. Let {Si : H2 → H2 : i ∈ N} and {Ui : H1 → H1 : i ∈ N} be infinite fami-
lies of k1- and k3-demicontractive mappings such that Si – I and Ui – I are demiclosed at
zero, respectively. Suppose that � = {v∗ ∈⋂∞

i=1 F(Ui) : A1v∗ ∈⋂∞
i=1 F(Si)} �= ∅. For arbitrary
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x1 ∈ H1, let {un}, {yn}, and {xn} be generated by

⎧
⎪⎨

⎪⎩

un = xn +
∑n

i=1 αn,iδnA∗
1(Si – I)A1xn,

yn = un +
∑n

i=1 γn,iτn(Ui – I)un,
xn+1 = σnf (yn) + (I – σnB)yn, n ∈N,

(27)

where {δn}, {τn}, {σn}, {αn,i}, and {γn,i} are sequences in [0, 1] satisfying the following condi-
tions:

(C1)
∑n

i=1 αn,i =
∑n

i=1 γn,i = 1 for all n ∈ N;
(C2) lim infn→∞ αn,i > 0 and lim infn→∞ γn,i > 0 for all i ∈N;
(C3) limn→∞ σn = 0 and

∑∞
n=1 σn = ∞;

(C4) 0 < a1 ≤ δn ≤ a2 < 1–k1
‖A1‖2 ;

(C5) 0 < c1 ≤ τn ≤ c2 < 1 – k3.
Then the sequence {xn} converges strongly to x∗ = P�(f + I – B)x∗.

Remark 3.6 By the same setting as in Corollary 3.5, Eslamian [17] used another algorithm
for solving the same problem as in Corollary 3.5; see [17], Theorem 3.3. Note that each
step of our algorithm is much easier for computation than that of Eslamian [17] because
our algorithm concerns only the finite sum.

By setting f (y) = v for all y ∈ H1 and B = I in Theorem 3.4 we obtain the following result.

Corollary 3.7 Let H1 and H2 be two real Hilbert spaces, and let A1, A2 : H1 → H2 be two
bounded linear operators with adjoint operators A∗

1 and A∗
2, respectively. Let {Si : H2 → H2 :

i ∈ N}, {Ti : H2 → H2 : i ∈N}, and {Ui : H1 → H1 : i ∈ N} be infinite families of k1-, k2-, and
k3-demicontractive mappings such that Si – I , Ti – I , and Ui – I are demiclosed at zero, re-
spectively. Suppose that 	 = {v∗ ∈⋂∞

i=1 F(Ui) : A1v∗ ∈⋂∞
i=1 F(Si) and A2v∗ ∈⋂∞

i=1 F(Ti)} �=
∅. For arbitrary x1 ∈ H1, let {un}, {vn}, {yn}, and {xn} be generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn +
∑n

i=1 αn,iδnA∗
1(Si – I)A1xn,

vn = un +
∑n

i=1 βn,iθnA∗
2(Ti – I)A2un,

yn = vn +
∑n

i=1 γn,iτn(Ui – I)vn,
xn+1 = σnv + (1 – σn)yn, n ∈N,

(28)

where {δn}, {θn}, {τn}, {σn}, {αn,i}, {βn,i}, and {γn,i} are sequences in [0, 1] satisfying the fol-
lowing conditions:

(C1)
∑n

i=1 αn,i =
∑n

i=1 βn,i =
∑n

i=1 γn,i = 1 for all n ∈ N;
(C2) lim infn→∞ αn,i > 0, lim infn→∞ βn,i > 0, and lim infn→∞ γn,i > 0 for all i ∈N;
(C3) limn→∞ σn = 0 and

∑∞
n=1 σn = ∞;

(C4) 0 < a1 ≤ δn ≤ a2 < 1–k1
‖A1‖2 ;

(C5) 0 < b1 ≤ θn ≤ b2 < 1–k2
‖A2‖2 ;

(C6) 0 < c1 ≤ τn ≤ c2 < 1 – k3.
Then the sequence {xn} converges strongly to x∗ = P	(v).

It is known that every quasi-nonexpansive mapping is 0-demicontractive mapping, so
the following result is directly obtained by Theorem 3.2.
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Corollary 3.8 Let H1 and H2 be two real Hilbert spaces, and let A1, A2 : H1 → H2 be two
bounded linear operators with adjoint operators A∗

1 and A∗
2, respectively. Let {Si : H2 →

H2 : i ∈ N}, {Ti : H2 → H2 : i ∈ N}, and {Ui : H1 → H1 : i ∈ N} be infinite families of quasi-
nonexpansive mappings such that Si – I , Ti – I , and Ui – I are demiclosed at zero, respec-
tively. Suppose that 	 = {v∗ ∈⋂∞

i=1 F(Ui) : A1v∗ ∈⋂∞
i=1 F(Si) and A2v∗ ∈⋂∞

i=1 F(Ti)} �= ∅.
For arbitrary x1 ∈ H1, let {un}, {vn}, {yn}, and {xn} be generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn +
∑n

i=1 αn,iδnA∗
1(Si – I)A1xn,

vn = un +
∑n

i=1 βn,iθnA∗
2(Ti – I)A2un,

yn = vn +
∑n

i=1 γn,iτn(Ui – I)vn,
xn+1 = σnv + (1 – σn)yn, n ∈N,

(29)

where {δn}, {θn}, {τn}, {σn}, {αn,i}, {βn,i}, and {γn,i} are sequences in [0, 1] satisfying the fol-
lowing conditions:

(C1)
∑n

i=1 αn,i =
∑n

i=1 βn,i =
∑n

i=1 γn,i = 1 for all n ∈ N;
(C2) lim infn→∞ αn,i > 0, lim infn→∞ βn,i > 0, and lim infn→∞ γn,i > 0 for all i ∈N;
(C3) limn→∞ σn = 0 and

∑∞
n=1 σn = ∞;

(C4) 0 < a1 ≤ δn ≤ a2 < 1
‖A1‖2 ;

(C5) 0 < b1 ≤ θn ≤ b2 < 1
‖A2‖2 ;

(C6) 0 < c1 ≤ τn ≤ c2 < 1.
Then the sequence {xn} converges strongly to x∗ = P	(v).

4 Applications
4.1 The split common null point problem
Let M be the set-valued mapping of H into 2H . The effective domain of M is denoted by
D(M), that is, D(M) = {x ∈ H : Mx �= ∅}. The mapping M is said to be monotone if

〈x – y, u – v〉 ≥ 0, ∀x, y ∈ D(M), u ∈ Mx, v ∈ My.

A monotone mapping M is said to be maximal if the graph G(M) is not properly contained
in the graph of any other monotone map, where G(M) = {(x, y) ∈ H × H : y ∈ Mx}. It is
known that M is maximal if and only if for (x, u) ∈ H × H , 〈x – y, u – v〉 ≥ 0 for every
(y, v) ∈ G(M) implies u ∈ Mx. For the maximal monotone operator M, we can associate its
resolvent JM

δ defined by

JM
δ ≡ (I + δM)–1 : H → D(M), where δ > 0.

It is known that if M is a maximal monotone operator, then the resolvent JM
δ is firmly

nonexpansive, and F(JM
δ ) = M–10 ≡ {x ∈ H : 0 ∈ Mx} for every δ > 0.

Let H1 and H2 be two real Hilbert spaces. Let Mi : H1 → 2H1 , Oi : H2 → 2H2 , and Pi :
H2 → 2H2 be multivalued mappings. The split common null point problem (SCNPP) [18]
is to find a point u∗ ∈ H1 such that

0 ∈
p⋂

i=1

Miu∗ (30)
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and the points v∗
j = Aju∗ ∈ H2 satisfy

0 ∈
q⋂

j=1

Ojv∗
j , (31)

where Aj : H1 → H2 (1 ≤ j ≤ q) are bounded linear operators.
Now, we apply Theorem 3.4 to solve the problem of finding a point u∗ ∈ H1 such that

0 ∈
∞⋂

i=1

Miu∗ (32)

and the points v∗ = A1u∗ ∈ H2 and s∗ = A2u∗ ∈ H2 satisfy

0 ∈
∞⋂

i=1

Oiv∗ and 0 ∈
∞⋂

i=1

Pis∗, (33)

where A1, A2 : H1 → H2 are bounded linear operators.
Since every firmly nonexpansive mapping is a 0-demicontractive mapping, we obtain

the following theorem for problem (32)–(33).

Theorem 4.1 Let H1 and H2 be two real Hilbert spaces, and let A1, A2 : H1 → H2 be two
bounded linear operators with adjoint operators A∗

1 and A∗
2, respectively. Let f : H1 → H1

be a ρ-contraction mapping, and let B be a self-adjoint strongly positive bounded linear
operator on H1 with coefficient ξ > 2ρ and ‖B‖ = 1. Let {Mi : H1 → 2H1 : i ∈ N}, {Oi :
H2 → 2H2 : i ∈ N}, and {Pi : H2 → 2H2 : i ∈ N} be maximal monotone mappings. Sup-
pose that � = {v∗ ∈⋂∞

i=1 M–1
i 0 : A1v∗ ∈⋂∞

i=1 O–1
i 0 and A2v∗ ∈⋂∞

i=1 P–1
i 0} �= ∅. For arbitrary

x1 ∈ H1, let {un}, {vn}, {yn}, and {xn} be generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn +
∑n

i=1 αn,iδnA∗
1(JOi

r1 – I)A1xn,
vn = un +

∑n
i=1 βn,iθnA∗

2(JPi
r2 – I)A2un,

yn = vn +
∑n

i=1 γn,iτn(JMi
r3 – I)vn,

xn+1 = σnf (yn) + (I – σnB)yn, n ∈N,

(34)

where r1, r2, r3 > 0 and {δn}, {θn}, {τn}, {σn}, {αn,i}, {βn,i}, {γn,i} are sequences in [0, 1] satis-
fying the following conditions:

(C1)
∑n

i=1 αn,i =
∑n

i=1 βn,i =
∑n

i=1 γn,i = 1 for all n ∈ N;
(C2) lim infn→∞ αn,i > 0, lim infn→∞ βn,i > 0, and lim infn→∞ γn,i > 0 for all i ∈N;
(C3) limn→∞ σn = 0 and

∑∞
n=1 σn = ∞;

(C4) 0 < a1 ≤ δn ≤ a2 < 1
‖A1‖2 ;

(C5) 0 < b1 ≤ θn ≤ b2 < 1
‖A2‖2 ;

(C6) 0 < c1 ≤ τn ≤ c2 < 1.
Then the sequence {xn} converges strongly to x∗ = P�(f + I – B)x∗.

4.2 The split variational inequality problem
Let C and Q be nonempty closed convex subsets of two real Hilbert spaces H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator, g : H1 → H1, and h : H2 → H2.
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The split variational inequality problem (SVIP) is to find a point u∗ ∈ C such that

〈
g
(
u∗), x – u∗〉≥ 0, ∀x ∈ C, (35)

and the point v∗ = Au∗ ∈ Q satisfy

〈
h
(
v∗), y – v∗〉≥ 0, ∀y ∈ Q. (36)

We denote the solution set of the SVIP by Ω = SVIP(C, Q, g, h, A). The set of all solu-
tions of variational inequality problem (35) is denoted by VIP(C, g), and it is known that
VIP(C, g) = F(PC(I – λg)) for all λ > 0.

Let A1, A2 : H1 → H2 be two bounded linear operators, gi : H1 → H1, and hi, li : H2 → H2.
In this section, we apply Theorem 3.4 to solve the problem of finding a point u∗ ∈⋂∞

i=1 Ci

such that

〈
gi
(
u∗), x – u∗〉≥ 0, ∀x ∈

∞⋂

i=1

Ci, (37)

and the point v∗ = A1u∗ ∈⋂∞
i=1 Qi, s∗ = A2u∗ ∈⋂∞

i=1 Ki satisfy

〈
hi
(
v∗), y – v∗〉≥ 0, ∀y ∈

∞⋂

i=1

Qi, and
〈
li
(
s∗), z – s∗〉≥ 0, ∀z ∈

∞⋂

i=1

Ki, (38)

where {Ci}i∈N is a family of nonempty closed convex subsets of a real Hilbert space H1, and
{Qi}i∈N and {Ki}i∈N are two families of nonempty closed convex subsets of a real Hilbert
space H2. We now prove a strong convergence theorem for problem (37)–(38).

Theorem 4.2 Let {Ci}i∈N be the family of nonempty closed convex subsets of a real Hilbert
space H1, let {Qi}i∈N and {Ki}i∈N be two families of nonempty closed convex subsets of a real
Hilbert space H2, and let A1, A2 : H1 → H2 be two bounded linear operators with adjoint
operators A∗

1 and A∗
2, respectively. Let f : H1 → H1 be a ρ-contraction mapping, and let

B be a self-adjoint strongly positive bounded linear operator on H1 with coefficient ξ > 2ρ

and ‖B‖ = 1. Let {gi : H1 → H1 : i ∈ N}, {hi : H2 → H2; i ∈ N}, and {li : H2 → H2; i ∈ N} be
r1-, r2-, and r3-inverse strongly monotone mappings, respectively. Let r = min{r1, r2, r3} and
μ ∈ (0, 2r). Suppose that � = {v∗ ∈ ⋂∞

i=1 VIP(Ci, gi) : A1v∗ ∈ ⋂∞
i=1 VIP(Qi, hi) and A2v∗ ∈

⋂∞
i=1 VIP(Ki, li)} �= ∅. For arbitrary x1 ∈ H1, let {un}, {vn}, {yn}, and {xn} be generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn +
∑n

i=1 αn,iδnA∗
1(PQi (I – μhi) – I)A1xn,

vn = un +
∑n

i=1 βn,iθnA∗
2(PKi (I – μli) – I)A2un,

yn = vn +
∑n

i=1 γn,iτn(PCi (I – μgi) – I)vn,
xn+1 = σnf (yn) + (I – σnB)yn, n ∈N,

(39)

where {δn}, {θn}, {τn}, {σn}, {αn,i}, {βn,i}, {γn,i} are sequences in [0, 1] satisfying the following
conditions:

(C1)
∑n

i=1 αn,i =
∑n

i=1 βn,i =
∑n

i=1 γn,i = 1 for all n ∈ N;
(C2) lim infn→∞ αn,i > 0, lim infn→∞ βn,i > 0, and lim infn→∞ γn,i > 0 for all i ∈N;
(C3) limn→∞ σn = 0 and

∑∞
n=1 σn = ∞;
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(C4) 0 < a1 ≤ δn ≤ a2 < 1
‖A1‖2 ;

(C5) 0 < b1 ≤ θn ≤ b2 < 1
‖A2‖2 ;

(C6) 0 < c1 ≤ τn ≤ c2 < 1.
Then the sequence {xn} converges strongly to x∗ = P�(f + I – B)x∗.

Proof It is known that Si := PQi (I – μhi), Ti =: PKi (I – μli), and Ui := PCi (I – μgi) are nonex-
pensive mappings for all μ ∈ (0, 2r), and hence they are 0-demicontractive mappings. We
obtain the desired result from Theorem 3.4. �

4.3 The split equilibrium problem
Let H1 and H2 be two real Hilbert spaces, and let C and Q be nonempty closed convex
subsets of H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let
g : C ×C →R and h : Q×Q →R be two bifunctions. The split equilibrium problem (SEP)
is to find a point u∗ ∈ C such that

g
(
u∗, x

)≥ 0, ∀x ∈ C, (40)

and Au∗ ∈ Q satisfy

h
(
Au∗, y

)≥ 0, ∀y ∈ Q. (41)

The set of all solutions of equilibrium problem (40) is denoted by EP(g).

Lemma 4.3 ([19]) Let C be a nonempty closed convex subset of H , and let g be a bifunction
of C × C into R satisfying the following conditions:

(A1) g(x, x) = 0 for all x ∈ C;
(A2) g is monotone, that is, g(x, y) + g(y, x) ≤ 0 for all x, y ∈ C;
(A3) for all x, y, z ∈ C,

lim sup
t↓0

g
(
tz + (1 – t)x, y

)≤ g(x, y);

(A4) g(x, ·) is convex and lower semicontinuous for all x ∈ C.
Let g : C × C →R be a bifunction satisfying conditions (A1)–(A4), and let r > 0 and x ∈ H .
Then there exists z ∈ C such that

g(z, y) +
1
r
〈y – z, z – x〉 ≥ 0 for all y ∈ C.

Lemma 4.4 ([20]) Let C be a nonempty closed convex subset of H , and let g be a bifunction
of C × C into R satisfying conditions (A1)–(A4). For r > 0 and x ∈ H , define the mapping
Tg

r : H → C of g by

Tg
r x =

{
z ∈ C : g(z, y) +

1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}
, ∀x ∈ H .

Then the following hold:
(i) Tg

r is single-valued;
(ii) Tg

r is firmly nonexpansive;
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(iii) F(Tg
r ) = EP(g);

(iv) EP(g) is closed and convex.

Let A1, A2 : H1 → H2 be two bounded linear operators, and let gi : Ci × Ci → R and
hi, li : Qi × Qi → R be bifunctions for all i ∈ N. In this section, we apply Theorem 3.4 to
solve the problem of finding a point

u∗ ∈
∞⋂

i=1

EP(gi) such that A1v∗ ∈
∞⋂

i=1

EP(hi) and A2v∗ ∈
∞⋂

i=1

EP(li). (42)

By Lemma 4.4(iii) we have that Thi
r1 , Tli

r2 , and Tgi
r3 are firmly nonexpansive mappings, and

hence they are 0-demicontractive mappings. We obtain the following result from Theo-
rem 3.4.

Theorem 4.5 Let {Ci}i∈N be a family of nonempty closed convex subsets of a real Hilbert
space H1, let {Qi}i∈N and {Ki}i∈N be two families of nonempty closed convex subsets of a real
Hilbert space H2, and let A1, A2 : H1 → H2 be two bounded linear operators with adjoint
operators A∗

1 and A∗
2, respectively. Let f : H1 → H1 be a ρ-contraction mapping, and let B

be a self-adjoint strongly positive bounded linear operator on H1 with coefficient ξ > 2ρ and
‖B‖ = 1. Let gi : Ci × Ci → R and hi, li : Qi × Qi → R be bifunctions satisfying conditions
(A1)–(A4) for all i ∈N. Suppose that � = {v∗ ∈⋂∞

i=1 EP(gi) : A1v∗ ∈⋂∞
i=1 EP(hi) and A2v∗ ∈

⋂∞
i=1 EP(li)} �= ∅. For arbitrary x1 ∈ H1, let {un}, {vn}, {yn}, and {xn} be generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = xn +
∑n

i=1 αn,iδnA∗
1(Thi

r1 – I)A1xn,
vn = un +

∑n
i=1 βn,iθnA∗

2(Tli
r2 – I)A2un,

yn = vn +
∑n

i=1 γn,iτn(Tgi
r3 – I)vn,

xn+1 = σnf (yn) + (I – σnB)yn, n ∈N,

(43)

where r1, r2, r3 > 0 and {δn}, {θn}, {τn}, {σn}, {αn,i}, {βn,i}, {γn,i} are sequences in [0, 1] satis-
fying the following conditions:

(C1)
∑n

i=1 αn,i =
∑n

i=1 βn,i =
∑n

i=1 γn,i = 1 for all n ∈ N;
(C2) lim infn→∞ αn,i > 0, lim infn→∞ βn,i > 0, and lim infn→∞ γn,i > 0 for all i ∈N;
(C3) limn→∞ σn = 0 and

∑∞
n=1 σn = ∞;

(C4) 0 < a1 ≤ δn ≤ a2 < 1
‖A1‖2 ;

(C5) 0 < b1 ≤ θn ≤ b2 < 1
‖A2‖2 ;

(C6) 0 < c1 ≤ τn ≤ c2 < 1.
Then the sequence {xn} converges strongly to x∗ = P�(f + I – B)x∗.

5 Numerical example for the main result
We now give a numerical example of the studied method. Let H1 = H2 = (R2,‖ · ‖2). Define
the mappings Si : R2 → R

2, Ui : R2 →R
2, and Ti : R2 →R

2 by

Si(x1, x2) =
–3i
i + 1

(x1, x2), Ui(x1, x2) =
(

–2i
i + 1

x1, x2

)
, i ∈N,

and

Ti(x1, x2) =

{
(x1, x2

3i sin 1
x2

) if x2 �= 0,
(x1, 0) if x2 = 0,

i ∈N
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for all x1, x2 ∈ R. Then Si are 12
25 -demicontractive mappings for all i ∈ N and

⋂∞
i=1 F(Si) =

{(0, 0)}, Ui are 3
4 -demicontractive mappings for all i ∈ N and

⋂∞
i=1 F(Ui) = 0 × R, and Ti

are 0-demicontractive mappings for all i ∈ N and
⋂∞

i=1 F(Ti) = R× 0. Next, we define the
mappings f : R2 →R

2, B : R2 →R
2, A1 : R2 → R

2, and A2 : R2 →R
2 by

f (x1, x2) =
(

x1

8
,

x2

8

)
, B(x1, x2) =

(
x1,

x2

2

)
, A1(x1, x2) = (x1, 2x1),

and

A2(x1, x2) = (x2 – x1, 2x1)

for all x1, x2 ∈ R. Then f is a 1
8 -contraction, B is a self-adjoint strongly positive bounded

linear operator with coefficient ξ = 1
2 , and A1, A2 are bounded linear operators. Define the

real sequence {αn,i}, {βn,i}, and {γn,i} as follows:

αn,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n = i = 1,
1
2i ( n

n+1 ) if n > i,
1 –
∑n–1

i=1
1
2i ( n

n+1 ) if n = i > 1,
0 otherwise,

βn,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n = i = 1,
1
3i ( n

n+1 ) if n > i,
1 –
∑n–1

i=1
1
3i ( n

n+1 ) if n = i > 1,
0 otherwise,

and

γn,i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if n = i = 1,
1

4i+1 ( n
2n+1 ) if n > i,

1 –
∑n–1

i=1
1

4i+1 ( n
2n+1 ) if n = i > 1,

0 otherwise,

that is,

αn,i =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0 0 0 . . .
1/3 2/3 0 0 0 0 0 0 . . .
3/8 3/16 7/16 0 0 0 0 0 . . .
2/5 1/5 1/10 3/10 0 0 0 0 . . .

5/12 5/24 5/48 5/96 7/32 0 0 0 . . .
3/7 3/14 3/28 3/56 3/112 19/112 0 0 . . .

7/16 7/32 7/64 7/128 7/256 7/512 71/512 0 . . .
...

...
...

...
...

...
...

...

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,
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Figure 1 Graph for errors

βn,i =

⎛

⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0 0 0 . . .
2/9 7/9 0 0 0 0 0 0 . . .
1/4 1/12 2/3 0 0 0 0 0 . . .

4/15 4/45 4/135 83/135 0 0 0 0 . . .
5/18 5/54 5/162 5/486 143/243 0 0 0 . . .
2/7 2/21 2/63 2/189 1/284 325/567 0 0 . . .

7/24 7/72 7/216 7/648 1/278 1/833 58/103 0 . . .
...

...
...

...
...

...
...

...

⎞

⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

,

and

γn,i =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0 0 0 . . .
1/40 39/40 0 0 0 0 0 0 . . .

3/112 3/448 433/448 0 0 0 0 0 . . .
1/36 1/144 1/576 185/192 0 0 0 0 . . .

5/176 5/704 1/563 1/2253 51/53 0 0 0 . . .
3/104 3/416 1/555 1/2219 1/8875 976/1015 0 0 . . .
7/240 7/960 1/549 1/2194 1/8777 1/35,109 618/643 0 . . .

...
...

...
...

...
...

...
...

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

We see that limn→∞ αn,i = 1
2i , limn→∞ βn,i = 1

3i , and limn→∞ γn,i = 1
22i+3 for i ∈ N. Now, we

start with the initial point x1 = (1, 1) and let {xn} be the sequence generated by (12). Sup-
pose that xn is of the form xn = (an, bn). where an, bn ∈ R. The criterion for stopping our
testing method is taken as ‖xn–1 – xn‖2 < 10–6. Choose δn = n

11n–1 , θn = n
30n–1 , τn = n

2n–1 , and
σn = 1

n0.01 for all n ∈ N. Figure 1 shows the errors ‖xn–1 – xn‖2 of our proposed method.
The values of xn and ‖xn–1 – xn‖2 are shown in Table 1.

We observe from Table 1 that xn → (0, 0) ∈ 	. We also note that the error is bounded
by ‖x30 – x31‖2 < 10–6, and we can use x31 = (0.00000003, 0.00000117) to approximate the
solution of (7) with accuracy at least 6 D.P.

6 Conclusion
We introduce a new algorithm for solving the split common fixed point problem (7) of
the infinite families of demicontractive mappings in Hilbert spaces. Strong convergence
of the proposed algorithm is obtained under some suitable control conditions. The main
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Table 1 Numerical experiment for xn

n an bn ‖xn–1 – xn‖2
1 1.00000000 1.00000000 –
2 0.12500000 0.62500000 0.95197164
3 0.01751567 0.39224395 0.25637524
4 0.00414010 0.24675959 0.14609793
5 0.00202951 0.15549870 0.09128529
6 0.00140947 0.09811767 0.05738438
7 0.00107109 0.06197693 0.03614232
8 0.00063002 0.03918347 0.02279773
9 0.00047832 0.02479206 0.01439221
10 0.00030270 0.01569709 0.00909667
11 0.00022553 0.00994467 0.00575293
12 0.00014616 0.00630378 0.00364176
13 0.00008740 0.00399788 0.00230665
14 0.00005861 0.00253664 0.00146152
...

...
...

...
28 0.00000009 0.00000450 0.00000257
29 0.00000007 0.00000287 0.00000163
30 0.00000007 0.00000183 0.00000104
31 0.00000003 0.00000117 0.00000066

results of this paper can be considered as an extension of work by Eslamian [12] by provid-
ing an algorithm for finding a solution of problem (7), which is a generalization of prob-
lem (5).
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