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Abstract

In this paper, we propose a new algorithm for solving the split common fixed point
problem for infinite families of demicontractive mappings. Strong convergence of the
proposed method is established under suitable control conditions. We apply our
main results to study the split common null point problem, the split variational
inequality problem, and the split equilibrium problem in the framework of a real
Hilbert space. A numerical example supporting our main result is also given.
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1 Introduction
Let H be a real Hilbert space with inner product (-,-) and norm | - ||. Let I denote the
identity mapping. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H; and H,, respectively. Let A : H; — H; be a bounded linear operator with adjoint oper-
ator A*.

The split feasibility problem (SEP), which was first introduced by Censor and Elfving [1],
is to find

v* e C suchthat Av*eQ. (1)

Let Pc and P be the orthogonal projections onto the sets C and Q, respectively. Assume
that (1) has a solution. It known that v* € H; solves (1) if and only if it solves the fixed

point equation
v = PC(I +yA*(Pq - I)A)v*,

where y > 0 is any positive constant.

SFP has been used to model significant real-world inverse problems in sensor networks,
radiation therapy treatment planning, antenna design, immaterial science, computerized
tomography, etc. (see [2—4]).
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The split common fixed point problem (SCFP) for mappings 7 and S, which was first
introduced by Censor and Segal [5], is to find

v* € F(T) suchthat Av* e F(S), 2)

where T : Hi — H; and S : H, — H, are two mappings satisfying F(T) = {x € H; :
Tx = x} # ¥ and F(S) = {x € Hy : Sx = x} # {J, respectively. Since each closed and convex
subset may be considered as a fixed point set of a projection onto the subset, the SCFP is a
generalization of the SFP. Recently, the SFP and SCFP have been studied by many authors;
see, for example, [6-11].

In 2010, Moudafi [11] introduced the following algorithm for solving (2) for two demi-
contractive mappings:

x1 € H; choose arbitrarily,
Uy =%, + YUA*(S — )Ax,, (3)
X1 = (L= Buy + BuTu,, neN.

He proved that {x,} converges weakly to some solution of SCFP.
The multiple set split feasibility problem (MSSFP), which was first introduced by Censor
et al. [4], is to find

Vi e m C; suchthat Av*e ﬂ Q, (4)

i=1 i=1

where {C;}”; and {Q;}]_; are families of nonempty closed convex subsets of real Hilbert
spaces H; and H,, respectively. We see that if m = r = 1, then problem (4) reduces to prob-
lem (1).

Recently, Eslamian [12] considered the problem of finding a point

v e()F(U;) suchthat Ap*e(\F(S) and Ay e[ E(T), (5)

i=1 i=1 i=1

where A1,A; : Hy — H, are bounded linear operators, and U; : Hy — Hiy, T;: H, — H,
and S;: Hy, — H,,i=1,2,...,m. He also presented a new algorithm to solve (5) for finite
families of quasi-nonexpansive mappings:

x1 € H; choose arbitrarily,

Uy = X + 21y e IBAT(S; — A1,

Yu =ty + Y1) Ly BAY(Ti — DAsuy, (6)
Zn = QoY + Y oimy W iUV

Xpe1 =0,y f(xy) + [ -6,B)z,, nelN.

He proved that {x,} converges strongly to some solution of (5) under some control con-
ditions.

Question. Can we modify algorithm (6) to a simple one for solving the problem of finding

Ve mF(Ui) such that Av* e mF(Si) and Ay*e ﬂF(T,-), (7)

i=1 i=1 i=1
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where Ay,A; : H — H, are bounded linear operators, and {U; : H; — H; : i € N},
{T; :Hy — H,:i€ N} and {S; : H, — H, : i € N} are infinite families of k3-, k»-, and k-
demicontractive mappings, respectively.

In this work, we introduce a new algorithm for solving problem (7) for infinite families of
demicontractive mappings and prove its strong convergence to a solution of problem (7).

2 Preliminaries
Throughout this paper, we adopt the following notations.
(i) “—”and “—” denote the strong and weak convergence, respectively.
(i) w,(x,) denotes the set of the cluster points of {x,} in the weak topology, that is,
I{xy,} of {x,} such that x,,, — x.
(iii) T is the solution set of problem (7), that is,

=1ve ﬁF(Ui) AVt e ﬁF(Si) and A,v* € ﬁF(Ti) .

i=1 i=1 i=1

A mapping Pc is said to be a metric projection of H onto C if for every x € H, there exists
a unique nearest point in C, denoted by Pcx, such that

¥ —Pcx|| < lx—zll, VzeC.
Itis known that Pc is a firmly nonexpansive mapping. Moreover, P¢ is characterized by the
following property: {(x — Pcx,y — Pcx) <0 for allx € H, y € C. A bounded linear operator
B:H — H is said to be strongly positive if there is a constant £ > 0 such that

(Bx,x) > &||x||*> forallx e H.

Definition 2.1 The mapping 7: H — H is said to be
(i) L-Lipschitzian if there exists L > 0 such that

|Tu— Tv|| < L|lu—v| forallu,veH;
(i) a-contraction if T is a-Lipschitzian with « € [0, 1), that is,
|Tu — Tv|| < allu—-v| forallu,veH,;

(ili) nomexpansive if T is 1-Lipschitzian;
(iv) quasi-nonexpansive if F(T) # ¢ and

| Tu—v| <|lu-v| forallueH,veF(T);
(v) firmly nonexpansive if
I To— TV|? < lu—-v|? - || (e —v) = (Tu—Tv) ”2 for all u,v € H;
or equivalently, for all u,v € H,

| T = Tv||* < (Tu— Tv,u — v);
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(vi) A-inverse strongly monotone if there exists A > 0 such that
(u—v,Tu—-Tv) > | Tu—-Tv|*> forallu,veH;
(vii) k-demicontractive if F(T) # ¢ and there exists k € [0, 1) such that
| Tu —v||® < llu—v|?® + kl|lu— Tu||* forallueH,veF(T).
The following example is an infinite family of k-demicontractive mappings in R2.

Example 2.2 ForieN,let U;:R? — R? be defined for all x;,x, € R by

-2i
Ui(x1,%0) = | —=x1,%2 ),
i+1

and || - || is the Euclidean norm on R?. Observe that F(1[;) = 0 x R for all i € N, that is, if
x = (x1,%2) € R x Rand p = (0, py) € F(U;), then

2

-2
| Uix - pl* = H (,—xl,x2> —(0,p2)
i+1

-2i\* )
=\ le1]” + |22 — pal

2 2
< A4|x1]|” + [x2 — pa

3
= |x1]* + 1(1 + 12| [* + 2 — pol?

, 3 2% \*
<lx-pl +Z 1+m 1|

3
= llx=pl* + 2% - x|,
So, U; are %-demicontractive mappings for all i € N.

Definition 2.3 The mapping T : H — H is said to be demiclosed at zero if for any sequence
{u,} C H with u,, — u and Tu,, — 0, we have Tu = 0.

Lemma 2.4 ([13]) Assume that B is a self-adjoint strongly positive bounded linear operator
on a Hilbert space H with coefficient &€ >0 and 0 < ;. < ||B||™}. Then |I - uB|| <1-£pu.

Lemma 2.5 ([14]) Let H be a real Hilbert space. Then the following results hold:
Q) [l +v|I% = llaell® + 2(u,v) + ||v||? Y, v € H;

(D) ez +v)|> < ||ul|® + 2(v,u + v) Yu,v € H.

Lemma 2.6 ([15]) Let {a,} be a sequence of nonnegative real numbers satisfying the fol-

lowing relation:
An+l S (1 - yn)an + 5nr ne N,

where
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() {va} C(0,1), 302, ¥ = 00;
(ii) limsup,_, o f/—: <0o0rY 2,8, < 00.

Then lim,_, a, = 0.

Lemma 2.7 ([16]) Let {«,} be a sequence of real numbers that does not decrease at infinity,
that is, there exists at a subsequence {k,,} of {k,} that satisfies ky, < k.41 for all i € N. For

every n > n,, define the integer sequence {t(n)} as follows:
t(n) =max{{ e N:[ < n,«; <Kki1},

where n, € N is such that {l < n, : k; < k;;1} # 0. Then:
(i) T(n,) <ty +1)<---,and t(n) — oo;

(ii) for all n > n,, max{k,, kKz(n)} < Kr(m+1-

3 Results and discussion

In this section, we propose a new algorithm, which is a modification of (6) and prove its
strong convergence under some suitable conditions. We start with the following important
lemma.

Lemma 3.1 For two real Hilbert spaces Hy and H,, let A : H) — H, be a bounded linear
operator with adjoint operator A*. If T : Hy — H, is a k-demicontractive mapping, then

|+ 8AXT - DAx —x*||* < |2 —a*||* = 8, (1 - k = 8I1A12) | (T - DAx|”
for all x* € Hy such that Ax* € F(T).

Proof Suppose that T : H, — H, is a k-demicontractive mapping and let x* € H; be such
that Ax* € F(T). Then we have

[ —a* + 8A*(T—I)Ax“2 <|la-«* H2 +28(x — x*, A*(T - I)Ax)

+ AP |(T - DAx| . ®)

Since A is a bounded linear operator with adjoint operator A* and T is a k-demicontractive

mapping, by Lemma 2.5(ii) we deduce that
(o — ", A*(T = DAx) = (Ax — Ax*, (T — 1) Ax)
= (TAx - Ax*, TAx - Ax) - |(T - DAx|”
- %[H TAx - Ax*|| + | TAx - Ax|® - | Ax - Ax*|*]
—|(T - nAx|?
< %[”Ax—Ax* I? + kIl TAx - Ax|®

+ | TAx - Ax|)? - |Ax - Ax*|*] - | (T - DAx]*

k-1

= (@ -Dax|’. ©)
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From (8) and (9) we get

%+ 8AXT - DAx —x*||* < |2 —a*|* = 8(1 - k = 8IIAI?) | (T - DAx].
This completes the proof. d
Lemma 3.2 For two real Hilbert spaces Hy and H, let A : Hi — Hj be a bounded linear

operator with adjoint operator A*, and let {T; : Hy — H, : i € N} be an infinite family of

k-demicontractive mappings. Let {x,} be sequence in H,, and let

n
Uy =X, + Zan,,»BnA*(Ti -DAx,, VneN, (10)
i=1

where {a,;} is a real sequence in [0,1] satisfying ¥ ., ot,; = 1. Then we have
ot =% |* < o =2 = > i (1 = K = 8ullAI) | (T; ~ DA, |*
i=1

Sor all x* € Hy such that Ax* € (5 F(T}).

Proof Let x* € H; be such that Ax* € () F(T;). From (10) and Lemma 3.1 we obtain

n
||un —x* ||2 < Zan,,»”x,, —x* +8,A"(T; - I)Ax, ||2
i=1

n
<> [ =2 = 80 (1~ k = 841 A1%) | (T: — DA, |*]

i=1

= =" =3 i (1~ k= 8l AIR) | (T; — DA, |
i=1

This completes the proof. d

Lemma 3.3 Let {T;: Hy — H, :i € N} be an infinite family of k-demicontractive mappings
from a Hilbert space H; to itself. Let {x,} be sequence in Hy, and let

n
Un =%+ Y yibu(T; =D, VmeN, (11)

i=1

where {a,,;} is a real sequence in [0,1] satisfying > ., oty; = 1. Then we have

”un —x" ”2 = ”xn - x* ”2 - Zan,ﬂgn(l _k_sn)”(Tl _I)xn”2
i=1

Sor all x* € (5, E(T)).

Proof The statement directly follows from Lemma 3.2 by putting H; = Hy and A=1. O
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Now, we introduce a new algorithm for solving problem (7) for an infinite family of

demicontractive mappings and then prove its strong convergence.

Theorem 3.4 Let Hy and Hj be two real Hilbert spaces, and let A1, A, : Hi — Hj be two
bounded linear operators with adjoint operators A and A3, respectively. Let f : Hy — H,
be a p-contraction mapping, and let B be a self-adjoint strongly positive bounded linear op-
erator on Hy with coefficient & > 2p and ||B|| = 1. Let {S;: Hy — Hy : i € N}, {T; : Hy — Hj :
i €N}, and {U; : Hi — H; : i € N} be infinite families of ki-, ky-, and ks-demicontractive
mappings such that S;—1I, T;— I, and U; — I are demiclosed at zero, respectively. Suppose that
I ={v' e N2 F(U): Awv* € N2 E(S) and Ayv* € (o) E(Th)} # V. For arbitrary x, € Hy,
let {u,}, {vu}, {yu}, and {x,} be generated by

Uy =Xp + Z;‘q:l an,ianAT(Si —DAix,,
Vn=Up+ Z:l:1 ,Bn,ienA;(Ti -DAyu,,
Yn=Vn+t Z?zl Vn,ifn(uz’ = Dvy,

%ni1 = 0f ) + U = 0uB)yn, neN,

(12)

where {8,}, {64}, {tu}, {on}, {@ni}, {Bui}, and {y,;} are sequences in [0,1] satisfying the fol-
lowing conditions:

(CL) Yl ami=> i Bui=2 i Vni=1forallneN;

(C2) liminf,_ o @y > 0, liminf,_, o By, > 0, and liminf,,_, o y,; >0 forall i e N;

(C3) limysoo0,=0andy o2; 0, =00;

(C4) 0<ar <8y <ar< it

1-ky |
(C5) 0<b159n§b2<m7

(C6) 0<c1<1,<Cy<1—ks.

Then the sequence {x,} converges strongly to x* = Pr(f + I — B)x™.
Proof For any u,v € H;, by Lemma 2.4 we have

|Pr(f +1-Byu—Pr(f +1-B)v| < |(f+1-Bu~-(f+I-B)v|
< |f@ -fo)| + 11 -Bllllu-vI
<pllu-vi+@-8)lu-vl
<@ -p)llu-vl,
that is, the mapping Pr(f + I — B) is a contraction. So, by the Banach contraction principle
there is a unique element x* € H; such that x* = Pr(f + I — B)x™.

Letx* = Pr(f + I - B)x*, that is, x* € (2, F(U;) is such that A1x* € (5} F(S;) and Ax* €
ﬂl-ofl F(T;). From Lemmas 3.2 and 3.3 and from (12) we obtain

ot =27 < w2 =Y @81~ ki = 841A112) (S~ DA, (13)
i=1

v =" < ot = 2" = D7 Buibl(1 = ko = 01142 1?) | (Ti = DAses |, (14)
i=1
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and

lyn =2 < v =2 * =3 Al = ks — ) | (U = D | (15)
i=1

Therefore

=" = =" | * = 3 i (1= ks = 8ullAxl1?) | (S: = DAL, |
i=1
n ) )
= Buibn(1 ko = 0,1l A2]|*) | (Ti = DAgu, |
i=1

=3 hita — ks = 1) | (U = v (16)

i=1
By conditions (C4), (C5), and (C6) we have

[ =2 < Joen =27 (17)

By condition (C3) we may assume that o, € (0, || B||™!) for all # € N. By Lemma 2.4 we get
I —0,B|| <1-0,&. From (12) and (17) we get
|1 =*|| = |ouf @) + (I = 0, B)yn — 5"
= 0w (f(yu) = Bx*) + (I = 0uB) (yn —27) |
<ol [0 = ()| + [ () = B[] + 11 = 0Bl = 27
< 0up - +onf(67) B | + (1= )y ]

>k _B £
< (L=o0u(& = p)) |20 — 2| +0u(& —p)”f(xé)_ixn
< max{ ||xn —x*, 7”}((9&) — Bl }
§-p
§max{||x1—x* ,w} (18)
§-p

Therefore {x,} is bounded, and we also have that {y,} and {f(y,)} are bounded. To this end,

we consider the following two cases.
Case 1. Suppose that {||x, —x*[};2,, is nonincreasing for some #, € N. Then we get that

lim,,, o ||x, — x| exists. By (16), (17), and Lemma 2.5(i) we get

1 =2"* = low(FOm) = Bx) + (I = 0B) (s = 5°) |

S Oy ”f(yn) _Bx* Hz + (1 - O'n%-) Hyn _x* ”2
+20,(1 - 0,8) Hf(yn) - Bx* ” ”yn - ”

<0.M + |, —x* ||2
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= (1= ki = SullALIP) [ (Si = DA, |

i=1
=" Buibu(1 ~ ko = 6allA211?) | (T: ~ DA |*
i=1

2

’

= nitall = ks = 7,) | (U = Tyv,

i=1

where

M= sup{[£(n) = B[ + 20 0u) - B+ | =57 }.
This implies, for j = 1,2,..., 7,

(1= ki = 8,1 AL1%) (S = DA, |

< (1 - ki = 8,1 A1) S: - DA |
i=1

2

< M + 0y = 2|2 = |01 = 2* | (19)
Bugn (1 = ko = 011 A2)®) [ (T} = DAz, |
< anﬂn,ien(l — k= 01142 11%) | (T: = DAz, |
T
< oM+ 2y = 2% |2 = |01 — 2| (20)
and
hongTa(L = ks = ) | (U = Dyva|* < ixn,m,u — ks = )| (Us = Dyv|*
T
< 0uM + = 2|2 = [ner — 2| (21)
From (19), (20), (21), and conditions (C2)—(C6) we obtain
i (5~ DA = Tim 3 a5~ DA | =0, @)
T
im (7= DAsu, | = lim anﬁn,,-u (Ti = DAsuy | =0, (23)
i
and
Tim (U= Dv, | = lim Z Do | (Ui = Dy, |* = 0. (24)

i=1

Next, we show that

lim sup(f(x*) — Bx*, %, —x*) <0, wherex™ =Pr(f +1-B)x".

n—0o0
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To see this, choose a subsequence {x,,} of {x,} such that

limsup(f (x*) — Bx*, %, — ") = lim (f (x*) — Bx", %, — ).
n—>00 p—>x
Since the sequence {x,,} is bounded, there exists a subsequence {x"l’i} of {x,,} such that
Xy, — z € H;. Without loss of generality, we may assume that *u, = z € Hy. Since 4; is a
bounded linear operator, this yields that A;x,, — A;z. By the demiclosedness principle of
Si — I at zero and (22) we get A1z € ()} F(S:). By (12) and (22) we have

2
n
Xp + Zan,i(snAT(Si _I)Alxn —Xn

i=1

2
ety — xu |l =

n
<3 bl Ar I (Si - DA | > 0 asn— oo,
i=1

Similarly, we also have |lv, — u,|| — 0 as n — oo. Using the fact that x,, — z and
l4n = xnl — O, we conclude that u,, — z. Since A, is a bounded linear operator, we
get that Au,, — A»z. By the demiclosedness principle of T; — I at zero and (23) we get
Ayz € ﬂfl F(T;). Again, since Up, =2 and ||v, —u,|| — 0, we conclude that Vu, = 2.By the
demiclosedness principle of U; — I at zero and (24) we also have z € () F(U;). Therefore
zel.

Since x* = Pr(f + [ — B)x* and z € T, we get

limsup(f (x*) — Bx*,x, — x*) = lim (f (x*) — Bx",x,, — &%)

n—00 p—>00

= (f(x*) - Bx*,z —x*) < 0. (25)
Using Lemma 2.5 and (17), we have

s =2 = 0 (£ ) = Ba") + (I = 0B) (3 = ") |

< (1=0,8) lyn =6 |* + 20u{f 9) = Bx*, %01 — %)

< (1= 0,8) |n =" |* + 200, |y = 2" | |61 - 27|
+20,(f () = Bx*, 41 — &%)

< (1= 008) [ = 2% |+ pou[0n = 2% | + Javner "]
+ 20,,(f(x*) — Bx*, %01 — x*)

= (1 - O'n(g - )0)) “xn _x* “2 + P00y ||xn+1 - x* “2
+20,(f () = Bx*, 2041 — 7).

This implies that

o - p) 20
[stnet — 2|2 < [1 - m] o=+ P2 ) - B =) (26)

By (25), (26), and Lemma 2.6 we conclude that x, — x* as n — oo.
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Case 2. Suppose that there exists an integer m, such that
[y =2 < otmgsr =27

Put k, = ||x, — x| for all n > m,. Then we have «,,, < ky,,+1. Let {t(n)} be the sequence
defined by

u(n)=max{le N:I <n,k; <kj1}

for all n > m,. By Lemma 2.7 we obtain that {x(n)} is a nondecreasing sequence such that
nll)rgo um)=oo and kym <kyum+ foralln>m,.

By the same argument as in case 1 we obtain

Jim [[(Si = DA | =0, lim ||(T; = DAz | =0,

n—00

and
nll)n010||(Ll, —DVum ” =0.

By the demiclosedness principle of S; — I, T; — I, and U; — I at zero, we have w,, (%) C T
This implies that

lim sup(f (x*) — Bx*, %) — x*) < 0.

n— 00

By a similar argument from (26) we also have

U;L(n)(‘i: - ,0) 2 2U/L(n)
Sk

*) « ok
L-oump 1-0ump (f(x ) Bx™, % (me1 — % )

Kyt < [1 -
So, we get lim,,_, o k', (») = 0 and also have lim,,_, o €},(s)+1 = 0. By Lemma 2.7 we have

0 < Ky < max{k,, Kum)} < Kpm+1-
Therefore x, — x* as n — 00. This completes the proof. 0

By setting T; = I for all i € N in Theorem 3.4 we obtain the following result.

Corollary 3.5 Let H, and H, be two real Hilbert spaces, let A, : Hy — H, be a bounded
linear operator with adjoint operator Aj. Let f : Hi — H, be a p-contraction mapping,
and let B be a self-adjoint strongly positive bounded linear operator on Hy with coefficient
E>2pand ||B|| =1.Let {S;: Hy — Hy :i € N} and {U; : Hl — H; : i € N} be infinite fami-
lies of ky- and ks-demicontractive mappings such that S; — I and U; — I are demiclosed at
zero, respectively. Suppose that Q = {v* € (2, F(U;) : Aywv* € (5, F(S))} # 0. For arbitrary
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x1 € Hy, let {u,}, {y,}, and {x,} be generated by

Uy =Xp + Z?:l an,i(SnAT(Si - I)Alxm
VYn=Uy+ Z;’l:l Vn,irn(ui —I)M,,,, (27)
Xntl = an()/n) + (1 - UnB)ym ne N;

where {8}, {Tu}, {on}, {otni}, and {y,i} are sequences in [0, 1] satisfying the following condi-
tions:

(C) Yol ani=Y iyyni=1forallneN;

(C2) liminfy,_ 00 0t > 0 and liminfy, o Vi > 0 for all i e N;

(C3) lim,000, =0andy o, 0, = 00;

(C4) 0<a; <8, <ay< “:1](”12;

(C5) 0<c1 <1,<cCy<1—ks.
Then the sequence {x,} converges strongly to x* = Po(f + I — B)x™.

Remark 3.6 By the same setting as in Corollary 3.5, Eslamian [17] used another algorithm
for solving the same problem as in Corollary 3.5; see [17], Theorem 3.3. Note that each
step of our algorithm is much easier for computation than that of Eslamian [17] because

our algorithm concerns only the finite sum.
By setting f(y) = v for all y € H; and B = I in Theorem 3.4 we obtain the following result.

Corollary 3.7 Let Hy and H, be two real Hilbert spaces, and let A,,A, : H) — Hj be two
bounded linear operators with adjoint operators A and A%, respectively. Let {S; : Hy — Hy :
ie N} {T;:Hy — Hy:ie N}, and {U; : Hi — H; :i € N} be infinite families of k-, kz-, and
ks-demicontractive mappings such that S; — 1, T; — I, and U; — I are demiclosed at zero, re-
spectively. Suppose that T = {v* € (i) F(U;) : Awv* € (oo, F(Si) and Ayv* € (2, F(Ty)} #
@. For arbitrary x, € Hy, let {u,}, {vu}, {yu}, and {x,} be generated by

Uy =Xy + Z?:l C(y,,i&,AT(S,' —DA1xy,
Vi = U + )1y BuibnAS(T; = DAk,
Y =V + 2y VuiTa(Ui = D)V,
Xp1=0,v+(l—0,)y,, neN,

(28)

where {8,}, {64}, {tu}, {on}, {@ni}, {Bui), and {y,,;} are sequences in [0, 1] satisfying the fol-
lowing conditions:

(C1) Y riami=2 1 Bui=2yVui=1forallneN;
(C2) liminf,_, o &,; > 0, liminf,_, o B,,; > 0, and liminf,_, » y,,; >0 forall i e N;

(C3) limysoo0,=0andy .2; 0, = 00;
(C4) O0<a; <8,<ap< ﬁ;

1-ky .
(C5) 0<b1 <6,<by< L

(C6) O0<c1 <1, <cCp<1—ks.

Then the sequence {x,} converges strongly to x* = Pr(v).

It is known that every quasi-nonexpansive mapping is 0-demicontractive mapping, so
the following result is directly obtained by Theorem 3.2.
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Corollary 3.8 Let H; and H, be two real Hilbert spaces, and let A1,A; : Hi — H, be two
bounded linear operators with adjoint operators A} and A%, respectively. Let {S; : Hy —
Hy:ie N}, {T;: Hy, — Hy:i €N}, and {U; : HA — H; : i € N} be infinite families of quasi-
nonexpansive mappings such that S; — I, T; — I, and U; — I are demiclosed at zero, respec-
tively. Suppose that T = {v* € (o) F(U;) : A1v* € (o F(Sy) and Ayv* € (25 E(T)} # 9.
For arbitrary x1 € Hy, let {u,}, {va}, {yu}, and {x,} be generated by

Uy =X, + Z?:l Oly,,,‘(S,,AT(S,' - DA%y,
Vi = U + )iy BuibnAS(T; = DAsuty,
Yn=Vn+ Z?zl Vn,ifn(ui = Dvy,
Xp1=0,v+(1—0,)y,, neN,

(29)

where {8,}, {64}, {tu}, {on}, {@ni}, {Bui}), and {y,;} are sequences in [0, 1] satisfying the fol-
lowing conditions:
(Cl) Yl ani=Y iy Bui=2 ryVni=1forallneN;
(C2) liminf,_ o ay; > 0, liminf,_, o By > 0, and liminf,_, o y,; >0 forall i e N;
(C3) limysoo0,=0andy o) 0, =00;
(C4) O0<a1 <6, <ap<
(C5) 0<b1 <6, <by< m;
(C6) 0<c1 <1, << 1.

Then the sequence {x,} converges strongly to x* = Pr(v).

1.
41112

4 Applications

4.1 The split common null point problem

Let M be the set-valued mapping of H into 2. The effective domain of M is denoted by
D(M), that is, D(M) = {x € H : Mx # #}. The mapping M is said to be monotone if

(x—y,u—v)>0, Vx,ye€DM),uecMx,veMy.

A monotone mapping M is said to be maximal if the graph G(M) is not properly contained
in the graph of any other monotone map, where G(M) = {(x,y) € H x H : y € Mx}. It is
known that M is maximal if and only if for (x,u) € H x H, {(x — y,u — v) > 0 for every
(y,v) € G(M) implies u € Mx. For the maximal monotone operator M, we can associate its
resolvent ]é” defined by

JM = (I +8M)™ :H— D(M), wheres>0.

It is known that if M is a maximal monotone operator, then the resolvent ]g” is firmly
nonexpansive, and F(J)) = M0 = {x € H : 0 € Mx} for every § > 0.

Let H; and H, be two real Hilbert spaces. Let M; : H; — 2/, O; : Hy — 22, and P; :
H, — 22 be multivalued mappings. The split common null point problem (SCNPP) [18]
is to find a point u* € H; such that

0e( \Mu* (30)
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and the points v} = A;ju™ € H, satisfy
q
0oe(ow, (31)
j=1

where A;: Hi — H, (1 <j < gq) are bounded linear operators.
Now, we apply Theorem 3.4 to solve the problem of finding a point #* € H; such that

0¢ ﬂM,»u* (32)

and the points v* = Aju* € H, and s* = Ayu* € H, satisfy

0e ﬂ Oy* and 0Oe€e ﬂP[s*, (33)
i=1 i=1

where A, A, : HA — H, are bounded linear operators.
Since every firmly nonexpansive mapping is a 0-demicontractive mapping, we obtain
the following theorem for problem (32)-(33).

Theorem 4.1 Let Hy and Hj be two real Hilbert spaces, and let A1, A, : Hi — Hj be two
bounded linear operators with adjoint operators A and A}, respectively. Let f : Hy — H,
be a p-contraction mapping, and let B be a self-adjoint strongly positive bounded linear
operator on H, with coefficient & > 2p and ||B|| = 1. Let {M; : H; — 2" : i e N}, {O; :
Hy, — 22 . i € N}, and {P; : Hy — 22 : i € N} be maximal monotone mappings. Sup-
posethat Q= {v* € N5, M;10: A1v* € (X, 0710 and Ayv* € (5, P70} # 0. For arbitrary

x1 € Hy, let {u,}, {vn}, {yn}, and {x,} be generated by

Uy =%Xn+ ) iy an,ié,,A’f(],?i - DAx,,
Vi =ty + 30 BribnA5 U — DAguy,
Y = Vn+ 2oy ViU = DV,

Xns1 = 0f OVn) + ([ = 04B)yn, neN,

(34)

where r1,ra, 13 > 0 and {8,}, {04}, {tu}, {0u}s {oni}s {Bui}s {vui} are sequences in [0,1] satis-
[fying the following conditions:
(C1) Y riami=2 1 Bui=2ryVui=1forallneN;
(C2) liminf,_, o ay; > 0, liminf,_, o By > 0, and liminf,_, o y,; >0 forall i e N;
(C3) limyo00,=0andy o) 0, = 00;
(C4) 0<a; <8,<ap<
(C5) 0<by <6, <by< m;
(C6) O0<c1 <ty <cr<1.

Then the sequence {x,} converges strongly to x* = Po(f + I — B)x™.

1.
lA1112°

4.2 The split variational inequality problem
Let C and Q be nonempty closed convex subsets of two real Hilbert spaces H; and Hs,
respectively. Let A : H; — H, be a bounded linear operator, g : H; — Hy, and i : Hy — H,.
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The split variational inequality problem (SVIP) is to find a point u* € C such that
(g(u*),x - u*) >0, VxedC, (35)
and the point v* = Au* € Q satisfy
(h(v*),y-v)=0, V¥yeQ. (36)

We denote the solution set of the SVIP by £2 = SVIP(C, Q,g,4,A). The set of all solu-
tions of variational inequality problem (35) is denoted by VIP(C, g), and it is known that
VIP(C,g) = F(Pc(I — Ag)) for all A > 0.

Let Ay, A, : Hl — Hj betwobounded linear operators, g; : Hy — H;,and h;, l; : Hy — H,.
In this section, we apply Theorem 3.4 to solve the problem of finding a point u* € (-} C;
such that

(@(w),x-u*)>0, Vxe ﬂ o (37)
i=1
and the point v* = Ayu* € (2, Q;, s* = Au* € (2, K; satisfy

(h,'(v*),y - V*) >0, Vye ﬂ Q;, and (l,'(s*),z - s*) >0, Vze ml(,», (38)
i=1

i=1

where {C;};cn is a family of nonempty closed convex subsets of a real Hilbert space H;, and
{Qi}ieny and {Kj}ien are two families of nonempty closed convex subsets of a real Hilbert
space H,. We now prove a strong convergence theorem for problem (37)-(38).

Theorem 4.2 Let {C;};cn be the family of nonempty closed convex subsets of a real Hilbert
space Hy, let {Q;}ien and {K;}icn be two families of nonempty closed convex subsets of a real
Hilbert space Hy, and let A1,A; : Hi — Hy be two bounded linear operators with adjoint
operators A} and A, respectively. Let f : Hi — H; be a p-contraction mapping, and let
B be a self-adjoint strongly positive bounded linear operator on Hy with coefficient & > 2p
and ||B|| = 1. Let {g;: H1 — Hy :i € N}, {h; : Hy — Hy;i € N}, and {l;: Hy — H>;i € N} be
r1-, ro-, and r3-inverse strongly monotone mappings, respectively. Let r = min{ry, ro, rs} and
w € (0,2r). Suppose that Q = {v* € (5} VIP(C;,g) : Aiv* € (5 VIP(Q;, i) and Av* €
Ny VIP(K;, 1;)} # 0. For arbitrary x, € Hy, let {u,}, {va}, {yu}, and {x,} be generated by

Uy = %0 + Y1y ni8pAT (Po,(I = puhy) — DA %,
Vi =ty + 31y BitnAS (P, (I — pli) — DAsuy,
V=V + iy YuniTn(Pe,(I = p1gi) = D)V,

X1 = 0nf On) + [ = 04B)yn, neN,

(39)

where {8,}, {04}, {tn}, {ou} {0}, {Bui} {vui} are sequences in [0, 1] satisfying the following
conditions:

(C) Yl omi=Y i Bui=yVni=1forallneN;

(C2) liminf,_ o ay; > 0, liminf,_, o B, > 0, and liminf, o Y, >0 forall i e N;

(C3) limysoo0,=0andy .2, 0, = 00;



Hanjing and Suantai Fixed Point Theory and Applications (2018) 2018:14 Page 16 of 21

(C4) O0<a; <6,<ax<
(C5) O<b1§9n§b2<m;
(C6) 0<c1 <1, << 1.

Then the sequence {x,} converges strongly to x* = Pqo(f + I — B)x™.

1_.
IA1112”

Proof Itis known that S; := P, (I — ph;), T; =: Pg,(I — ul;), and U; := Pc,(I — uug;) are nonex-
pensive mappings for all i € (0,2r), and hence they are 0-demicontractive mappings. We
obtain the desired result from Theorem 3.4. 0

4.3 The split equilibrium problem

Let H; and H, be two real Hilbert spaces, and let C and Q be nonempty closed convex
subsets of H; and H, respectively. Let A : H; — H, be a bounded linear operator, and let
g:CxC— Rand4:Qx Q— Rbe two bifunctions. The split equilibrium problem (SEP)
is to find a point #* € C such that

g(u*,x) >0, VxeC, (40)
and Au* € Q satisfy

h(Au*,y) >0, VyeQ. (41)
The set of all solutions of equilibrium problem (40) is denoted by EP(g).

Lemma 4.3 ([19]) Let C be a nonempty closed convex subset of H, and let g be a bifunction
of C x C into R satisfying the following conditions:

(A1) gx,x) =0 forallx e C;

(A2) g is monotone, that is, g(x,y) + g(y,x) <0 for all x,y € C;

(A3) forallx,y,z€C,

limsupg(tz + (1 - t)x,y) < g(x,);
t10
(A4) g(x,-) is convex and lower semicontinuous for all x € C.
Letg: C x C — R be a bifunction satisfying conditions (A1)—(A4), and let r >0 and x € H.
Then there exists z € C such that

1
g(zy)+—(y-2z2z-x)>0 forallyeC.
r

Lemma 4.4 ([20]) Let C be a nonempty closed convex subset of H, and let g be a bifunction
of C x C into R satisfying conditions (A1)—(A4). For r > 0 and x € H, define the mapping
T¢:H — Cofg by

1
Téx = {ze C:gzy)+—-(y—2zz-x)>0,Vye C}, Vx e H.
r
Then the following hold:

(i) T? is single-valued;
(ii) T¢ is firmly nonexpansive;
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(iii) F(T7)=EP(g);
(iv) EP(g) is closed and convex.

Let Ay,A; : Hi — H, be two bounded linear operators, and let g; : C; x C; — R and
hi,l; : Qi x Q; — R be bifunctions for all i € N. In this section, we apply Theorem 3.4 to
solve the problem of finding a point

o0 o0 oo
u*e mEP(gi) such that A;v* e mEP(h,-) and Ay e mEP(li). (42)

i=1 i=1 i=1

By Lemma 4.4(iii) we have that Tf'li, Tg, and T} are firmly nonexpansive mappings, and
hence they are 0-demicontractive mappings. We obtain the following result from Theo-
rem 3.4.

Theorem 4.5 Let {C;}icn be a family of nonempty closed convex subsets of a real Hilbert
space Hy, let {Q;}ien and {K;}icn be two families of nonempty closed convex subsets of a real
Hilbert space Hy, and let Ay,A, : HA — H, be two bounded linear operators with adjoint
operators A and A}, respectively. Let f : Hi — H; be a p-contraction mapping, and let B
be a self-adjoint strongly positive bounded linear operator on Hy with coefficient & > 2p and
IIBl = 1. Let g; : C; x C; — R and h;,l; : Q; x Q; — R be bifunctions satisfying conditions
(A1)-(A4) foralli € N. Suppose that Q = {v* € (5, EP(g;) : A1v* € (5 EP(h;) and Ayv* €
Mis, EP()} # 0. For arbitrary x, € Hy, let {u,}, {va}, {y}, and {x,} be generated by

Uy =Xy + Z?:l an,ianAT(Trhli - DA%y,
Vo =ty + 3y BriOnA3(Th — D)Asity,
V=Vt Yoty VuiTa(Trs = D)V,

Xns1 = 0nf Wu) + [ = 0,B)yn, neN,

(43)

where r1,12,13 > 0 and {8,}, {6,}, {tn}, {04}, {oni}, {Bui}s {vni} are sequences in [0, 1] satis-
[fying the following conditions:
(Cl) Yl ani=Y iy Bui= g Vni=1forallneN;
(C2) liminfy,_ 00 0t > 0, liminfy,_, o0 By > 0, and liminf, o Y > 0 for all i e N;
(C3) limy0o0,=0andy o2, 0, = 00;
(C4) O0<a1 <6,<ax<
(C5) 0<by <6y <br< iz
(C6) 0<c1 <1, << 1.

Then the sequence {x,} converges strongly to x* = Pq(f + I — B)x™.

1_.
IA11%’

5 Numerical example for the main result
We now give a numerical example of the studied method. Let H; = Hy = (R, || - ||3). Define
the mappings S; : R? — R2, U;: R? — R?, and T;: R? — R? by

-3 -2 .
Si(x1, %) = ——(x1,%2), Ui(x1,%2) = | —=x1,%2 ), i€N,
i+1 i+1
and

(%1, % sin xiz) if xy #0,
(xl,o) lfxz = 0,

Ti(x1,%2) = ! ieN



Hanjing and Suantai Fixed Point Theory and Applications (2018) 2018:14 Page 18 of 21

for all x;,x, € R. Then S; are %—demicon’cractive mappings for all i € N and (%, F(S;) =
{(0,0)}, U; are %—demicontractive mappings for all i € N and (7, F(U;) =0 x R, and T;
are 0-demicontractive mappings for all i € N and ()5, F(T;) = R x 0. Next, we define the
mappings f : R? — R?, B:R? - R%, A; : R? - R?, and A, : R? — R? by

X X x
flx1,%2) = (El, §2>, B(x1,%3) = (xl; 52>, Aq(x1,%) = (x1,2x1),

and
As(x1,%2) = (%2 — 21, 2%1)

for all x1,x, € R. Then f is a %—contraction, B is a self-adjoint strongly positive bounded

linear operator with coefficient § = %, and A;, A, are bounded linear operators. Define the

real sequence {o,,;}, {8}, and {y,,} as follows:

1 ifn=i=1,
Ay, = %(ﬁ?ﬂ—l 1 ifn>i’
1->7 i(ﬁ) ifn=i>1,
0 otherwise,
1 ifn=i=1,
1 . .
By = yﬁ)l ifn>i
' 1= %G ifn=i>1,
0 otherwise,
and
1 ifn=i=1,
1 . ,
Vi = m(#l 1 ifn>i
5 n— . .
1->77 W(ﬁ ifn=i>1,
0 otherwise,
that is,
1 0 0 0 0 0 0 0
1/3 2/3 0 0 0 0 0 0
3/8 3/16 7/16 0 0 0 0 0
2/5 1/5 1/10 3/10 0 0 0 0
®ni=15/12 5/24 5/48 5/96 7/32 0 0 0 ’
3/7 3/14 3/28 3/56 3/112 19/112 0 0
7/16 7/32 7/64 7/128 7/256 7/512 71/512 O
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Figure 1 Graph for errors

1 0 0 0 0 0 0 0

2/9 7/9 0 0 0 0 0 0

1/4 1/12  2/3 0 0 0 0 0

4/15 4/45 4/135 83/135 0 0 0 0
Bui=|5/18 5/54 5/162 5/486 143/243 0 0 0 ’

2/7  2/21  2/63 2/189 1/284 325/567 0 0

7024 7]/72 7/216 7/648 1/278 1/833 58/103 O

and

1 0 0 0 0 0 0 0
1/40 39/40 0 0 0 0 0 0
3/112 3/448 433/448 0 0 0 0 0
1/36  1/144  1/576  185/192 0 0 0 0
Yni=|5/176 5/704  1/563 1/2253  51/53 0 0 0
3/104 3/416 1/555 1/2219 1/8875 976/1015 0 0
7/240 7/960 1/549 1/2194 1/8777 1/35,109 618/643 0

= 221% for i € N. Now, we

start with the initial point x; = (1,1) and let {x,} be the sequence generated by (12). Sup-

pose that x,, is of the form x, = (a,, b,). where a,, b, € R. The criterion for stopping our
testing method is taken as ||x,,_1 —x,||> < 107°. Choose §,, =

. 1 . 1 .
We see that lim,,, o 0,; = 2 limy,— o0 Bui = 3 and lim,, oo Yy, =

n _ n _ n
512 On = 35,10 Tn =z and
o, = ;40% for all n € N. Figure 1 shows the errors ||x,_1 — x,||2 of our proposed method.

The values of x,, and ||x,,_1 — x,||2 are shown in Table 1.

We observe from Table 1 that x,, — (0,0) € I'. We also note that the error is bounded

by %30 — 312 < 107%, and we can use x3; = (0.00000003, 0.00000117) to approximate the
solution of (7) with accuracy at least 6 D.P.

6 Conclusion

We introduce a new algorithm for solving the split common fixed point problem (7) of
the infinite families of demicontractive mappings in Hilbert spaces. Strong convergence

of the proposed algorithm is obtained under some suitable control conditions. The main
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Table 1 Numerical experiment for x,

n an bn IXn-1 = Xnll2
1 100000000 100000000 -
2 0.12500000 0.62500000 095197164
3 001751567 0.39224395 0.25637524
4 0.00414010 0.24675959 0.14609793
5 0.00202951 0.15549870 0.09128529
6 0.00140947 009811767 0.05738438
7 0.00107109 0.06197693 0.03614232
8 0.00063002 003918347 002279773
9 0.00047832 0.02479206 001439221
10 0.00030270 0.01569709 0.00909667
11 0.00022553 0.00994467 0.00575293
12 000014616 0.00630378 0.00364176
13 0.00008740 0.00399788 0.00230665
14 0.00005861 0.00253664 000146152
28 0.00000009 0.00000450 0.00000257
29 0.00000007 0.00000287 0.00000163
30 0.00000007 0.00000183 0.00000104
31 0.00000003 0.00000117 0.00000066

results of this paper can be considered as an extension of work by Eslamian [12] by provid-
ing an algorithm for finding a solution of problem (7), which is a generalization of prob-
lem (5).
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