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Abstract
In this paper, we study an inertial algorithm for approximating a common fixed point
for a countable family of relatively nonexpansive maps in a uniformly convex and
uniformly smooth real Banach space. We prove a strong convergence theorem. This
theorem is an improvement of the result of Matsushita and Takahashi (J. Approx.
Theory 134:257–266, 2005) and the result of Dong et al. (Optim. Lett. 12:87–102, 2018).
Finally, we give some applications of our theorem.
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1 Introduction
An inertial-type algorithm was first proposed by Polyak [3] as an acceleration process in
solving a smooth convex minimisation problem. An inertial-type algorithm is a two-step
iterative method in which the next iterate is defined by making use of the previous two
iterates. It is well known that incorporating an inertial term in an algorithm speeds up or
accelerates the rate of convergence of the sequence generated by the algorithm. Conse-
quently, a lot of research interest is now devoted to the inertial-type algorithm (see e.g. [2,
4, 5] and the references contained in them).

Let E be a real Banach space and E∗ be its dual space. Let C be a nonempty, closed and
convex subset of E, and let T be a map from C into itself. The fixed point set of T is defined
as follows: F(T) := {x ∈ C : Tx = x}. The normalised duality map J from E to 2E∗ is defined
by Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2,∀x ∈ E}, where 〈·, ·〉 denotes the duality pairing.
The following properties of the normalised duality map will be needed in the sequel (see
e.g. Ibaraki and Takahashi [6]):

1. If E is a reflexive, strictly convex and smooth real Banach space, then J is surjective,
injective and single-valued. If E is uniformly smooth, then J is uniformly continuous
on bounded sets.

2. In a real Hilbert space H , the duality map J is the identity map on H .
The Lyapunov functional ψ : E × E → [0,∞) is defined by ψ(x, y) = ‖x‖2 – 2〈x, Jy〉 + ‖y‖2,
∀x, y ∈ E, where J is the normalised duality map from E to E∗. It was first introduced by
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Alber and has been extensively studied by many authors (see e.g. Alber [7], Chidume et
al. [8, 9], Kamimura and Takahashi [10], Reich [11, 12], Takahashi and Zembayashi [13],
Zegeye [14] and a host of other authors). It is easy to see from the definition of ψ that, in
a real Hilbert space H , ψ(x, y) = ‖x – y‖2, ∀x, y ∈ H . Furthermore, for any x, y, z ∈ E and
α ∈ (0, 1), we have the following properties:

(N0) (‖x‖ – ‖y‖)2 ≤ ψ(x, y) ≤ (‖x‖ + ‖y‖)2,
(N1) ψ(x, y) = ψ(x, z) + ψ(z, y) + 2〈z – x, Jy – Jz〉,
(N2) ψ(x, J–1(αJy + (1 – α)Jz)) ≤ αψ(x, y) + (1 – α)ψ(x, z),
(N3) ψ(x, y) ≤ ‖x‖‖Jx – Jy‖ + ‖y‖‖x – y‖.

Let E be a smooth, strictly convex and reflexive real Banach space, and let C ⊆ E be
nonempty, closed and convex. The map �C : E → C defined by �Cx := u0 ∈ C such that
ψ(u0, x) = arg infy∈C ψ(y, x) is called the generalised projection, where arg infy∈C ψ(y, x) is
the set of all the minimisers of ψ . We remark that in a real Hilbert space H , the gener-
alised projection �C coincides with the metric projection PC from H onto C.

A point x∗ ∈ C is called an asymptotic fixed point of T if there exists a sequence {un} ⊆ C
such that un ⇀ x∗ and ‖un – Tun‖ → 0, as n → ∞ (see e.g. Chang et al. [15]). Here we shall
denote the set of asymptotic fixed points of T by ̂F(T).

A real Banach space E is called an Opial space (see e.g. Chidume [16]) if whenever {un}
is a sequence in E such that un ⇀ x ∈ E, then

lim inf
n→∞

∥

∥un – x
∥

∥ < lim inf
n→∞

∥

∥un – y
∥

∥, ∀y ∈ E, y �= x.

Definition 1.1 A map T : C → C is said to be relatively nonexpansive if:
(i) ̂F(T) = F(T) �= ∅, and

(ii) ψ(p, Tx) ≤ ψ(p, x), ∀x ∈ C, p ∈ F(T).

Remark 1 Every real Hilbert space is an Opial space, and so if {un} is a sequence in H such
that un ⇀ x∗ and ‖un – Tun‖ → 0, it is well known that if T is nonexpansive, then Tx∗ = x∗

and̂F(T) = F(T). Moreover, since ψ(x, y) = ‖x – y‖2, ∀x, y ∈ H , it follows that T is relatively
nonexpansive.

Let B := {x ∈ E : ‖x‖ = 1} be the unit sphere of E. A Banach space E is said to be strictly
convex if, for all x, y ∈ B, x �= y ⇒ ‖x+y‖

2 < 1. The space E is said to have the Kadec–
Klee property if whenever {un} is a sequence in E that converges weakly to u0 ∈ E and
‖un‖ → ‖u0‖, as n → ∞, then {un} converges strongly to u0. A space E is said to be uni-
formly convex if, for each ε ∈ (0, 2], there exists δ > 0 such that ‖x – y‖ ≥ ε ⇒ ‖ x+y

2 ‖ < 1 – δ,
∀x, y ∈ B. It is well known that a uniformly convex real Banach space is reflexive, strictly
convex and has the Kadec–Klee property [17, 18].

A function δ : (0, 2] → [0, 1] called the modulus of convexity of E is defined as follows:
δ(ε) := inf{1 – ‖ x+y

2 ‖ : x, y ∈ E,‖x‖ = ‖y‖ = 1,‖x – y‖ ≥ ε}. It follows that E is uniformly
convex if δ(ε) > 0, ∀ε ∈ (0, 2]. A real Banach space E is said to be smooth if the limit

lim
t→0

‖x + ty‖ – ‖x‖
t

exists for all x, y ∈ B. (1.1)

It is said to be uniformly smooth if the limit in (1.1) above is attained uniformly, for all
x, y ∈ B (see e.g. Chidume [16]).
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In 2003, Nakajo and Takahashi [19] studied the following CQ iterative algorithm for
approximating a fixed point of a nonexpansive map in a real Hilbert space: u0 ∈ C and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

vn = αnun + (1 – αn)Tun,

Cn = {z ∈ C : ‖vn – z‖ ≤ ‖un – z‖},
Qn = {z ∈ C : 〈un – z, un – u0〉 ≤ 0},
un+1 = PCn∩Qn u0, n ≥ 1,

(1.2)

where αn ∈ [0, 1], C is a nonempty, closed and convex subset of a real Hilbert space, T is
a nonexpansive map from C into itself and PCn∩Qn is the metric projection from C onto
Cn ∩ Qn. They proved that the sequence generated by algorithm (1.2) converges strongly
to a fixed point of T .

In 2005, Matsushita and Takahashi [1] studied the following iterative algorithm for ap-
proximating a fixed point of a relatively nonexpansive map in a uniformly convex and
uniformly smooth real Banach space: u0 ∈ C and

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

vn = J–1(αnJun + (1 – αn)JTun),

Cn = {z ∈ C : ψ(z, vn) ≤ ψ(z, un)},
Qn = {z ∈ C : 〈un – z, Jun – Ju0〉 ≤ 0},
un+1 = �Cn∩Qn u0, n ≥ 1.

(1.3)

They proved that the sequence {un} generated by algorithm (1.3) converges strongly to a
fixed point of T .

Recently, Dong et al. [2] studied the following inertial CQ algorithm for nonexpansive
maps in a real Hilbert space. They proved the following theorem:

Theorem 1.2 (Dong et al., [2, Theorem 4.1]) Let T : H → H be a nonexpansive map such
that F(T) �= ∅. Let {αn} ⊂ [α1,α2], α1 ∈ (–∞, 0], α2 ∈ [0,∞), {βn} ⊂ [β , 1], β ∈ (0, 1]. Set
u0, u1 ∈ H arbitrarily. Define a sequence {un} by the following algorithm:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

wn = un + αn(un – un–1),

vn = (1 – βn)wn + βnT(wn),

Cn = {z ∈ H : ‖vn – z‖ ≤ ‖wn – z‖},
Qn = {z ∈ H : 〈un – z, un – u0〉 ≤ 0},
un+1 = PCn∩Qn u0, n ≥ 0.

(1.4)

Then the iterative sequence {un} generated by algorithm (1.4) converges in norm to PF(T)u0.

In this paper, motivated by the results of Matsushita and Takahashi [1] and Dong et
al. [2], we study an inertial algorithm in a uniformly convex and uniformly smooth real
Banach space and prove a strong convergence theorem for the sequence generated by
our algorithm. As a consequence of this result, we obtain a strong convergence theorem
for approximating a common fixed point for a countable family of relatively nonexpansive
maps. Our theorem is an improvement of the results of Dong et al. [2], Matsushita and
Takahashi [1], Nakajo and Takahashi [19] and a host of other results.
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2 Preliminaries
Lemma 2.1 (Alber [7]) Let C be a nonempty closed and convex subset of a strictly convex
and reflexive real Banach space E. If x ∈ E and u0 ∈ C, then

u0 = �Cx ⇐⇒ 〈

u0 – y, Ju0 – Jx
〉 ≤ 0, ∀y ∈ C, and

ψ(y,�Cx) + ψ(�Cx, x) ≤ ψ(y, x), ∀y ∈ C, x ∈ E.
(2.1)

Lemma 2.2 (Kamimura and Takahashi [10]) Let E be a smooth and uniformly convex real
Banach space, and let {un} and {vn} be two sequences of E. If either {un} or {vn} is bounded
and ψ(un, vn) → 0, as n → ∞, then ‖un – vn‖ → 0, as n → ∞.

Remark 2 Using (N3), it is easy to see that the converse of Lemma 2.2 is also true whenever
{un} and {vn} are both bounded.

Lemma 2.3 (Matsushita and Takahashi [1]) Let E be a smooth and strictly convex real
Banach space, and let C be a nonempty, closed and convex subset of E. Let T be a map
from C into itself such that F(T) �= ∅ and ψ(y, Tx) ≤ ψ(y, x), ∀(y, x) ∈ F(T) × C. Then F(T)
is closed and convex.

Lemma 2.4 (Kohsaka and Takahashi [20, Theorem 3.3]) Let C be a nonempty, closed and
convex subset of a uniformly convex and uniformly smooth real Banach space E, and let
Ti : C → E, i = 1, 2, 3, . . . , be a countable family of relatively nonexpansive maps such that
⋂∞

i=1 F(Ti) �= ∅. Suppose {αi} ⊂ (0, 1) and {βi} ⊂ (0, 1) are sequences such that
∑∞

i=1 αi = 1
and T : C → E is defined by

Tx = J–1

( ∞
∑

i=1

αi
(

βiJx + (1 – βi)JTix
)

)

for each x ∈ C.

Then T is relatively nonexpansive and F(T) =
⋂∞

i=1 F(Ti).

3 Main results
We first prove the following lemma which will be central for the proof of our main theo-
rem.

Lemma 3.1 Let E be a uniformly convex and uniformly smooth real Banach space. Let
T : E −→ E be a relatively nonexpansive map such that F(T) �= ∅. Let {un} be generated by
the following algorithm: u0, u1 ∈ E and

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C0 = E,

wn = un + αn(un – un–1),

vn = J–1[(1 – β)Jwn + βJTwn],

Cn+1 = {z ∈ Cn : ψ(z, vn) ≤ ψ(z, wn)},
un+1 = �Cn+1 u0, n ≥ 1,

(3.1)

where αn ∈ (0, 1), β ∈ (0, 1). Then {un} converges strongly to a point p = �F(T)u0.
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Proof We partition our proof into four steps.
Step 1. We show that {un} is well defined and F(T) ⊆ Cn, ∀n ≥ 0.
Let z ∈ Cn+1, then

ψ
(

z, vn) ≤ ψ
(

z, wn)

⇔ ‖z‖2 – 2
〈

z, Jvn〉 +
∥

∥vn∥
∥

2 ≤ ‖z‖2 – 2
〈

z, Jwn〉 +
∥

∥wn∥
∥

2

⇔ 2
〈

z, Jwn – Jvn〉 ≤ ∥

∥wn∥
∥

2 –
∥

∥vn∥
∥

2. (3.2)

Using (3.2) above, we observe that Cn is closed and convex, ∀n ≥ 0. We now show that
F(T) ⊆ Cn, ∀n ≥ 0. For n=0, F(T) ⊆ C0 = E. Assume F(T) ⊆ Cn, let p ∈ F(T). Then, by
(N2) and the fact that T is relatively nonexpansive, we have that

ψ
(

p, vn) = ψ(p, J–1((1 – β)Jwn + βJT
(

wn))

≤ (1 – β)ψ
(

p, wn) + βψ
(

p, Twn)

≤ (1 – β)ψ
(

p, wn) + βψ
(

p, wn) = ψ
(

p, wn), (3.3)

which implies that p ∈ Cn+1. So, by induction, F(T) ⊆ Cn for all n ≥ 0. Thus, {un} is well
defined.

Step 2. We show that {un}, {vn} and {wn} are bounded.
We observe that un = �Cn u0 and Cn+1 ⊆ Cn for all n ≥ 0. So, employing Lemma 2.1, we

have that ψ(un, u0) ≤ ψ(un+1, u0). Hence, {ψ(un, u0)} is nondecreasing. Furthermore, we
obtain that ψ(un, u0) = ψ(�Cn u0, u0) ≤ ψ(p, u0) – ψ(p, un) ≤ ψ(p, u0), which implies that
{ψ(un, u0)} is bounded; and hence by (N0), {un} is bounded; and consequently, {ψ(un, u0)}
is convergent. From Lemma 2.1, we have that

ψ
(

um, un) = ψ
(

um,�Cn u0) ≤ ψ
(

um, u0) – ψ
(

un, u0) → 0, as n, m → ∞.

Hence, {un} is Cauchy and this implies that ‖un+1 – un‖ → 0, as n → ∞.
Using the definition of wn, we have that ‖un –wn‖ = ‖αn(un–1 –un)‖ ≤ ‖un–1 –un‖ → 0, as

n → ∞. Since {wn} is bounded, by Remark 2, we have that ψ(un, wn) → 0, as n → ∞. Since
un+1 ∈ Cn, it follows that 0 ≤ ψ(un+1, vn) ≤ ψ(un+1, wn) → 0, as n → ∞, which implies that
‖un – vn‖ → 0, as n → ∞; and consequently, {vn} is bounded.

Step 3. We show that ‖wn – Twn‖ → 0, as n → ∞.
Using Remark 2, we deduce that ψ(un, vn) → 0, as n → ∞. By (N1) and the uniform

continuity of J on bounded sets, we have that

ψ
(

wn, vn) = ψ
(

wn, un) + ψ
(

un, vn) + 2
〈

un – wn, Jvn – Jun〉

≤ ψ
(

wn, un) + ψ
(

un, vn) + 2
∥

∥un – wn∥
∥

∥

∥Jun – Jvn∥
∥ → 0, as n → ∞. (3.4)

Next, from the definition of vn, we observe that

∥

∥Jvn – Jwn∥
∥ = β

∥

∥JTwn – Jwn∥
∥.

Since ‖vn – wn‖ → 0, by the uniform continuity of J and J–1 on bounded sets, we have

∥

∥wn – Twn∥
∥ → 0, as n → ∞.
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Step 4. We show that un → �F(T)u0.
Since {wn} is bounded, there exists {wnk }, a subsequence of {wn}, such that wnk ⇀ x∗,

as k → ∞. Using Step 3, we obtain that ‖wnk – Twnk ‖ → 0, as k → ∞. Since our map is
relatively nonexpansive, we have that x∗ ∈ F(T). Thus, it follows from Step 2 that there
exists {unk }, a subsequence of {un}, such that unk ⇀ x∗, as k → ∞. We now show that
x∗ = �F(T)u0. Set v = �F(T)u0.

From un = �Cn u0 and F(T) ⊆ Cn, ∀n ≥ 1, we have ψ(un, u0) ≤ ψ(v, u0). Employing the
weak lower semi-continuity of norm, we obtain

ψ
(

x∗, u0) =
∥

∥x∗∥
∥

2 – 2
〈

x∗, Ju0〉 +
∥

∥u0∥
∥

2

≤ lim inf
(∥

∥unk
∥

∥

2 – 2
〈

unk , Ju0〉 +
∥

∥u0∥
∥

2)

= lim infψ
(

unk , u0) ≤ lim supψ
(

unk , u0) ≤ ψ
(

v, u0). (3.5)

However,

ψ
(

v, u0) ≤ ψ
(

z, u0), for all z ∈ F(T)

⇒ ψ
(

v, u0) ≤ ψ
(

x∗, u0) ≤ ψ
(

v, u0)

⇒ ψ
(

v, u0) = ψ
(

x∗, u0). (3.6)

By the uniqueness of �F(T)u0, v = x∗. So, we deduce that x∗ = �F(T)u0. Next, we show
that unk → x∗, as k → ∞. Using (3.5) and (3.6), we obtain that ψ(unk , u0) → ψ(x∗, u0),
as k → ∞. As a result of this, we obtain that ‖unk ‖ → ‖x∗‖, as k → ∞. By the Kadec–
Klee property of E, we conclude that unk → x∗, as k → ∞. Consequently, since {un} is
convergent, we obtain that un → x∗, as n → ∞. Therefore, un → �F(T)u0. This completes
the proof. �

Using Lemma 3.1, we now prove our main theorem of this paper.

Theorem 3.2 Let E be a uniformly convex and uniformly smooth real Banach space. Let
Ti : E → E, i = 1, 2, 3, . . . , be a countable family of relatively nonexpansive maps such that
⋂∞

i=1 F(Ti) �= ∅. Suppose {αi} ⊂ (0, 1) and {βi} ⊂ (0, 1) are sequences such that
∑∞

i=1 αi = 1
and T : E → E is defined by Tx = J–1(

∑∞
i=1 αi(βiJx + (1 – βi)JTix)) for each x ∈ E. Let {un} be

generated by the following algorithm: u0, u1 ∈ E and

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C0 = E,

wn = un + αn(un – un–1),

vn = J–1[(1 – β)Jwn + βJTwn],

Cn+1 = {z ∈ Cn : ψ(z, vn) ≤ ψ(z, wn)},
un+1 = �Cn+1 u0, n ≥ 0,

(3.7)

where αn ∈ (0, 1), β ∈ (0, 1), then {un} converges strongly to a point p = �F(T)u0.

Proof From Lemma 2.4, T is relatively nonexpansive and F(T) =
⋂∞

i=1 F(Ti). The conclu-
sion follows from Lemma 3.1. �
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Corollary 3.3 Let E be uniformly convex and uniformly smooth real Banach spaces Lp (or
lp or W m

p (	)), 1 < p < ∞. Let Ti : E → E, i = 1, 2, 3, . . . , be a countable family of relatively
nonexpansive maps such that

⋂∞
i=1 F(Ti) �= ∅. Suppose that {αi} ⊂ (0, 1) and {βi} ⊂ (0, 1)

are sequences such that
∑∞

i=1 αi = 1 and T : E → E is defined by Tx = J–1(
∑∞

i=1 αi(βiJx +
(1 – βi)JTix)) for each x ∈ E. Let {un} be generated by the following algorithm: u0, u1 ∈ E
and

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C0 = E,

wn = un + αn(un – un–1),

vn = J–1[(1 – β)Jwn + βJTwn],

Cn+1 = {z ∈ Cn : ψ(z, vn) ≤ ψ(z, wn)},
un+1 = �Cn+1 u0, n ≥ 1,

(3.8)

where αn ∈ (0, 1), β ∈ (0, 1). Then {un} converges strongly to �F(T)u0.

Corollary 3.4 Let H be a real Hilbert space. Let Ti : H → H , i = 1, 2, 3, . . . , be a countable
family of nonexpansive maps such that

⋂∞
i=1 F(Ti) �= ∅. Suppose {αi} ⊂ (0, 1) and {βi} ⊂

(0, 1) are sequences such that
∑∞

i=1 αi = 1 and T : H → H is defined by Tx = (
∑∞

i=1 αi(βix +
(1 – βi)Tix)) for each x ∈ H . Let {un} be generated by the following algorithm: u0, u1 ∈ H
and

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C0 = H ,

wn = un + αn(un – un–1),

vn = (1 – β)wn + βTwn,

Cn+1 = {z ∈ Cn : ‖z – vn‖ ≤ ‖z – wn‖},
un+1 = �Cn+1 u0, n ≥ 1,

(3.9)

where αn ∈ (0, 1), β ∈ (0, 1). Then {un} converges strongly to �F(T)u0.

Proof Using Remark 1, we have that Ti is relatively nonexpansive for each i ≥ 1. Thus, the
conclusion follows from Theorem 3.2. �

4 Conclusion
Theorem 3.2 is an improvement of the result of Matsushita and Takahashi [1] and the
result of Dong et al. [2] in the following sense:

• The algorithms studied in Matsushita and Takahashi [1] and Dong et al. [2] require at
each step of the iteration process the computation of two subsets Cn and Qn of C; their
intersection Cn ∩ Qn, and the projection of the initial vector onto this intersection. In
our iteration process, the subset Qn has been dispensed with. Furthermore, the
sequences {αn} and {βn} used in the algorithms of Matsushita and Takahashi [1] and
Dong et al. [2], which are also to be computed at each step of the iteration process,
have been replaced by a fixed constant β in our algorithm. This β is to be computed
once and used at each step of the iteration process. Consequently, our algorithm
reduces computational cost.
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• In Matsushita and Takahashi [1], the authors proved a strong convergence theorem
for a relatively nonexpansive map T : C → C. In our Theorem 3.2, a strong
convergence theorem is proved for a countable family of relatively nonexpansive maps
Ti : E → E, i ∈N. Furthermore, unlike the algorithm of Matsushita and Takahashi, our
algorithm has an inertial term which is known to improve the speed of convergence
over algorithms without an inertial term (see e.g. [2–5, 21] and the references
contained in them).

• In Dong et al. [2, Theorem 4.1], the authors proved a strong convergence theorem in a
real Hilbert space for one nonexpansive map. Our theorem is proved in the much
more general uniformly convex and uniformly smooth real Banach spaces and for a
countable family of relatively nonexpansive maps.
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