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Abstract
We consider the split generalized equilibrium problem and the fixed point problem
for a countable family of nonexpansive multivalued mappings in real Hilbert spaces.
Then, using the shrinking projection method, we prove a strong convergence
theorem for finding a common solution of the considered problems. A numerical
example is presented to illustrate the convergence result. Our results improve and
extend the corresponding results in the literature.
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1 Introduction
Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be
a nonempty closed convex subset of H , ϕ : C × C → R, and let F : C × C → R be two
bifunctions. The generalized equilibrium problem is to find x ∈ C such that

F(x, y) + ϕ(x, y) ≥ 0, ∀y ∈ C. (1.1)

The solution set of generalized equilibrium problem is denoted by GEP(F ,ϕ). In particular,
if ϕ = 0, then this problem reduces to the equilibrium problem to find x ∈ C such that
F(x, y) ≥ 0 for all y ∈ C. The solution set of the equilibrium problem is denoted by EP(F).

The generalized equilibrium problem is very general in the sense that it includes, as
particular cases, optimization problems, variational inequality problems, minimization
problems, fixed point problems, mixed equilibrium problem, Nash equilibrium problems
in noncooperative games, and others; see, for example, [1–6].

In 2013, Kazmi and Rizvi [7] introduced and studied the following split generalized equi-
librium problem. Let C ⊆ H1 and Q ⊆ H2, let F1,ϕ1 : C × C → R and F2,ϕ2 : Q × Q → R

be nonlinear bifunctions, and let A : H1 → H2 be a bounded linear operator. The split
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generalized equilibrium problem is to find x∗ ∈ C such that

F1
(
x∗, x

)
+ ϕ1

(
x∗, x

) ≥ 0, ∀x ∈ C, (1.2)

and such that

y∗ = Ax∗ ∈ Q solves F2
(
y∗, y

)
+ ϕ2

(
y∗, y

) ≥ 0, ∀y ∈ Q. (1.3)

The solution set of the split generalized equilibrium problem is denoted by

SGEP(F1,ϕ1, F2,ϕ2) :=
{

x∗ ∈ C : x∗ ∈ GEP(F1,ϕ1) and Ax∗ ∈ GEP(F2,ϕ2)
}

.

The authors also gave an iterative algorithm to find a common element of the solution
sets of the split generalized equilibrium problem in real Hilbert spaces; for more details,
we refer to [7–9]. If ϕ1 = 0 and ϕ2 = 0, then the split generalized equilibrium problem
reduces to the split equilibrium problem; see [10]. If F2 = 0 and ϕ2 = 0, the split generalized
equilibrium problem reduces to the equilibrium problem considered by Cianciaruso et
al. [11].

In 2008, Takahashi et al. [12] introduced the following iterative algorithm, which is
known as the shrinking projection method, for finding a fixed point of a nonexpansive
single-valued mapping in Hilbert spaces. The shrinking projection method is a popu-
lar method and plays an important role in studying the strong convergence for finding
fixed points of nonlinear mappings. Many researchers developed the shrinking projection
method for solving variational inequality problems, equilibrium problems, and fixed point
problems in Hilbert spaces; see, for example, [13, 14].

Motivated and inspired by the results mentioned and related literature, we propose an it-
erative algorithm based on the shrinking projection method for finding a common element
of the set of solutions of split generalized equilibrium problems and the set of common
fixed points of a countable family of nonexpansive multivalued mappings in real Hilbert
spaces. Then we prove strong convergence theorems that extend and improve the corre-
sponding results of Kazmi and Rizvi [7], Suantai et al. [15], and others. Finally, we give
some examples and numerical results to illustrate our main results.

2 Preliminaries
Let C be a nonempty closed convex subset of a real Hilbert space H . We denote the strong
convergence and the weak convergence of a sequence {xn} to a point x ∈ H by xn → x
and xn ⇀ x, respectively. It is also well known [16] that a Hilbert space H satisfies Opial’s
condition, that is, for any sequence {xn} with xn ⇀ x, the inequality

lim sup
n→∞

‖xn – x‖ < lim sup
n→∞

‖xn – y‖

holds for every y ∈ H with y �= x.
The following three lemmas are useful for our main results.

Lemma 2.1 In a real Hilbert space H , the following inequalities hold:
(1) ‖x – y‖2 ≤ ‖x‖2 – ‖y‖2 – 2〈x – y, y〉, ∀x, y ∈ H ;
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(2) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H ;
(3) If {xn} is a sequence in H that converges weakly to z ∈ H , then

lim sup
n→∞

‖xn – y‖2 = lim sup
n→∞

‖xn – z‖2 + ‖z – y‖2, ∀y ∈ H .

Lemma 2.2 ([17]) Let H be a Hilbert space. Let x1, x2, . . . , xN ∈ H , and let α1, α2, . . . ,αN be
real numbers such that

∑N
i=1 αi = 1. Then

∥∥
∥∥
∥

N∑

i=1

αixi

∥∥
∥∥
∥

2

=
N∑

i=1

αi‖xi‖2 –
∑

1≤i,j≤N

αiαj‖xi – xj‖2.

Lemma 2.3 ([18]) Let H be a Hilbert space, and let {xn} be a sequence in H . Let u, v ∈ H be
such that limn→∞ ‖xn – u‖ and limn→∞ ‖xn – v‖ exist. If {xnk } and {xmk } are subsequences
of {xn} that converge weakly to u and v, respectively, then u = v.

A single-valued mapping T : C → H is called δ-inverse strongly monotone [19] if there
exists a positive real number δ such that

〈x – y, Tx – Ty〉 ≥ δ‖Tx – Ty‖2, ∀x, y ∈ C.

For each γ ∈ (0, 2δ], we see that I – γ T is a nonexpansive single-valued mapping, that is,

∥
∥(I – γ T)x – (I – γ T)y

∥
∥ ≤ ‖x – y‖, ∀x, y ∈ C.

We denote by CB(C) and K(C) the collections of all nonempty closed bounded subsets
and nonempty compact subsets of C, respectively. The Hausdorff metric H on CB(C) is
defined by

H(A, B) := max
{

sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)
}

, ∀A, B ∈ CB(C),

where dist(x, B) = inf{d(x, y) : y ∈ B} is the distance from a point x to a subset B. Let S : C →
CB(C) be a multivalued mapping. An element x ∈ C is called a fixed point of S if x ∈ Sx.
The set of all fixed points of S is denoted by F(S), that is, F(S) = {x ∈ C : x ∈ Sx}. Recall that
a multivalued mapping S : C → CB(C) is called

(i) nonexpansive if

H(Sx, Sy) ≤ ‖x – y‖, ∀x, y ∈ C;

(ii) quasi-nonexpansive if F(S) �= ∅ and

H(Sx, Sp) ≤ ‖x – p‖, ∀x ∈ C,∀p ∈ F(S).

If S is a nonexpansive single-valued mapping on a closed convex subset of a Hilbert
space, then F(S) is closed and convex. The closedness of F(S) can be easily extended to
the multivalued case. However, the convexity of F(S) cannot be extended (see, e.g., [20]).
However, if S is a nonexpansive multivalued mapping and Sp = {p} for each p ∈ F(S), then
F(S) is always closed and convex as the following result shows.
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Lemma 2.4 ([21]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Let S : C → CB(C) be a nonexpansive multivalued mapping with F(S) �= ∅ and Sp = {p} for
each p ∈ F(S). Then F(S) is a closed and convex subset of C.

Lemma 2.5 ([22]) Let C be a nonempty closed convex subset of a real Hilbert space H .
Given x, y, z ∈ H and a real number α, the set {u ∈ C : ‖y – u‖2 ≤ ‖x – u‖2 + 〈z, u〉 + α} is
closed and convex.

Lemma 2.6 ([23, 24]) Let C be a nonempty closed convex subset of a real Hilbert space H ,
and let PC : H → C be the metric projection. Then

‖y – PCx‖2 + ‖x – PCx‖2 ≤ ‖x – y‖2, ∀x ∈ H , y ∈ C.

For solving the generalized equilibrium problem, we assume that the bifunctions F1 :
C × C →R and ϕ1 : C × C →R satisfy the following assumption.

Assumption 2.7 Let C be nonempty closed and convex subset of a Hilbert space H1. Let
F1 : C × C →R and ϕ1 : C × C →R be two bifunctions satisfy the following conditions:

(A1) F1(x, x) = 0 for all x ∈ C,
(A2) F1 is monotone, that is, F1(x, y) + F1(y, x) ≤ 0 for all x, y ∈ C,
(A3) F1 is upper hemicontinuous, that is, for all x, y, z ∈ C,

limt↓0 F1(tz + (1 – t)x, y) ≤ F1(x, y),
(A4) for each x ∈ C, y �→ F1(x, y) is convex and lower semicontinuous,
(A5) ϕ1(x, x) ≥ 0 for all x ∈ C,
(A6) for each y ∈ C, x �→ ϕ1(x, y) is upper semicontinuous,
(A7) for each x ∈ C, y �→ ϕ1(x, y) is convex and lower semicontinuous,

and assume that for fixed r > 0 and z ∈ C, there exists a nonempty compact convex subset
K of H1 and x ∈ C ∩ K such that

F1(y, x) + ϕ1(y, x) +
1
r
〈y – x, x – z〉 < 0, ∀y ∈ C \ K .

Lemma 2.8 ([25]) Let C be nonempty closed and convex subset of a Hilbert space H1. Let
F1 : C × C → R and ϕ1 : C × C → R be two bifunctions satisfy Assumption 2.7. Assume
that ϕ1 is monotone. For r > 0 and x ∈ H1, define a mapping T (F1,ϕ1)

r : H1 → C as follows:

T (F1,ϕ1)
r (x) =

{
z ∈ C : F1(z, y) + ϕ1(z, y) +

1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}

for all x ∈ H1. Then:
(1) For each x ∈ H1, T (F1,ϕ1)

r �= ∅,
(2) T (F1,ϕ1)

r is single-valued,
(3) T (F1,ϕ1)

r is firmly nonexpansive, that is, for any x, y ∈ H1,

∥∥T (F1,ϕ1)
r x – T (F1,ϕ1)

r y
∥∥2 ≤ 〈

T (F1,ϕ1)
r x – T (F1,ϕ1)

r y, x – y
〉
,

(4) F(T (F1,ϕ1)
r ) = GEP(F1,ϕ1),

(5) GEP(F1,ϕ1) is compact and convex.
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Further, assume that F2 : Q × Q → R and ϕ2 : Q × Q → R satisfy Assumption 2.7, where
Q is a nonempty closed and convex subset of a Hilbert space H2. For all s > 0 and w ∈ H2,
define the mapping T (F2,ϕ2)

s : H2 → Q by

T (F2,ϕ2)
s (v) =

{
w ∈ Q : F2(w, d) + ϕ2(w, d) +

1
r
〈d – w, w – v〉 ≥ 0,∀d ∈ Q

}
.

Then we have:
(6) For each v ∈ H2, T (F2,ϕ2)

s �= ∅,
(7) T (F2,ϕ2)

s is single-valued,
(8) T (F2,ϕ2)

s is firmly nonexpansive,
(9) F(T (F2,ϕ2)

s ) = GEP(F2,ϕ2),
(10) GEP(F2,ϕ2) is closed and convex,

where GEP(F2,ϕ2) is the solution set of the following generalized equilibrium problem:

Find y∗ ∈ Q such that F2(y∗, y) + ϕ2(y∗, y) ≥ 0 for all y ∈ Q.

Moreover, SGEP(F1,ϕ1, F2,ϕ2) is a closed and convex set.

Lemma 2.9 ([11]) Let C be nonempty closed and convex subset of a Hilbert space H1. Let
F1 : C × C → R and ϕ1 : C × C → R be two bifunctions satisfying Assumption 2.7, and let
T (F1,ϕ1)

r be defined as in Lemma 2.8 for r > 0. Let x, y ∈ H1 and r1, r2 > 0. Then

∥
∥T (F1,ϕ1)

r2 y – T (F1,ϕ1)
r1 x

∥
∥ ≤ ‖y – x‖ +

∣∣
∣∣
r2 – r1

r2

∣∣
∣∣
∥
∥T (F1,ϕ1)

r2 y – y
∥
∥.

3 Main results
In this section, we prove strong convergence theorems for finding a common element of
the set of solutions of split generalized equilibrium problems and the set of common fixed
points of a countable family of nonexpansive multivalued mappings in real Hilbert spaces
and give a numerical example to support our main result.

We now state and prove our main result.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H1, and
let Q be a nonempty closed convex subset of a real Hilbert space H2. Let A : H1 → H2

be a bounded linear operator, and let {Si} be a countable family of nonexpansive mul-
tivalued mappings of C into CB(C). Let F1,ϕ1 : C × C → R, F2,ϕ2 : Q × Q → R be bi-
functions satisfying Assumption 2.7. Let ϕ1, ϕ2 be monotone, ϕ1 be upper hemicontin-
uous, and F2 and ϕ2 be upper semicontinuous in the first argument. Assume that � =
⋂∞

i=1 F(Si) ∩ SGEP(F1,ϕ1, F2,ϕ2) �= ∅ and Sip = {p} for each p ∈ ⋂∞
i=1 F(Si). Let x1 ∈ C with

C1 = C, and let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = T (F1,ϕ1)
rn (I – γ A∗(I – T (F2,ϕ2)

rn )A)xn,

zn = α
(0)
n xn + α

(1)
n y(1)

n + · · · + α
(n)
n y(n)

n , y(i)
n ∈ Siun,

Cn+1 = {p ∈ Cn : ‖zn – p‖ ≤ ‖xn – p‖},
xn+1 = PCn+1 x1, n ∈N,

(3.1)

where {α(i)
n } ⊂ (0, 1) satisfy

∑n
i=0 α

(i)
n = 1, {rn} ⊂ (0,∞), and γ ∈ (0, 1

L ), where L is the spectral
radius of A∗A, and A∗ is the adjoint of A. Assume that the following conditions hold:
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(C1) The limits limn→∞ α
(i)
n ∈ (0, 1) exist for all i ≥ 0,

(C2) lim infn→∞ rn > 0.
Then the sequence {xn} generated by (3.1) converges strongly to P�x1.

Proof We divide our proof into six steps.
Step 1. We show that {xn} is well-defined for every n ∈ N.
By Lemmas 2.4 and 2.8 we obtain that SGEP(F1,ϕ1, F2,ϕ2) and

⋂∞
i=1 F(Si) are closed and

convex subsets of C. Hence � is a closed and convex subset of C. It follows by Lemma 2.5
that Cn+1 is closed and convex for each n ∈N.

Let p ∈ �. Then we have p = T (F1,ϕ1)
rn p and Ap = T (F2,ϕ2)

rn (Ap). It follows that p = (I –γ A∗(I –
T (F2,ϕ2)

rn )A)p. Since T (F1,ϕ1)
rn and T (F2,ϕ2)

rn both are firmly nonexpansive, for γ ∈ (0, 1
L ), the

mapping T (F1,ϕ1)
rn (I – γ A∗(I – T (F2,ϕ2)

rn )A) is nonexpansive; see [26]. This implies that

‖un – p‖ =
∥
∥T (F1,ϕ1)

rn

(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
xn – T (F1,ϕ1)

rn

(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
p
∥
∥

≤ ‖xn – p‖. (3.2)

Then, since Sip = {p} for all p ∈ ⋂∞
i=1 F(Si), we have

‖zn – p‖ ≤ α(0)
n ‖xn – p‖ + α(1)

n
∥
∥y(1)

n – p
∥
∥ + · · · + α(n)

n
∥
∥y(n)

n – p
∥
∥

= α(0)
n ‖xn – p‖ + α(1)

n dist
(
y(1)

n , S1p
)

+ · · · + α(n)
n dist

(
y(n)

n , Snp
)

≤ α(0)
n ‖xn – p‖ + α(1)

n H(S1un, S1p) + · · · + α(n)
n H(Snun, Snp)

≤ α(0)
n ‖xn – p‖ + α(1)

n ‖un – p‖ + · · · + α(n)
n ‖un – p‖. (3.3)

This implies by (3.2) and
∑n

i=0 α
(i)
n = 1 that

‖zn – p‖ ≤ ‖xn – p‖. (3.4)

This shows that p ∈ Cn+1 and hence � ⊂ Cn+1 ⊂ Cn. Therefore, PCn+1 x1 is well-defined for
every x1 ∈ C. Hence, {xn} is well-defined.

Step 2. We show that limn→∞ xn = q for some q ∈ C.
Since � is a nonempty closed convex subset of H1, there exists a unique ω ∈ � such that

ω = P�x1. Since xn = PCn x1 and xn+1 ∈ Cn+1 ⊂ Cn for all n ∈N, we have ‖xn – x1‖ ≤ ‖xn+1 –
x1‖ for all n ∈N. On the other hand, since � ⊂ Cn, we obtain that ‖xn – x1‖ ≤ ‖ω – x1‖ for
all n ∈N. Hence {‖xn – x1‖} is bounded; so are {zn} and {y(i)

n }. Therefore, limn→∞ ‖xn – x1‖
exists. By the construction of the set Cn we know that xm = PCm x1 ∈ Cm ⊂ Cn for m > n ≥ 1.
This implies by Lemma 2.6 that

‖xm – xn‖2 ≤ ‖xm – x1‖2 – ‖xn – x1‖2 → 0 as m, n → ∞. (3.5)

Since limn→∞ ‖xn – x1‖ exists, it follows that {xn} is a Cauchy sequence. By the complete-
ness of H1 and the closedness of C we get that there exists an element q ∈ C such that
limn→∞ xn = q.

Step 3. We show that limn→∞ ‖y(i)
n – xn‖ = 0 for all i ∈N.

From (3.5) we have

lim
n→∞‖xn+1 – xn‖ = 0. (3.6)
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Since xn+1 ∈ Cn+1, we get that

‖zn – xn‖ ≤ ‖zn – xn+1‖ + ‖xn+1 – xn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – xn‖ ≤ 2‖xn+1 – xn‖.

This implies by (3.6) that

lim
n→∞‖zn – xn‖ = 0. (3.7)

Thus limn→∞ zn = q.
For p ∈ �, by Lemma 2.2 we see that

‖zn – p‖2 ≤ α(0)
n ‖xn – p‖2 +

n∑

i=1

α(i)
n

∥
∥y(i)

n – p
∥
∥2 –

n∑

i=1

α(0)
n α(i)

n
∥
∥y(i)

n – xn
∥
∥2

= α(0)
n ‖xn – p‖2 +

n∑

i=1

α(i)
n dist

(
y(i)

n , S1p
)2 –

n∑

i=1

α(0)
n α(i)

n
∥∥y(i)

n – xn
∥∥2

= α(0)
n ‖xn – p‖2 +

n∑

i=1

α(i)
n H(Siun, Sip)2 –

n∑

i=1

α(0)
n α(i)

n
∥∥y(i)

n – xn
∥∥2

≤ α(0)
n ‖xn – p‖2 +

n∑

i=1

α(i)
n ‖un – p‖2 –

n∑

i=1

α(0)
n α(i)

n
∥∥y(i)

n – xn
∥∥2. (3.8)

This implies by (3.2) and
∑n

i=0 α
(i)
n = 1 that

‖zn – p‖2 ≤ ‖xn – p‖2 –
n∑

i=1

α(0)
n α(i)

n
∥∥y(i)

n – xn
∥∥2.

Therefore we have

α(0)
n α(i)

n
∥∥y(i)

n – xn
∥∥2 ≤

n∑

i=1

α(0)
n α(i)

n
∥∥y(i)

n – xn
∥∥2

≤ ‖xn – p‖2 – ‖zn – p‖2

≤ ‖xn – zn‖
(‖xn – p‖ + ‖zn – p‖).

By the given control condition on {α(i)
n } and (3.7) we obtain

lim
n→∞

∥
∥y(i)

n – xn
∥
∥ = 0, ∀i ∈ N. (3.9)

Step 4. We show that limn→∞ ‖un – xn‖ = 0. For p ∈ �, we get that

‖un – p‖2 =
∥∥T (F1,ϕ1)

rn

(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
xn – T (F1,ϕ1)

rn p
∥∥2

≤ ∥
∥(

I – γ A∗(I – T (F2,ϕ2)
rn

)
A

)
xn – p

∥
∥2

≤ ‖xn – p‖2 + γ 2∥∥A∗(I – T (F2,ϕ2)
rn

)
Axn

∥∥2 + 2γ
〈
p – xn, A∗(I – T (F2,ϕ2)

rn

)
Axn

〉

≤ ‖xn – p‖2 + γ 2〈Axn – T (F2,ϕ2)
rn Axn, AA∗(I – T (F2,ϕ2)

rn

)
Axn

〉
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+ 2γ
〈
A(p – xn), Axn – T (F2,ϕ2)

rn Axn
〉

≤ ‖xn – p‖2 + Lγ 2〈Axn – T (F2,ϕ2)
rn Axn, Axn – TF2

rn Axn
〉

+ 2γ
〈
A(p – xn) +

(
Axn – T (F2,ϕ2)

rn Axn
)

–
(
Axn – TF2

rn Axn
)
,

Axn – T (F2,ϕ2)
rn Axn

〉

≤ ‖xn – p‖2 + Lγ 2∥∥Axn – T (F2,ϕ2)
rn Axn

∥∥2

+ 2γ
(〈

Ap – T (F2,ϕ2)
rn Axn, Axn – T (F2,ϕ2)

rn Axn
〉
–

∥∥Axn – T (F2,ϕ2)
rn Axn

∥∥2)

≤ ‖xn – p‖2 + Lγ 2∥∥Axn – T (F2,ϕ2)
rn Axn

∥∥2

+ 2γ

(
1
2
∥
∥Axn – T (F2,ϕ2)

rn Axn
∥
∥2 –

∥
∥Axn – T (F2,ϕ2)

rn Axn
∥
∥2

)

= ‖xn – p‖2 + γ (Lγ – 1)
∥∥Axn – T (F2,ϕ2)

rn Axn
∥∥2.

Thus by (3.8) we have

‖zn – p‖2 ≤ α(0)
n ‖xn – p‖2 +

n∑

i=1

α(i)
n ‖un – p‖2

≤ α(0)
n ‖xn – p‖ +

n∑

i=1

α(i)
n

(‖xn – p‖2 + γ (Lγ – 1)
∥∥Axn – T (F2,ϕ2)

rn Axn
∥∥2)

= ‖xn – p‖2 + γ (Lγ – 1)
n∑

i=1

α(i)
n

∥∥Axn – T (F2,ϕ2)
rn Axn

∥∥2

= ‖xn – p‖2 – γ (1 – Lγ )
(
1 – α(0)

n
)∥∥Axn – T (F2,ϕ2)

rn Axn
∥∥2. (3.10)

Therefore we have

γ (1 – Lγ )
(
1 – α(0)

n
)∥∥Axn – T (F2,ϕ2)

rn Axn
∥∥2 ≤ ‖xn – p‖2 – ‖zn – p‖2

≤ ‖xn – zn‖
(‖xn – p‖ + ‖zn – p‖).

By the given control condition on {α(0)
n }, γ (1 – Lγ ) > 0, and (3.7) we obtain that

lim
n→∞

∥
∥Axn – T (F2,ϕ2)

rn Axn
∥
∥ = 0. (3.11)

Since T (F1,ϕ1)
rn is firmly nonexpansive and I – γ A∗(I – T (F2,ϕ2)

rn )A is nonexpansive, we have

‖un – p‖2 =
∥∥T (F1,ϕ1)

rn

(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
xn – T (F1,ϕ1)

rn p
∥∥2

≤ 〈
T (F1,ϕ1)

rn

(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
xn – TF1

rn p,
(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
xn – p

〉

=
〈
un – p,

(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
xn – p

〉

=
1
2
(‖un – p‖2 +

∥∥(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
xn – p

∥∥2

–
∥∥un – xn – γ A∗(I – T (F2,ϕ2)

rn

)
Axn

∥∥2)
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≤ 1
2
(‖un – p‖2 + ‖xn – p‖2 –

(‖un – xn‖2 + γ 2∥∥A∗(I – T (F2,ϕ2)
rn

)
Axn

∥∥2

– 2γ
〈
un – xn, A∗(I – T (F2,ϕ2)

rn

)
Axn

〉))
,

which implies that

‖un – p‖2 ≤ ‖xn – p‖2 – ‖un – xn‖2 + 2γ
〈
un – xn, A∗(I – T (F2,ϕ2)

rn

)
Axn

〉

≤ ‖xn – p‖2 – ‖un – xn‖2 + 2γ ‖un – xn‖
∥
∥A∗(I – T (F2,ϕ2)

rn

)
Axn

∥
∥. (3.12)

This implies by (3.8) that

‖zn – p‖2 ≤ α(0)
n ‖xn – p‖2 +

n∑

i=1

α(i)
n ‖un – p‖2

≤ α(0)
n ‖xn – p‖ +

n∑

i=1

α(i)
n

(‖xn – p‖2 – ‖un – xn‖2

+ 2γ ‖un – xn‖
∥∥A∗(I – T (F2,ϕ2)

rn

)
Axn

∥∥)

= ‖xn – p‖2 –
(
1 – α(0)

n
)‖un – xn‖2

+ 2γ
(
1 – α(0)

n
)‖un – xn‖

∥
∥A∗(I – T (F2,ϕ2)

rn

)
Axn

∥
∥

= ‖xn – p‖2 –
(
1 – α(0)

n
)‖un – xn‖2

+ 2γ
(
1 – α(0)

n
)‖un – xn‖

∥
∥A∗(I – T (F2,ϕ2)

rn

)
Axn

∥
∥.

Therefore we have

(
1 – α(0)

n
)‖un – xn‖2

≤ ‖xn – p‖2 – ‖zn – p‖2 + 2γ
(
1 – α(0)

n
)‖un – xn‖

∥∥A∗(I – T (F2,ϕ2)
rn

)
Axn

∥∥

≤ ‖xn – p‖2 – ‖zn – p‖2 + 2γ
(
1 – α(0)

n
)
M

∥∥A∗(I – T (F2,ϕ2)
rn

)
Axn

∥∥

≤ ‖xn – zn‖
(‖xn – p‖ + ‖zn – p‖) + 2γ

(
1 – α(0)

n
)
M

∥
∥A∗(I – T (F2,ϕ2)

rn

)
Axn

∥
∥,

where M = sup{‖un – xn‖ : n ∈N}. This implies by Condition (C1), (3.7), and (3.11) that

lim
n→∞‖un – xn‖ = 0. (3.13)

Step 5. We show that q ∈ ⋂∞
i=1 F(Si).

By (3.9) and (3.13), for all i ∈N, we get that

lim
n→∞ dist(un, Siun) ≤ lim

n→∞
∥
∥un – y(i)

n
∥
∥

≤ lim
n→∞‖un – xn‖ + lim

n→∞
∥
∥xn – y(i)

n
∥
∥

= 0. (3.14)
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For each i ∈N, we get

dist(q, Siq) ≤ ‖q – un‖ +
∥∥un – y(i)

n
∥∥ + dist

(
y(i)

n , Siq
)

≤ ‖q – un‖ + dist(un, Siun) + H(Siun, Siq)

≤ 2‖q – un‖ + dist(un, Siun)

≤ 2
(‖q – zn‖ + ‖zn – xn‖

)
+ dist(un, Siun).

Since limn→∞ zn = q, it follows by (3.7) and (3.14) that

dist(q, Siq) = 0 for all i ∈N.

This shows that q ∈ Siq for all i ∈N, and hence q ∈ ⋂∞
i=1 F(Si).

Step 6. We show that q ∈ SGEP(F1,ϕ1, F2,ϕ2).
First, we will show that q ∈ GEP(F1,ϕ1).
Since un = T (F1,ϕ1)

rn (I – γ A∗(I – T (F2,ϕ2)
rn )A)xn, we have

F1(un, y) + ϕ1(un, y) +
1
rn

〈
y – un, un – xn – γ A∗(I – T (F2,ϕ2)

rn

)
Axn

〉 ≥ 0, ∀y ∈ C,

which implies that

F1(un, y)+ϕ1(un, y)+
1
rn

〈y–un, un –xn〉–
1
rn

〈
y–un,γ A∗(I –T (F2,ϕ2)

rn

)
Axn

〉 ≥ 0, ∀y ∈ C.

It follows from the monotonicity of F1 and ϕ1 that

1
rn

〈y – un, un – xn〉 –
1
rn

〈
y – un,γ A∗(I – T (F2,ϕ2)

rn

)
Axn

〉 ≥ F1(y, un) + ϕ1(y, un), ∀y ∈ C.

By (3.13) and limn→∞ xn = q we get that limn→∞ un = q. It follows by Condition (C2), (3.11),
(3.13), Assumption 2.7, (A4) and (A7), that 0 ≥ F1(y, q) + ϕ1(y, q) for all y ∈ C. Put yt =
ty + (1 – t)q for all t ∈ (0, 1] and y ∈ C. Consequently, we get yt ∈ C, and hence F1(yt , q) +
ϕ1(yt , q) ≤ 0. So by Assumption 2.7, (A1)–(A7), we have

0 ≤ F1(yt , yt) + ϕ1(yt , yt)

≤ t
(
F1(yt , y) + ϕ1(yt , y)

)
+ (1 – t)

(
F1(yt , q) + ϕ1(yt , q)

)

≤ t
(
F1(yt , y) + ϕ1(yt , y)

)
+ (1 – t)

(
F1(q, yt) + ϕ1(q, yt)

)

≤ F1(yt , y) + ϕ1(yt , y).

Hence we have

F1(yt , y) + ϕ1(yt , y) ≥ 0, ∀y ∈ C.

Letting t → 0, by Assumption 2.7 (A3) and the upper hemicontinuity of ϕ1 we have

F1(q, y) + ϕ1(q, y) ≥ 0, ∀y ∈ C.

This implies that q ∈ GEP(F1,ϕ1).
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Next, we show that Aq ∈ GEP(F2,ϕ2).
Since A is a bounded linear operator, we have Axn → Aq. Then, it follows from (3.11)

that

T (F2,ϕ2)
rn Axn → Aq. (3.15)

By the definition of T (F2,ϕ2)
rn Axn we have

F2
(
T (F2,ϕ2)

rn Axn, y
)

+ ϕ2
(
T (F2,ϕ2)

rn Axn, y
)

+
1
rn

〈
y – T (F2,ϕ2)

rn Axn, T (F2,ϕ2)
rn Axn – Axn

〉 ≥ 0

for all y ∈ Q. Since F2 and ϕ2 are upper semicontinuous in the first argument, it follows by
(3.15) that

F2(Aq, y) + ϕ2(Aq, y) ≥ 0, ∀y ∈ Q.

This shows that Aq ∈ GEP(F2,ϕ2). Therefore q ∈ SGEP(F1,ϕ1, F2,ϕ2).
By Steps 5 and 6 we get that q ∈ �.
Step 7. Finally, we show that q = P�x1.
Since xn = PCn x1 and � ⊂ Cn, we obtain 〈x1 – xn, xn – p〉 ≥ 0 for all p ∈ �. Thus we get

〈x1 – q, q – p〉 ≥ 0 for all p ∈ �. This shows that q = P�x1.
By Steps 1–7 we can conclude that {xn} converges strongly to P�x1. This completes the

proof. �

If ϕ1 = ϕ2 = 0, then the split generalized equilibrium problem reduces to the split equi-
librium problem. So, the following result can be immediately obtained from Theorem 3.1.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H1, and
let Q be a nonempty closed convex subset of a real Hilbert space H2. Let A : H1 → H2 be a
bounded linear operator, and let {Si} be a countable family of nonexpansive multivalued
mappings of C into CB(C). Let F1 : C × C → R, F2 : Q × Q → R be bifunctions satisfying
Assumption 2.7. Let F2 be upper semicontinuous in the first argument. Assume that � =
⋂∞

i=1 F(Si) ∩ SEP(F1, F2) �= ∅ and Sip = {p} for each p ∈ ⋂∞
i=1 F(Si). Let x1 ∈ C with C1 = C,

and let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = TF1
rn (I – γ A∗(I – TF2

rn )A)xn,

zn = α
(0)
n xn + α

(1)
n y(1)

n + · · · + α
(n)
n y(n)

n , y(i)
n ∈ Siun,

Cn+1 = {p ∈ Cn : ‖zn – p‖ ≤ ‖xn – p‖},
xn+1 = PCn+1 x1, n ∈N,

(3.16)

where {α(i)
n } ⊂ (0, 1) satisfy

∑n
i=0 α

(i)
n = 1, {rn} ⊂ (0,∞), and γ ∈ (0, 1

L ), where L is the spectral
radius of A∗A, and A∗ is the adjoint of A. Assume that the following conditions hold:

(C1) The limits limn→∞ α
(i)
n ∈ (0, 1) exist for all i ≥ 0,

(C2) lim infn→∞ rn > 0.
Then the sequence {xn} generated by (3.16) converges strongly to P�x1.
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If F1 = F2 = F , H1 = H2 = H , and ϕ1 = ϕ2 = 0, then the following result can be immediately
obtained from Theorem 3.1.

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H . Let
A : H → H be a bounded linear operator, and let {Si} be a countable family of nonexpansive
multivalued mappings of C into CB(C). Let F : C × C → R be a bifunction satisfying As-
sumption 2.7. Assume that � =

⋂∞
i=1 F(Si)∩EP(F) �= ∅ and Sip = {p} for each p ∈ ⋂∞

i=1 F(Si).
Let x1 ∈ C with C1 = C, and let {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

un = TF
rn (I – γ A∗(I – TF

rn )A)xn,

zn = α
(0)
n xn + α

(1)
n y(1)

n + · · · + α
(n)
n y(n)

n , y(i)
n ∈ Siun,

Cn+1 = {p ∈ Cn : ‖zn – p‖ ≤ ‖xn – p‖},
xn+1 = PCn+1 x1, n ∈N,

(3.17)

where {α(i)
n } ⊂ (0, 1) satisfy

∑n
i=0 α

(i)
n = 1, {rn} ⊂ (0,∞), and γ ∈ (0, 1

L ), where L is the spectral
radius of A∗A, and A∗ is the adjoint of A. Assume that the following conditions hold:

(C1) The limits limn→∞ α
(i)
n ∈ (0, 1) exist for all i ≥ 0,

(C2) lim infn→∞ rn > 0.
Then the sequence {xn} generated by (3.17) converges strongly to P�x1.

4 Numerical example
In this section, we present a numerical example to demonstrate the performance and con-
vergence of our theoretical results. All codes were written in Scilab.

Example 4.1 Let H1 = H2 = R and C = Q = [0, 10]. Let A : H1 → H2 be defined by Ax =
x for each x ∈ H1. Then A∗y = y for each y ∈ H2. For x ∈ C, i = 1, 2, . . . , we define the
multivalued mappings Si on C as follows:

Six =
[

0,
x

10i

]
for all i ∈N.

Obviously, Si is nonexpansive for all i ∈ N, Si(0) = {0}, and
⋂∞

i=1 F(Si) = {0}. Define the
bifunctions F1,ϕ1 : C × C → R by F1(x, y) = y2 + 3xy – 4x2 and ϕ1(x, y) = y2 – x2 for x, y ∈ C.
Define F2,ϕ2 : Q × Q → R by F2(w, v) = 2v2 + wv – 3w2 and ϕ2(w, v) = w – v for w ∈ Q and
v ∈ Q. Choose rn = n

n+1 , γ = 1
10 , and the sequences {λ(i)

n } defined by

λ(i)
n =

⎧
⎪⎪⎨

⎪⎪⎩

1
bi+1 ( n

n+1 ), n ≥ i + 1,

1 – n
n+1 (

∑n
k=1

1
bk ), n = i,

0, n < i,

where b > 1. It is easy to check that F1, F2, ϕ1, ϕ2, {λ(i)
n }, and {rn} satisfy all the conditions

in Theorem 3.1 with � = {0}.
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For all x ∈ C and n ∈N, we compute T (F2,ϕ2)
r Ax. Find w such that

0 ≤ F2(w, v) + ϕ2(w, v) +
1
r
〈v – w, w – Ax〉

= 2v2 + wv – 3w2 + w – v +
1
r

(v – w)(w – x)

⇔
0 ≤ 2rv2 + rwv – 3rw2 + rnw – rv + (v – w)(w – x)

= 2rv2 + rwv – 3rw2 + rw – rv + wv – vx – w2 + wx

= 2rv2 + (rw – r + w – x)v +
(
–3rw2 + rw – w2 + wx

)

for all v ∈ Q. Let J2(v) = 2rv2 + (rw– r + w– x)v + (–3rw2 + rw– w2 + wx). J2(v) is s a quadratic
function of v with coefficients a = 2r, b = rw – r – x – w, and c = –3rw2 + rw – w2 + wx.
Determine the discriminant 
 of J2:


 = b2 – 4ac

= (rw – r + w – x)2 – 4(2r)
(
–3rw2 + rw – w2 + wx

)

= 25r2w2 – 10r2w + 10rw2 – 10rwx + r2 – 2rw + 2rx + w2 – 2wx + x2

=
(
25r2 + 10r + 1

)
w2 +

(
–10r2 – 10rx – 2r – 2x

)
w +

(
2rx + x2 + r2)

= (5r + 1)2w2 – 2w(5r + 1)(x + r) + (x + r)2

=
(
(5r + 1)w – (x + r)

)2.

We know that J2(v) ≥ 0 for all v ∈R. If it has at most one solution in R, then 
 ≤ 0, so we
have

w =
x + r

5r + 1
.

This implies that

T (F2,ϕ2)
r Ax =

x + r
5r + 1

.

Furthermore, we get

(
I – γ A∗(I – T (F2,ϕ2)

r
)
A

)
x = x – γ A∗(Ax – T (F2,ϕ2)

r Ax
)

= x –
1

10
A∗

(
x –

x + r
5r + 1

)

= x –
1

10

(
5rx – r
5r + 1

)

=
45xr + 10x + r

10(5r + 1)
.
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Next, we find u ∈ C such that F1(u, z) + ϕ1(u, z) + 1
r 〈z – u, u – s〉 ≥ 0 for all z ∈ C, where

s = (I – γ A∗(I – T (F2,ϕ2)
r )A)x. Note that

0 ≤ F1(u, z) + ϕ1(u, z) +
1
r
〈z – u, u – s〉

= 2z2 + 3uz – 5u2 +
1
r
〈v – u, u – s〉

⇔
0 ≤ 2rz2 + 3ruz – 5ru2 + (z – u)(u – s)

= 2rz2 + 3ruz – 5ru2 + uz – sz – u2 + us

= 2rz2 + (3ru + u – s)z +
(
–5ru2 – u2 + us

)

for all z ∈ C. Let J1(z) = 2rz2 + (3ru + u – s)z + (–5ru2 – u2 + us). J1(z) be a quadratic func-
tion of z with coefficients a = 2r, b = 3ru + u – s, and c = –5ru2 – u2 + us. Determine the
discriminant 
 of J1:


 = (3ru + u – s)2 – 4(2r)
(
–5ru2 – u2 + us

)

= 49r2u2 + 14ru2 – 14rus + u2 – 2us + s2

=
(
(7r + 1)u – s

)2.

We know that J1(z) ≥ 0 for all z ∈R. If it has at most one solution in R, then 
 ≤ 0, so we
have

u =
s

7r + 1
.

This implies that

un = T (F1,ϕ1)
rn

(
I – γ A∗(I – T (F2,ϕ2)

rn

)
A

)
xn,

=
45xnrn + 10xn + rn

10(5rn + 1)(7rn + 1)
.

We put y(i)
n = un

10i for all i ∈ N. Then algorithm (3.1) becomes:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

un = 45xnrn+10xn+rn
10(5rn+1)(7rn+1) , rn = n

n+1 ,

zn = λ
(0)
n xn + λ

(1)
n un
10 + λ

(2)
n un
20 + · · · + λ

(n)
n un
10n ,

Cn+1 = {p ∈ Cn : ‖zn – p‖ ≤ ‖xn – p‖},
xn+1 = PCn+1 x1, n ∈N.

(4.1)

For arbitrary x1 ∈ C = C1 = [0, 10], we get that 0 ≤ z1 ≤ x1 ≤ 10. Then C2 = {p ∈ C1 : |z1 –
p| ≤ |x1 – p|} = [0, x1+z1

2 ]. Since x1+z1
2 ≤ x1, it follows that x2 = PC2 x1 = x1+z1

2 . Continuing
this process, we get Cn+1 = [0, xn+zn

2 ], and hence xn+1 = PCn+1 x1 = xn+zn
2 . Now, we rewrite
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Figure 1 Behaviors of xn with three random initial points x1

algorithm (4.1) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

un = 45xnrn+10xn+rn
10(5rn+1)(7rn+1) , rn = n

n+1 ,

zn = λ
(0)
n xn + λ

(1)
n un
10 + λ

(2)
n un
20 + · · · + λ

(n)
n un
10n ,

xn+1 = xn+zn
2 , n ∈ N.

(4.2)

In this example, we set the parameter on {λ(i)
n } by b = 9. Then we obtain

(
λ(i)

n
)

=

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1
18

17
18 0 0 0 · · · 0 · · ·

2
27

2
243

223
243 0 0 · · · 0 · · ·

1
12

1
108

1
972

881
972 0 · · · 0 · · ·

...
...

...
...

...
...

n
9(n+1)

n
92(n+1)

n
93(n+1)

n
94(n+1)

n
95(n+1) · · · n

9i(n+1) · · ·
...

...
...

...
...

...

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

Figure 1 indicates the behavior of xn for algorithm (4.2), which converges to the same
solution, that is, 0 ∈ � as a solution of this example.

Now, we test the effect of the parameters in {λ(i)
n } on the convergence of algorithm (4.2).

In this test, Figure 2 presents the behavior of xn by choosing three different parameters in
{λ(i)

n }, that is, b = 2, b = 9, and b = 100.

5 Conclusions
The results presented in this paper modify, extend, and improve the corresponding results
of Kazmi and Rizvi [7], Suantai et al. [15], and others. The main aim of this paper is to pro-
pose an iterative algorithm based on the shrinking projection method to find an element
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Figure 2 Behaviors of xn with three different parameters in {λ(i)
n }

for solving a class of split generalized equilibrium problems and fixed point problems for
a countable family of nonexpansive multivalued mappings in real Hilbert spaces.
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