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Abstract
In this paper, we establish some fixed point results for fuzzy mappings in a complete
dislocated b-metric space. Our results generalize and extend the results of Joseph et
al. (SpringerPlus 5:Article ID 217, 2016). We also give examples to support our results,
and applications relating the results to a fixed point for multivalued mappings and
fuzzy mappings are studied.
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1 Introduction and preliminaries
Fixed point theory plays an important role in various fields of mathematics. It provides
very important tools for finding the existence and uniqueness of solutions. The Banach
contraction theorem has an important role in fixed point theory, and it has become very
popular due to iterations which can be easily implemented on the computers. The idea
of a fuzzy set was first laid down by Zadeh [2]. Later on Weiss [3] and Butnariu [4] gave
the idea of a fuzzy mapping and obtained many fixed point results. Afterward, Heilpern
[5] initiated the idea of fuzzy contraction mappings and proved a fixed point theorem for
fuzzy contraction mappings which is a fuzzy analogue of Nadler’s [6] fixed point theorem
for multivalued mappings.

Recently, Beg et al. [7] proved the result concerning the existence of fixed points of a
mapping satisfying locally contractive conditions on a closed ball (see also [8–16]). It is also
possible that the mapping satisfies locally contractive conditions on a sequence contained
in a closed ball in M. One can obtain fixed point results for such a mapping by using the
suitable conditions.

The notion of dislocated topologies has useful applications in the context of logic
programming semantics (see [17]). A dislocated metric space (metric-like space) (see
[18, 19]) is a generalization of partial metric space (see [20]). Aydi et al. [21] established
a fixed point theorem for set-valued quasi contraction in b-metric spaces. Nawab et al.
[22] introduced the new concept of dislocated b-metric space as a generalization of met-
ric space and established to prove some common fixed point results for four mappings
satisfying the generalized weak contractive conditions in a partially ordered dislocated
b-metric space.
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In this paper, we obtain a fixed point and a common fixed point for fuzzy mappings for a
generalized contraction on a closed ball in a complete b-metric space. An example which
supports the proved results is also given. We give the following definitions and results
which will be needed in the sequel.

Definition 1.1 ([22]) Let X be a nonempty set. A function dlb : X × X → [0,∞) is called
dislocated b-metric (or simply dlb-metric) if, for any x, y, z ∈ X and b ≥ 1, the following
conditions hold:

(i) If dlb(x, y) = 0, then x = y;
(ii) dlb(x, y) = dlb(y, x);

(iii) dlb(x, y) ≤ b[dlb(x, z) + dlb(z, y)].

The pair (X, dlb) is called a dislocated b-metric space. It should be noted that the class of
dlb metric spaces is effectively larger than that of dl metric spaces, since dlb is a dl metric
when b = 1.

It is clear that if dlb(x, y) = 0, then from (i), x = y. But if x = y, dlb(x, y) may not be 0. For
x ∈ X and ε > 0, B(x, ε) = {y ∈ X : dlb(x, y) ≤ ε} is a closed ball in (X, dlb).

Example 1.2 If X = R
+ ∪{0}, then dlb(x, y) = (x+y)2 defines a dislocated b-metric dlb on X.

Definition 1.3 ([22]) Let (X, dlb) be a dislocated b-metric space.
(i) A sequence {xn} in (X, dlb) is called Cauchy sequence if, given ε > 0, there

corresponds n0 ∈ N such that, for all n, m ≥ n0, we have dlb(xm, xn) < ε or
limn,m→∞ dlb(xn, xm) = 0.

(ii) A sequence {xn} dislocated b-converges (for short dlb-converges) to x if
limn→∞ dlb(xn, x) = 0. In this case x is called a dlb-limit of {xn}.

Definition 1.4 Let K be a nonempty subset of dislocated b-metric space X, and let x ∈ X.
An element y0 ∈ K is called a best approximation in K if

dlb(x, K) = dlb(x, y0), where dlb(x, K) = inf
y∈K

dlb(x, y).

If each x ∈ X has at least one best approximation in K , then K is called a proximinal set.
We denote by P(X) the set of all proximinal subsets of X.

Definition 1.5 The function Hdlb : P(X) × P(X) → R+, defined by

Hdlb (A, B) = max
{

sup
a∈A

dlb(a, B), sup
b∈B

dlb(A, b)
}

,

is called dislocated Hausdorff b-metric on P(X).

A fuzzy set in X is a function with domain X and values in [0, 1], F(X) is the collection
of all fuzzy sets in X. If A is a fuzzy set and x ∈ X, then the function value A(x) is called
the grade of membership of x in A. The α-level set of a fuzzy set A is denoted by [A]α and
defined as follows:

[A]α =
{

x : A(x) ≥ α
}

, where α ∈ (0, 1],

[A]0 =
{

x : A(x) > 0
}

.
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Let X be any nonempty set and Y be a metric space. A mapping T is called fuzzy mapping
if T is a mapping from X into F(Y ). A fuzzy mapping T is a fuzzy subset on X × Y with
membership function T(x)(y). The function T(x)(y) is the grade of membership of y in
T(x). For convenience, we denote the α-level set of T(x) by [Tx]α instead of [T(x)]α [23].

Definition 1.6 ([23]) A point x ∈ X is called a fuzzy fixed point of a fuzzy mapping T :
X → F(X) if there exists α ∈ (0, 1] such that x ∈ [Tx]α .

Lemma 1.7 Let A and B be nonempty proximal subsets of a dislocated b-metric space
(X, dlb). If a ∈ A, then

d(a, B) ≤ H(A, B).

Lemma 1.8 Let (X, dlb) be a dislocated metric space. Let (P(X), Hdlb ) be a dislocated Haus-
dorff b-metric space. Then, for all A, B ∈ P(X) and for each a ∈ A, there exists ba ∈ B satis-
fying

dlb(a, B) = dlb(a, ba),

then

Hdlb (A, B) ≥ dlb(a, ba).

2 Main results
Theorem 2.1 Let (X, dlb) be a complete dislocated b-metric space with constant b ≥ 1. Let
T : X → F(X) be a fuzzy mapping, and let x0 be any arbitrary point in X. Suppose there
exists α(x) ∈ (0, 1] for all x ∈ X satisfying the following conditions:

Hdlb

(
[Tx]α(x), [Ty]α(y)

)

≤ a1dlb
(
x, [Tx]α(x)

)
+ a2dlb

(
y, [Ty]α(y)

)
+ a3dlb

(
x, [Ty]α(y)

)
+ a4dlb

(
y, [Tx]α(x)

)

+ a5dlb(x, y) + a6
dlb(x, [Tx]α(x))(1 + dlb(x, [Tx]α(x)))

1 + dlb(x, y)
(2.1)

and

dlb
(
x0, [Tx0]α(x0)

) ≤ μ(1 – bμ)r (2.2)

for all x, y ∈ Bdlb (x0, r), r > 0 and bμ < 1, where μ = (a1+ba3+a5+a6)
1–(a2+ba3) . Also, ai ≥ 0, where i =

1, 2, . . . , 6 with ba1 + a2 + b(1 + b)a3 + b(a5 + a6) < 1 and
∑6

i=1 ai < 1. Then there exists x∗ in
Bdlb (x0, r) such that x∗ ∈ [Tx∗]α(x∗).

Proof Let x0 be any arbitrary point in X such that x1 ∈ [Tx0]α(x0). Consider the sequence
{xn} of points in X such that xn ∈ [Txn–1]α(xn–1). First we show that xn ∈ Bdlb (x0, r) for all
n ∈N. Using (2.2), we get

dlb(x0, x1) = dlb
(
x0, [Tx0]α(x0)

) ≤ μ(1 – bμ)r < r,
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which implies x1 ∈ Bdlb (x0, r). Let x2, x3, . . . , xj ∈ Bdlb (x0, r), j ∈N. Now, by using Lemma 1.8,
we get

dlb(xj, xj+1) ≤ Hdlb

(
[Txj–1]α(xj–1), [Txj]α(xj)

)

≤ a1dlb
(
xj–1, [Txj–1]α(xj–1)

)
+ a2dlb

(
xj, [Txj]α(xj)

)

+ a3dlb
(
xj–1, [Txj]α(xj)

)
+ a4dlb

(
xj, [Txj–1]α(xj–1)

)

+ a5dlb(xj–1, xj)

+ a6
dlb(xj–1, [Txj–1]α(xj–1))(1 + dlb(xj–1, [Txj–1]α(xj–1)))

1 + dlb(xj–1, xj)

≤ a1dlb(xj–1, xj) + a2dlb(xj, xj+1) + a3dlb(xj–1, xj+1)

+ a4dlb(xj, xj) + a5dlb(xj–1, xj)

+ a6
dlb(xj–1, xj)(1 + dlb(xj–1, xj))

1 + dlb(xj–1, xj)

≤ a1dlb(xj–1, xj) + a2dlb(xj, xj+1) + ba3
[
dlb(xj–1, xj)

+ dlb(xj, xj+1)
]

+ a5dlb(xj–1, xj) + a6dlb(xj–1, xj),

dlb(xj, xj+1) ≤ a1 + ba3 + a5 + a6

1 – (a2 + ba3)
dlb(xj–1, xj).

Then we have

dlb(xj, xj+1) ≤ μdlb(xj–1, xj). (2.3)

Continuing in this way and by using (2.3), we have

dlb(xj, xj+1) ≤ μjdlb(x0, x1), j ∈N. (2.4)

Now,

dlb(x0, xj+1) ≤ bdlb(x0, x1) + b2dlb(x1, x2) + · · · + bj+1dlb(xj, xj+1)

≤ bdlb(x0, x1) + b2μ
(
dlb(x0, x1)

)
+ · · ·

+ bj+1μj+1(dlb(x0, x1)
)

by (2.4)

=
b(1 – (bμ)j+1)

1 – bμ
dlb(x0, x1),

dlb(x0, xj+1) ≤ b(1 – (bμ)j+1)
1 – bμ

μ(1 – bμ)r < r by (2.2),

which implies xj+1 ∈ Bdlb (x0, r). Hence, by induction xn ∈ Bdlb (x0, r) for all n ∈ N . Now
inequality (2.4) can be written as

dlb(xn, xn+1) ≤ μn(dlb(x0, x1)
)

for all n ∈ N . (2.5)
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Now, for any positive integers m, n (n > m), we have

dlb(xm, xn) ≤ b
(
dlb(xm, xm+1)

)
+ b2(dlb(xm+1, xm+2)

)
+ · · ·

+ bn–m(
dlb(xn–1, xn)

)

≤ bμmdlb(x0, x1) + b2μm+1dlb(x0, x1) + · · ·
+ bn–mμn–1dlb(x0, x1) by (2.5)

≤ bμm(
1 + bμ + · · · + bn–m–1μn–m–1)dlb(x0, x1)

≤ bμm

1 – bμ
dlb(x0, x1) → 0 as m → ∞.

Hence {xn} is a Cauchy sequence in Bdlb (x0, r). As Bdlb (x0, r) is complete, there exists z ∈ X
such that xn → z as n → ∞. Now, by Lemma 1.7 and (2.1), we get

dlb
(
z, [Tz]α(z)

) ≤ b
[
dlb(z, xn+1) + dlb

(
xn+1, [Tz]α(z)

)]

≤ b
[
dlb(z, xn+1) + Hdlb

(
[Txn]α(xn), [Tz]α(z)

)]

≤
[

dlb(z, xn+1) + a1dlb
(
xn, [Txn]α(xn)

)
+ a2dlb

(
z, [Tz]α(z)

)

+ a3dlb
(
xn, [Tz]α(z)

)
+ a4dlb

(
z, [Txn]α(xn)

)
+ a5dlb(xn, z)

+ a6
dlb(xn, [Txn]α(xn))(1 + dlb(xn, [Txn]α(xn)))

1 + dlb(xn, z)

]
.

Taking limit n → ∞, we get

(
1 – b(a2 + a3)

)
dlb

(
z, [Tz]α(z)

) ≤ 0.

So, we get

z ∈ [Tz]α(z).

Hence, z ∈ X is a fixed point. �

Theorem 2.2 Let (X, dlb) be a complete dislocated b-metric space with constant b ≥ 1. Let
S, T : X → F(X) be two fuzzy mappings, and let x0 be any arbitrary point in X. Suppose
there exist αS(x),αT (x) ∈ (0, 1] for all x ∈ X satisfying the following conditions:

Hdlb

(
[Tx]αT (x), [Sy]αS(y)

) ≤ a1dlb
(
x, [Tx]αT (x)

)
+ a2dlb

(
y, [Sy]αS(y)

)

+ a3dlb
(
x, [Sy]αS(y)

)
+ a4dlb

(
y, [Tx]αT (x)

)
+ a5dlb(x, y) (2.6)

and

dlb
(
x0, [Tx0]α(x0)

) ≤ μ(1 – bμ)r (2.7)

for all x, y ∈ Bdlb (x0, r), r > 0 and bμ < 1, where μ = a1+a2+ba3+ba4+2a5
2–(a1+a2+ba3+ba4) . Also, ai ≥ 0, where

i = 1, 2, . . . , 6 with (a1 + a2)(b + 1) + b(a3 + a4)(b + 1) + 2ba5 < 2 and
∑5

i=1 ai < 1. Then there
exists x∗ in Bdlb (x0, r) such that x∗ is a common fixed point of S and T .
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Proof Let x0 be any arbitrary point in X such that x1 ∈ [Tx0]αT (x0). Consider the sequence
{xn} of points in X such that x2i+1 ∈ [Tx2i]α(x2i), x2i+2 ∈ [Sx2i+1]α(x2i+1) for i = 0, 1, 2, . . . . First
we show that xn ∈ Bdlb (x0, r) for all n ∈N. Using (2.7), we get

dlb(x0, x1) = dlb
(
x0, [Tx0]α(x0)

) ≤ (1 – bμ)r < r,

which implies x1 ∈ Bdlb (x0, r). Let x2, x3, . . . , xj ∈ Bdlb (x0, r), j ∈ N. If j = 2i + 1, where i =
0, 1, 2, . . . , j–1

2 . Now, by using Lemma 1.8, we get

dlb(x2i+1, x2i+2) ≤ Hdlb

(
[Tx2i]α(x2i), [Sx2i+1]α(x2i+1)

)

≤ a1d
(
x2i, [Tx2i]α(x2i)

)
+ a2d

(
x2i+1, [Sx2i+1]α(x2i+1)

)

+ a3d
(
x2i, [Sx2i+1]α(x2i+1)

)
+ a4d

(
x2i+1, [Tx2i]α(x2i)

)

+ a5d(x2i, x2i+1)

≤ a1d(x2i, x2i+1) + a2d(x2i+1, x2i+2) + a3d(x2i, x2i+2)

+ a4d(x2i+1, x2i+1) + a5d(x2i, x2i+1)

≤ a1d(x2i, x2i+1) + a2d(x2i+1, x2i+2)

+ a3b
[
d(x2i, x2i+1) + d(x2i+1, x2i+2)

]
+ a5d(x2i, x2i+1).

Now, we have

dlb(x2i+1, x2i+2) ≤ a1 + ba3 + a5

1 – (a2 + ba3)
d(x2i, x2i+1). (2.8)

Similarly, by symmetry, we have

dlb(x2i+2, x2i+1) ≤ Hdlb

(
[Sx2i+1]α(x2i+1), [Tx2i]α(x2i)

)

≤ a1d
(
x2i+1, [Sx2i+1]α(x2i+1)

)
+ a2d

(
x2i, [Tx2i]α(x2i)

)

+ a3d
(
x2i+1, [Tx2i]α(x2i)

)
+ a4d

(
x2i, [Sx2i+1]α(x2i+1)

)

+ a5d(x2i+1, x2i)

≤ a1d(x2i+1, x2i+2) + a2d(x2i, x2i+1) + a3d(x2i+1, x2i+1)

+ a4d(x2i, x2i+2) + a5d(x2i+1, x2i)

≤ a1d(x2i+1, x2i+2) + a2d(x2i, x2i+1)

+ a4b
[
d(x2i, x2i+1) + d(x2i+1, x2i+2)

]
+ a5d(x2i+1, x2i).

So, we have

dlb(x2i+2, x2i+1) ≤ a2 + ba4 + a5

1 – (a1 + ba4)
d(x2i, x2i+1). (2.9)

Adding (2.8) and (2.9), we get

dlb(x2i+1, x2i+2) ≤ a1 + a2 + ba3 + ba4 + 2a5

2 – (a1 + a2 + ba3 + ba4)
d(x2i, x2i+1). (2.10)
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As

μ =
a1 + a2 + ba3 + ba4 + 2a5

2 – (a1 + a2 + ba3 + ba4)
<

1
b

,

then, by (2.10), we have

dlb(x2i+1, x2i+2) ≤ μd(x2i, x2i+1). (2.11)

Similarly, if j = 2i + 2, where i = 0, 1, 2, . . . , j–2
2 , we have

dlb(x2i+2, x2i+3) ≤ μd(x2i+1, x2i+2). (2.12)

Now, by (2.11)

dlb(x2i+1, x2i+2) ≤ μ2i+1dlb(x0, x1). (2.13)

Also, by (2.12)

dlb(x2i+2, x2i+3) ≤ μ2i+2dlb(x0, x1). (2.14)

By combining (2.13) and (2.14), we get

dlb(xj, xj+1) ≤ μjdlb(x0, x1) for all j ∈N. (2.15)

Now,

dlb(x0, xj+1) ≤ bdlb(x0, x1) + b2dlb(x1, x2) + · · · + bj+1dlb(xj, xj+1)

≤ bdlb(x0, x1) + b2μ
(
dlb(x0, x1)

)
+ · · ·

+ bj+1μj(dlb(x0, x1)
)

by (2.15)

=
b(1 – (bμ)j+1)

1 – bμ
dlb(x0, x1),

dlb(x0, xj+1) ≤ b(1 – (bμ)j+1)
1 – bμ

μ(1 – bμ)r < r by (2.7)

which implies xj+1 ∈ Bdlb (x0, r). Hence, by induction xn ∈ Bdlb (x0, r) for all n ∈ N . Now
inequality (2.15) can be written as

dlb(xn, xn+1) ≤ μn(dlb(x0, x1)
)

for all n ∈ N . (2.16)

Now, for any positive integers m, n (n > m), we have

dlb(xm, xn) ≤ b
(
dlb(xm, xm+1)

)
+ b2(dlb(xm+1, xm+2)

)
+ · · ·

+ bn–m(
dlb(xn–1, xn)

)

≤ bμmdlb(x0, x1) + b2μm+1dlb(x0, x1) + · · ·
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+ bn–mμn–1dlb(x0, x1) by (2.16)

≤ bμm(
1 + bμ + · · · + bn–m–1μn–m–1)dlb(x0, x1)

≤ bμm

1 – bμ
dlb(x0, x1) → 0.

Hence, {xn} is a Cauchy sequence in Bdlb (x0, r). As Bdlb (x0, r) is complete, there exists z ∈ X
such that xn → z as n → ∞. Now, by Lemma 1.7 and (2.1), we prove z ∈ X to be the
common fixed point of S and T .

dlb
(
z, [Sz]α(z)

) ≤ b
[
dlb(z, x2n+1) + dlb

(
x2n+1, [Sz]α(z)

)]

≤ b
[
dlb(z, x2n+1) + Hdlb

(
[Tx2n]α(x2n), [Sz]α(z)

)]

≤ b
[
dlb(z, x2n+1) + a1dlb

(
x2n, [Tx2n]α(x2n)

)
+ a2dlb

(
z, [Sz]α(z)

)

+ a3dlb
(
x2n, [Sz]α(z)

)
+ a4dlb

(
z, [Tx2n]α(x2n)

)
+ a5dlb(x2n, z)

]
.

Taking limit n → ∞, we get

(
1 – b(a2 + a3)

)
dlb

(
z, [Sz]α(z)

) ≤ 0.

So, we get

z ∈ [Sz]α(z).

This implies that z ∈ X is a fixed point of S. Similarly, we can prove that z is a fixed point
of T . Hence, z is a common fixed point of S and T . �

Example 2.3 Let X = Q
+ ∪ {0} and dlb(x, y) = (x + y)2, whenever x, y ∈ X, then (X, dlb) is a

complete dislocated b-metric space with b > 1. Define a fuzzy mapping T : X → F(X) by

T(x)(t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ t ≤ x/4
1/2, x/4 < t ≤ x/3
1/4, x/3 < t ≤ x/2
0, x/2 < t ≤ 1

∣∣∣∣∣∣∣∣∣
.

For all x ∈ X, there exists α(x) = 1 such that

[Tx]α(x) =
[

0,
x
4

]
.

Consider x0 = 1 and r = 4, then Bdlb (x0, r) = [0, 1]. Let a1 = 1
10 , a2 = 1

20 , a3 = 1
30 , a4 = 1

40 ,
a5 = 1

50 , a6 = 1
60 .Then

Hdlb

(
[Tx]α(x), [Ty]α(y)

) ≤ 1
10

(
x +

x
4

)2

+
1

20

(
y +

y
4

)2

+
1

30

(
x +

y
4

)2

+
1

40

(
y +

x
4

)2

+
1

50
(x – y)2 +

1
60

( (x + x
4 )2(1 + (x + x

4 )2)
1 + (x + y)2

)
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and

dlb
(
x0, [Tx0]α(x0)

) ≤ μ(1 – bμ)r,

where

μ =
(a1 + ba3 + a5 + a6)

1 – (a2 + ba3)
<

1
b

.

Since all the conditions of Theorem 2.1 are satisfied, there exists 0 ∈ Bdlb (x0, r) which is
the fixed point of T .

Example 2.4 Consider X = {0, 1, 2}. Let dlb : X × X → [0,∞) be the mapping defined by

dlb(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, x = y and x, y ∈ {0, 1},
2
5 , x = y and x, y ∈ {2},
1
2 , x 	= y and x, y ∈ {0, 2},
1, x 	= y and x, y ∈ {0, 1},
1
4 , x 	= y and x, y ∈ {1, 2}.

It is clear that d is a complete dislocated b-metric space with the constant b = 4
3 . Note that

d(2, 2) 	= 0, so d is not a b-metric and also d is not a metric. Consider x0 = 1 and r = 1, then
Bdlb (x0, r) = 0. Define the fuzzy mapping S, T : X → F(X) by

(T0)(t) =

{
3
4 , t = 0,
0, t = 1, 2,

(T1)(t) =

{
0, t = 0, 1,
3
4 , t = 2,

(T2)(t) =

{
0, t = 0, 2,
3
4 , t = 1,

and

(S0)(t) = (S1)(t) = (S2)(t) =

{
3
4 , t = 0,
0, t = 1, 2.

Define αS(x) = αT (x) = α, where α ∈ (0, 3
4 ]. Now we have

[Tx]αT (x) =

⎧
⎪⎨
⎪⎩

{0}, x = 0,
{2}, x = 1,
{1}, x = 2,

and

[Sx]αS(x) = {0} for all x ∈ X.
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For x, y ∈ X, we get

H
(
[Sx]αS(x), [Ty]αT (y)

)
=

⎧⎪⎨
⎪⎩

H({0}, {0}) = 0, y = 0,
H({0}, {2}) = 1

2 , y = 1,
H({0}, {1}) = 1, y = 2.

Let a1 = a2 = 1
4 , a3 = 0, a4 = 1

4 , a5 = 0, we can see that bμ = 20
21 < 1, where μ =

a1+a2+ba3+ba4+2a5
2–(a1+a2+ba3+ba4) = 5

7 . Also, ai ≥ 0, where i = 1, 2, . . . , 6 with (a1 + a2)(b + 1) + b(a3 + a4) ×
(b + 1) + 2ba5 = 35

18 < 2 and
∑5

i=1 ai < 1. It easy to prove that condition (2.6) in Theorem 2.2
holds. Then there exists 0 ∈ [Sx]αS(x) ∩ [Ty]αT (y).

3 Application
In this section, we indicate that Theorem 2.1 and Theorem 2.2 can be utilized to derive a
common fixed point for a multivalued mapping in a dislocated b-metric space.

Theorem 3.1 Let (X, dlb) be a complete dislocated b-metric space with constant b ≥ 1.
Suppose that R : X → P(X) are two multivalued mappings satisfying the following condi-
tions:

Hdlb (Rx, Ry) ≤ a1dlb(x, Rx) + a2dlb(y, Ry) + a3dlb(x, Ry)

+ a4dlb(y, Rx) + a5dlb(x, y) + a6
dlb(x, Rx)(1 + dlb(x, Rx))

1 + dlb(x, y)
(3.1)

and

dlb(x0, Rx0) ≤ μ(1 – bμ)r (3.2)

for all x, y ∈ Bdlb (x0, r), r > 0 and bμ < 1, where μ = (a1+ba3+a5+a6)
1–(a2+ba3) . Also, ai ≥ 0, where i =

1, 2, . . . , 6 with ba1 + a2 + b(1 + b)a3 + b(a5 + a6) < 1 and
∑6

i=1 ai < 1. Then there exists x∗ in
Bdlb (x0, r) such that x∗ ∈ Rx∗.

Proof Let α : X → (0, 1] be an arbitrary mapping. Consider two fuzzy mappings T : X →
F(X) defined by

(Tx)(t) =

{
α(x), t ∈ Rx,
0, t /∈ Rx.

We obtain that

[Tx]α(x) =
{

t : Tx(t) ≥ α(x)
}

= Rx.

Hence, condition (3.1) becomes condition (2.1) in Theorem 2.1. This implies that there
exists z ∈ X such that z ∈ [Tz]α(z) = Rz. �

Theorem 3.2 Let (X, dlb) be a complete dislocated b-metric space with constant b ≥ 1.
Suppose that R, G : X → P(X) are two multivalued mappings satisfying the following con-
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ditions:

Hdlb (Rx, Gy) ≤ a1dlb(x, Rx) + a2dlb(y, Gy) + a3dlb(x, Gy)

+ a4dlb(y, Rx) + a5dlb(x, y) (3.3)

and

dlb(x0, Rx0) ≤ μ(1 – bμ)r (2.7)

for all x, y ∈ Bdlb (x0, r), r > 0 and bμ < 1, where μ = a1+a2+ba3+ba4+2a5
2–(a1+a2+ba3+ba4) . Also, ai ≥ 0, where

i = 1, 2, . . . , 6 with (a1 + a2)(b + 1) + b(a3 + a4)(b + 1) + 2ba5 < 2 and
∑5

i=1 ai < 1. Then there
exists x∗ in Bdlb (x0, r) such that x∗ is a common fixed point of R and G.

Proof Let α : X → (0, 1] be an arbitrary mapping. Consider two fuzzy mappings S, T : X →
F(X) defined by

(Sx)(t) =

{
α(x), t ∈ Rx,
0, t /∈ Rx,

(Tx)(t) =

{
α(x), t ∈ Gx,
0, t /∈ Gx.

We obtain that

[Sx]α(x) =
{

t : Sx(t) ≥ α(x)
}

= Rx

and

[Tx]α(x) =
{

t : Tx(t) ≥ α(x)
}

= Gx.

Hence, condition (3.3) becomes condition (2.6) of Theorem 2.2. This implies that there
exists z ∈ [Sz]α(z) ∩ [Tz]α(z) = Rz ∩ Gz. �

4 Conclusion
In the present work we have shown the new concept of fuzzy mappings in a complete
dislocated b-metric space. We have also obtained fixed point and common fixed point
results for fuzzy mappings in a complete dislocated b-metric space. Our results generalize
and extend the concept of Joseph et al. [1] and references therein. We have also given
examples to support our results, showing that d is a complete dislocated b-metric space
but is not b-metric and metric space. Finally, we related the results to a fixed point for
multivalued mappings and fuzzy mappings.
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