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Abstract
We give characterizations of the contractive conditions, by using convergent
sequences. Since we use a unified method, we can compare the contractive
conditions very easily. We also discuss the contractive conditions of integral type by a
unified method.
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1 Introduction and preliminaries
Throughout this paper we denote by N the set of all positive integers.

The fixed point theorem for contractions is referred to as the Banach contraction prin-
ciple.

Theorem 1 ([1, 2]) Let (X, d) be a complete metric space and let T be a contraction on X,
that is, there exists r ∈ [0, 1) such that d(
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(1-ii) u < t holds for any (t, u) ∈ Q.
(2) Q is said to be Meir-Keeler (MK, for short) [10] if for any � > 0, there exists � > 0

such that u < � holds for any (t, u) ∈ Q with t < � + �.
(3) Q is said to be Boyd-Wong (BW, for short) [11] if there exists a function � from

(0,∞) into itself satisfying the following:
(3-i) � is upper semicontinuous from the right.

(3-ii) �(t) < t holds for any t ∈ (0,∞).
(3-iii) u ≤ �(t) holds for any (t, u) ∈ Q.

(4) Q is said to be of New Type (NT, for short) [12] if there exists a function � from
(0,∞) into itself satisfying the following:

(4-i) �(t) < t for any t ∈ (0,∞).
(4-ii) For any � > 0, there exists � > 0 such that � < t < � + � implies �(t) ≤ �.

(4-iii) u ≤ �(t) holds for any (t, u) ∈ Q.
(5) Q is said to be Matkowski (Mat, for short) [13] if there exists a function � from

(0,∞) into itself satisfying the following:
(5-i) � is nondecreasing.

(5-ii) limn �n(t) = 0 for any t ∈ (0,∞).
(5-iii) u ≤ �(t) holds for any (t, u) ∈ Q.

(6) Q is said to be a Browder (Bro, for short) [14] if there exists a function � from (0,∞)
into itself satisfying the following:

(6-i) � is nondecreasing and right continuous.
(6-ii) �(t) < t holds for any t ∈ (0,∞).

(6-iii) u ≤ �(t) holds for any (t, u) ∈ Q.

We know the following implications:

Bro → BW → MK → CJM

↘ ↘ ↗
Mat → NT

We note that for each implication, there exists a counterexample for its converse implica-
tion.

There is a problem in the above list. The expressions as regards the conditions vary. So
we cannot understand easily the relationship between the contractive conditions. Moti-
vated by this, in this paper, we give characterizations (Theorems 5-10) of the contractive
conditions, by using convergent sequences. Since we use a unified method, we can com-
pare the contractive conditions very easily. For example, we can prove quite easily that if
Q is BW and Matkowski, then Q is Browder (see Theorem 12). We also discuss the con-
tractive conditions of integral type by a unified method.

2 New definitions
We introduce the following definitions in order to treat the contractive conditions appear-
ing in Section 1 by a unified method.

Definition 3 Let Q be a subset of (0,∞)2.
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(1) A sequence {(tn, un)} is said to satisfy Condition � if {(tn, un)} does not converge to
(t, t) for any t ∈ (0,∞).

(2) Q is said to satisfy Condition C(0, 0, 0) if the following hold:
(2-i) u < t holds for any (t, u) ∈ Q.
(2-ii) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} and {un} are

strictly decreasing.
(3) Q is said to satisfy Condition C(0, 0, 1) if the following hold:

(3-i) Q satisfies Condition C(0, 0, 0).
(3-ii) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} is strictly

decreasing and {un} is constant.
(4) Q is said to satisfy Condition C(0, 0, 2) if the following hold:

(4-i) Q satisfies Condition C(0, 0, 0).
(4-ii) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} is strictly

decreasing and {un} is nondecreasing.
(5) Q is said to satisfy Condition C(0, 1, 0) if the following hold:

(5-i) Q satisfies Condition C(0, 0, 0).
(5-ii) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} is constant

and {un} is strictly increasing.
(6) Q is said to satisfy Condition C(1, 0, 0) if the following hold:

(6-i) Q satisfies Condition C(0, 0, 0).
(6-ii) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} and {un} are

strictly increasing.
(7) Let (p, q, r) ∈ {0, 1}2 × {0, 1, 2}. Then Q is said to satisfy Condition C(p, q, r) if Q

satisfies Conditions C(p, 0, 0), C(0, q, 0) and C(0, 0, r).

Proposition 4 Let p1, p2, q1, q2 ∈ {0, 1} and let r1, r2 ∈ {0, 1, 2}. Let Q be a subset of (0,∞)2.
Then the following are equivalent:

(i) Q satisfies Conditions C(p1, q1, r1) and C(p2, q2, r2).
(ii) Q satisfies Condition C(max{p1, p2}, max{q1, q2}, max{r1, r2}).

Proof Obvious. �

3 Characterizations
In this section, we give characterizations of the contractive conditions appearing in Sec-
tion 1 by a unified method.

Theorem 5 Let Q be a subset of (0,∞)2. Then the following are equivalent:
(i) Q is CJM.

(ii) Q satisfies Condition C(0, 0, 0).

Theorem 6 Let Q be a subset of (0,∞)2. Then the following are equivalent:
(i) Q is MK.

(ii) Q satisfies Condition C(0, 0, 1), that is, the following hold:
(a) u < t holds for any (t, u) ∈ Q.
(b) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} is strictly

decreasing and {un} is nonincreasing.
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Theorem 7 Let Q be a subset of (0,∞)2. Then the following are equivalent:
(i) Q is BW.

(ii) Q satisfies Condition C(0, 1, 2), that is, the following hold:
(a) u < t holds for any (t, u) ∈ Q.
(b) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} is

nonincreasing.

Remark In order to prove (ii) ⇒ (i), we define a function � from (0,∞) into itself by

�(t) = lim sup
[
�(u) : u → t, t ≤ u

]
,

where � is a function from (0,∞) into itself defined by

�(t) = max
{

t/2, sup
{

u : (t, u) ∈ Q
}}

. (1)

See Lemma 4 in [5].

Theorem 8 Let Q be a subset of (0,∞)2. Then the following are equivalent:
(i) Q is NT.

(ii) Q satisfies Condition C(0, 1, 0), that is, the following hold:
(a) u < t holds for any (t, u) ∈ Q.
(b) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} and {un} are

strictly decreasing.
(c) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} is constant and

{un} is strictly increasing.

Remark In order to prove (ii) ⇒ (i), we define a function � from (0,∞) into itself by

�(t) = max
{

t/2, sup
{

u : (t, u) ∈ Q
}}

.

Theorem 9 Let Q be a subset of (0,∞)2. Then the following are equivalent:
(i) Q is Matkowski.

(ii) Q satisfies Condition C(1, 1, 0), that is, the following hold:
(a) u < t holds for any (t, u) ∈ Q.
(b) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} and {un} are

strictly decreasing.
(c) Every sequence {(tn, un)} in Q satisfies Condition � provided {tn} is

nondecreasing and {un} are strictly increasing.

Theorem 10 Let Q be a subset of (0,∞)2. Then the following are equivalent:
(i) Q is Browder.

(ii) Q satisfies Condition C(1, 1, 2), that is, the following hold:
(a) u < t holds for any (t, u) ∈ Q.
(b) Every sequence {(tn, un)} in Q satisfies Condition �.

Remark In order to prove (ii) ⇒ (i), we define a function � from (0,∞) into itself by

�(t) =
t
2

+
1
2

max
{
sup

{
�(u) : u ∈ (0,∞), u ≤ t

}
,
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sup
{
�(u) + 2(t – u) : u ∈ (0,∞), t ≤ u

}}
,

where � is a function from (0,∞) into itself defined by (1). See Lemma 6 in [15]. See also
the proof of Proposition 1 in [16].

We only give a proof of Theorem 9. The reason of this is that we can prove the other
theorems easily by using the method in the proof of Theorem 9.

Lemma 11 Let � be a nondecreasing function from (0,∞) into itself. Then the following
are equivalent:

(i) limn �n(t) = 0 holds for any t ∈ (0,∞).
(ii) �(t) < t holds for any t ∈ (0,∞). For any � > 0, there exists � > 0 such that

� < t < � + � implies �(t) ≤ �.

Proof We first show (i) ⇒ (ii). We assume (i). Arguing by contradiction, there exists � ∈
(0,∞) satisfying �(� ) ≥ � . Since � is nondecreasing, we have �2(� ) ≥ �(� ). Continuing this
argument, we can show that {�n(� )} is nondecreasing. Since �(� ) ≥ � > 0 holds, {�n(� )}
cannot converge to 0. This is a contradiction. So we have shown �(t) < t for any t ∈ (0,∞).
Also, arguing by contradiction, we assume that there exists � > 0 such that for any � > 0,
there exists t satisfying

� < t < � + � and �(t) > �.

Since � is nondecreasing, we have

�(t) > � provided t > �.

Fix � > �. Then we have �(� ) > �. Hence �2(� ) > � holds. Continuing this argument, we
have �n(� ) > � for any n ∈ N. Therefore {�n(� )} cannot converge to 0, which implies a
contradiction. Therefore we have shown (ii).

Let us prove (ii) ⇒ (i): We assume (ii). Arguing by contradiction, we assume that there
exists t ∈ (0,∞) such that {�n(t)} does not converge to 0. Since {�n(t)} is strictly decreas-
ing, {�n(t)} converges to some � ∈ (0,∞). We can choose � > 0 satisfying

� < t < � + � implies �(t) ≤ �.

Choose � ∈ N satisfying ��(t) < � + �. Then we have ��+1(t) ≤ �, which implies a contra-
diction. Therefore we have shown (i). �

Proof of Theorem 9 We first prove (i) ⇒ (ii). We assume (i). Then there exists a function
� from (0,∞) into itself satisfying the following:

(1) � is nondecreasing.
(2) limn �n(t) = 0 for any t ∈ (0,∞).
(3) u ≤ �(t) holds for any (t, u) ∈ Q.
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For any (t, u) ∈ Q, we have by Lemma 11

u ≤ �(t) < t.

Thus (a) of Theorem 9 holds. Also, arguing by contradiction, we assume that (b) of The-
orem 9 does not hold. Then there exists a sequence {(tn, un)} in Q such that {(tn, un)} con-
verges to (� , � ) for some � ∈ (0,∞) and {tn} and {un} are strictly decreasing. By Lemma 11
again, there exists � > 0 such that

� < t < � + � implies �(t) ≤ � .

For sufficiently large n ∈N, since � < tn < � + � holds, we have

un ≤ �(tn) ≤ � .

Since {un} is strictly decreasing, {un} does not converge to � , which implies a contradiction.
We have shown (b) of Theorem 9. Also, arguing by contradiction, we assume that (c) of
Theorem 9 does not hold. Then there exists a sequence {(tn, un)} in Q such that {(tn, un)}
converges to (� , � ) for some � ∈ (0,∞), {tn} is nondecreasing and {un} is strictly increasing.
By (1) and (3), we have

un ≤ �(tn) ≤ �(� ).

As n tends to ∞, we obtain � ≤ �(� ). By Lemma 11, this is a contradiction. We have shown
(a)-(c) of Theorem 9.

Let us prove (ii) ⇒ (i). We assume (a)-(c) of Theorem 9. Define a function � from (0,∞)
into itself by

�(s) = max
{

s/2, sup
{

u : (t, u) ∈ Q, t ≤ s
}}

,

where sup∅ = –∞. It is obvious that � is nondecreasing. It is also obvious that u ≤ �(t)
holds for any (t, u) ∈ Q. Since Q satisfies Condition C(0, 0, 0), we have

�(s) ≤ max
{

s/2, sup
{

t : (t, u) ∈ Q, t ≤ s
}} ≤ s.

Arguing by contradiction, we assume �(� ) = � for some � ∈ (0,∞). Then there exists a
sequence {(tn, un)} in Q satisfying tn ≤ � for n ∈ N and limn un = � . Since un < tn ≤ � holds
for n ∈ N, we can choose a subsequence {f (n)} of the sequence {n} in N such that {tf (n)}
is nondecreasing and {uf (n)} is strictly increasing. Since {tf (n)} converges to � , we obtain a
contradiction. Therefore we have shown

�(s) < s

for any s ∈ (0,∞). We will show the following:
• For � ∈ (0,∞), there exists � > 0 such that

� < t < � + � implies �(t) ≤ �.
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Arguing by contradiction, we assume that there exists � > 0 such that for any � ∈ (0, �),
there exists t satisfying

� < t < � + � and �(t) > �.

So we can choose a sequence {tn} in (�, 2�) such that {tn} is strictly decreasing, {tn} con-
verges to � and � < �(tn) for n ∈N. Noting tn/2 < �, we have

�(tn) = sup
{

u : (t, u) ∈ Q, t ≤ tn
}

.

So there exists (t′
n, u′

n) ∈ Q satisfying u′
n > � and t′

n ≤ tn. Since (t′
n, u′

n) ∈ Q holds, we have

� < u′
n < t′

n ≤ tn.

Hence {t′
n} and {u′

n} converge to �. So we can choose a subsequence {f (n)} of {n} such
that {t′

f (n)} and {u′
f (n)} are strictly decreasing. This contradicts that Q satisfies Condition

C(0, 0, 0). By Lemma 11, we obtain (2). �

By Proposition 4, we can prove the following.

Theorem 12 Let Q be a subset of (0,∞)2. Then the following are equivalent:
(i) Q is Browder.

(ii) Q is BW and Matkowski.

Proof By Proposition 4 and Theorems 7, 9 and 10, both are equivalent to Condition
C(1, 1, 2). �

4 Integral type
There is another merit in our approach.

Branciari in [17] introduced contractions of integral type as follows: A mapping T on a
metric space (X, d) is a Branciari contraction if there exist r ∈ [0, 1) and a locally integrable
function f from [0,∞) into itself such that

∫ s

0
f (t) dt > 0 and

∫ d(Tx,Ty)

0
f (t) dt ≤ r

∫ d(x,y)

0
f (t) dt

holds for all s > 0 and x, y ∈ X. Jachymski in [4] proved that the concepts of the Branciari
contraction and the Browder contraction are equivalent.

In [5, 15, 18, 19], we also studied contractions of integral type for several contractive
conditions stated in Section 1. We note that we have used various methods to prove theo-
rems there. Motivated by this fact, in this paper, we study contractions of integral type by
a unified method.

Throughout this section, we let Q be a subset of (0,∞)2. Let 	 be a nondecreasing func-
tion from (0,∞) into itself and define a subset R of (0,∞)2 by

R =
{(

	 (t), 	 (u)
)

: (t, u) ∈ Q
}

.
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Lemma 13 If R satisfies Condition C(0, 0, 0), then Q also satisfies Condition C(0, 0, 0).

Proof We assume that R satisfies Condition C(0, 0, 0). Fix (t, u) ∈ Q. Arguing by contradic-
tion, we assume u ≥ t. Then since 	 is nondecreasing, we have 	 (u) ≥ 	 (t), which implies
a contradiction. Therefore we have shown

u < t for any (t, u) ∈ Q.

Also, arguing by contradiction, we assume the following:
• There exists a sequence {(tn, un)} in Q such that {tn} and {un} are strictly decreasing

and limn tn = limn un = � holds for some � ∈ (0,∞).
We consider the following two cases:

• lim[	 (t) : t → � + 0] = 	 (s) holds for some s ∈ (� ,∞).
• lim[	 (t) : t → � + 0] < 	 (s) holds for any s ∈ (� ,∞).

In the first case, we have 	 (tn) = 	 (un) for sufficiently large n ∈ N, which implies a con-
tradiction. In the second case, taking subsequences, without loss of generality, we may
assume that {	 (tn)} and {	 (un)} are strictly decreasing. We have

lim
n→∞ 	 (tn) = lim

t→�+0
	 (t) = lim

n→∞ 	 (un),

which also implies a contradiction. Therefore Q satisfies Condition C(0, 0, 0). �

Remark Compare this proof with the proof of Theorem 2.7 in [18]. In our new proof, the
reason why we do not need any continuity of 	 is quite clear.

Lemma 14 If R satisfies Condition C(0, 0, 1) and 	 is right continuous, then Q also satisfies
Condition C(0, 0, 1).

Proof We assume that R satisfies Condition C(0, 0, 1). Then by Lemma 13, Q satisfies Con-
dition C(0, 0, 0). Arguing by contradiction, we assume that there exists a sequence {(tn, � )}
in Q such that {tn} is strictly decreasing and limn tn = � holds. Since 	 is right continuous,
we have

lim
n→∞ 	 (tn) = lim

t→�+0
	 (t) = 	 (� ).

Since 	 (� ) < 	 (tn) holds for n ∈N, taking a subsequence, without loss of generality, we may
assume that {	 (tn)} is strictly decreasing. Hence R does not satisfy Condition C(0, 0, 1),
which implies a contradiction. �

Remark Compare this proof with the proof of Theorem 2.1 in [18]. In our new proof, the
reason why we need the right continuity of 	 is quite clear.

Lemma 15 If R satisfies Condition C(0, 1, 0) and 	 is left continuous, then Q also satisfies
Condition C(0, 1, 0).

Proof We assume that R satisfies Condition C(0, 1, 0). Then by Lemma 13, Q satisfies Con-
dition C(0, 0, 0). Arguing by contradiction, we assume that there exists a sequence {(� , un)}
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in Q such that {un} is strictly increasing and limn un = � holds. Since 	 is left continuous,
we have

lim
n→∞ 	 (un) = lim

t→�–0
	 (t) = 	 (� ).

Since 	 (un) < 	 (� ) holds for n ∈N, taking a subsequence, without loss of generality, we may
assume that {	 (un)} is strictly increasing. Hence R does not satisfy Condition C(0, 1, 0),
which implies a contradiction. �

Remark Compare this proof with the proof of Proposition 2.1 in [19]. In our new proof,
the reason why we need the left continuity of 	 is quite clear.

Lemma 16 If R satisfies Condition C(0, 1, 2) and 	 is continuous, then Q also satisfies Con-
dition C(0, 1, 2).

Proof We assume that R satisfies Condition C(0, 1, 2). Then by Lemma 13, Q satisfies Con-
dition C(0, 0, 0). Arguing by contradiction, we assume that there exists a sequence {(tn, un)}
in Q such that {tn} is nonincreasing, {un} is nondecreasing and limn tn = limn un = � holds.
Since 	 is nondecreasing, we note that {	 (tn)} is nonincreasing and {	 (un)} is nondecreas-
ing. Since 	 is continuous, we have

lim
n→∞ 	 (tn) = lim

t→�+0
	 (t) = 	 (� )

= lim
t→�–0

	 (t) = lim
n→∞ 	 (un).

Hence R does not satisfy Condition C(0, 1, 2), which implies a contradiction. �

Remark Compare this proof with the proofs of Proposition 8 in [15] and Proposition 9
in [5]. In our new proof, the reason why we need the continuity of 	 is quite clear.

Lemma 17 If R satisfies Condition C(1, 0, 0), then Q also satisfies Condition C(1, 0, 0).

Proof We assume that R satisfies Condition C(1, 0, 0). Then by Lemma 13, Q satisfies Con-
dition C(0, 0, 0). Arguing by contradiction, we assume that there exists a sequence {(tn, un)}
in Q such that {tn} and {un} are strictly increasing and limn tn = limn un = � holds for some
� ∈ (0,∞). We consider the following two cases:

• 	 (s) = lim[	 (t) : t → � – 0] holds for some s ∈ (0, � ).
• 	 (s) < lim[	 (t) : t → � – 0] holds for any s ∈ (0, � ).

In the first case, we have 	 (tn) = 	 (un) for sufficiently large n ∈ N, which implies a con-
tradiction. In the second case, taking subsequences, without loss of generality, we may
assume that {	 (tn)} and {	 (un)} are strictly increasing. Since 	 is nondecreasing, we have

lim
n→∞ 	 (tn) = lim

t→�–0
	 (t) = lim

n→∞ 	 (un).

Hence R does not satisfy Condition C(1, 0, 0), which implies a contradiction. �

Theorem 18 If R is CJM, then Q is also CJM.
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Proof By Theorem 5, R satisfies Condition C(0, 0, 0). So by Lemma 13, Q satisfies Condi-
tion C(0, 0, 0). By Theorem 5 again, Q is CJM. �

Theorem 19 If R is MK and 	 is right continuous, then Q is also MK.

Proof By Theorem 6, R satisfies Condition C(0, 0, 1). So by Lemma 14, Q satisfies Condi-
tion C(0, 0, 1). By Theorem 6 again, Q is MK. �

Theorem 20 If R is BW and 	 is continuous, then Q is also BW.

Proof By Theorem 7, R satisfies Condition C(0, 1, 2). So by Lemma 16, Q satisfies Condi-
tion C(0, 1, 2). By Theorem 7 again, Q is BW. �

Theorem 21 If R is NT and 	 is left continuous, then Q is also NT.

Proof By Theorem 8, R satisfies Condition C(0, 1, 0). So by Lemma 15, Q satisfies Condi-
tion C(0, 1, 0). By Theorem 8 again, Q is NT. �

Theorem 22 If R is Matkowski and 	 is left continuous, then Q is also Matkowski.

Proof By Theorem 9, R satisfies Condition C(1, 1, 0). So by Lemmas 15 and 17, Q satisfies
Condition C(1, 1, 0). By Theorem 9 again, Q is Matkowski. �

Theorem 23 If R is Browder and 	 is continuous, then Q is also Browder.

Proof By Theorem 10, R satisfies Condition C(1, 1, 2). So by Lemmas 16 and 17, Q satisfies
Condition C(1, 1, 2). By Theorem 10 again, Q is Browder. �

5 Conclusions
In this paper, we give characterizations of the contractive conditions, by using conver-
gent sequences (see Theorems 5-10). Since we use a unified method, we can compare the
contractive conditions very easily (see Theorem 12). We also discuss the contractive con-
ditions of integral type by a unified method (see Theorems 18-23).
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