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Abstract
In this paper, we study the existence of solutions for systems of random semilinear
impulsive differential equations. The existence results are established by means of a
new version of Perov’s, a nonlinear alternative of Leray-Schauder’s fixed point
principles combined with a technique based on vector-valued metrics and
convergent to zero matrices. Also, we give a random abstract formulation to
Sadovskii’s fixed point theorem in a vector-valued Banach space. Examples illustrating
the results are included.
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1 Introduction
Many evolution processes are characterized by the fact that at certain moments of time,
they experience change of state abruptly in a form of shocks, harvesting, natural disasters,
etc. These phenomena involve short term perturbations from continuous and smooth dy-
namics, whose duration is negligible in comparison with the duration of entire evolution.
This has been the main reason for the development of a new branch of the theory of ordi-
nary differential equations called impulsive differential equations. The theory of impulsive
differential equations has also attracted much attention in recent years (see [–] and the
references therein).

Unfortunately, in most cases the available data for the description and evaluation of
parameters of a dynamic system are inaccurate, imprecise, or confusing. In other words,
evaluation of parameters of a dynamical system is not without uncertainties. Differential
equations with random coefficients are used as models in many different applications. This
is due to a combination of uncertainties, complexities, and ignorance on our part which
inevitably cloud our mathematical modeling process (e.g., Kampé de Feriet [], Becus []
and their references). This interest is due to the fact that there are many applications of
this theory to various applied fields such as control theory, statistics, biological sciences,
and others. For a discussion of such applications, one may consult the books [–] and
the papers [–], and the references therein.
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In this paper we consider the following system of impulsive differential equations with
the random effects (random parameters):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t,ω) = A(ω)x(t,ω) + f(t, x(t,ω), y(t,ω),ω), t ∈ J = [, b],

y′(t,ω) = A(ω)y(t,ω) + f(t, x(t,ω), y(t,ω),ω), t ∈ J = [, b],

x(t+
k ,ω) – x(t–

k ,ω) = Ik(x(t–
k ,ω), y(t–

k ,ω)), k = , , . . . , m,

y(t+
k ,ω) – y(t–

k ,ω) = Ik(x(t–
k ,ω), y(t–

k ,ω)), k = , , . . . , m,

x(ω, ) = ϕ(ω), ω ∈ �,

y(ω, ) = ϕ(ω), ω ∈ �,

(.)

where fi : J × X × X × � → X are given functions, Ik , Ik ∈ C(X × X, X), k = , , . . . , m,
 = t < t < · · · < tn < tm+ = b, ϕ, ϕ are two random maps, X is a separable Banach space
and Ai : � × X → X, i = , , are random operators.

The main goal of this paper is to apply some new random fixed point theorem to a system
of impulsive random differential equations. Also we give a random version of Sadovskii’s
fixed point theorem in a separable vector-valued Banach space.

The paper is organized as follows. In Section , we introduce all the background material
needed such as generalized metric spaces, some random fixed point theorems, and C-
semigroup. In Section , by some new random versions of Perov’s and Leray-Schauder’s
fixed point theorems in a vector Banach space, we prove some existence and compactness
results for problem (.). In Section , by using the measure of noncompactness, we prove
some random versions of Sadovskii’s fixed point theorems in a vector separable Banach
space. Finally, in Section , an example is given to demonstrate the applicability of our
result.

2 Preliminary
In this section, we recall from the literature some notations, definitions, and auxiliary re-
sults which will be used throughout this paper.

2.1 Vector metric space
If x, y ∈R

n, with x = (x, . . . , xn) and y = (y, . . . , yn), then by x ≤ y we mean xi ≤ yi for all i =
, . . . , n. Also we set |x| = (|x|, . . . , |xn|), max(x, y) = (max(x, y), . . . , max(xn, yn)) and R

n
+ =

{x ∈R
n : xi > }. If c ∈R, then x ≤ c means xi ≤ c for each i = , . . . , n.

Definition . Let X be a nonempty set. By a generalized metric space on X, we mean a
map d : X × X →R

n with the following properties:
(i) d(u, v) ≥  for all u, v ∈ X ; if d(u, v) = , then u = v;

(ii) d(u, v) = d(v, u) for all u, v ∈ X ;
(iii) d(u, v) ≤ d(u, w) + d(w, v) for all u, v, w ∈ X .

We call the pair (X, d) a generalized metric space with

d(x, y) :=

⎛

⎜
⎜
⎝

d(x, y)
...

dn(x, y)

⎞

⎟
⎟
⎠ .



Baliki et al. Fixed Point Theory and Applications  (2017) 2017:27 Page 3 of 29

Notice that d is a generalized metric space(or a vector-valued metric space) on X if and
only if di, i = , . . . , n, are metrics on X.

For r = (r, . . . , rn) ∈R
n
+, we will denote by

B(x, r) =
{

x ∈ X : d(x, x) < r
}

=
{

x ∈ X : di(x, x) < ri, i = , . . . , n
}

the open ball centered in x with radius r and

B(x, r) =
{

x ∈ X : d(x, x) ≤ r
}

=
{

x ∈ X : di(x, x) ≤ ri, i = , . . . , n
}

the closed ball centered in x with radius r. We mention that for a generalized metric space,
the notions of open subset, closed set, convergence, Cauchy sequence, and completeness
are similar to those in the usual metric spaces.

Definition . A square matrix of real numbers is said to be convergent to zero if and
only if its spectral radius ρ(M) is strictly less than . In other words, this means that all the
eigenvalues of M are in the open unit disc, i.e., |λ| < , for every λ ∈C with det(M –λI) = ,
where I denotes the unit matrix of Mn×n(R).

Lemma . [] Let M ∈Mn×n(R+). Then the following assertions are equivalent:
(i) M is convergent towards zero;

(ii) Mk →  as k → ∞;
(iii) The matrix (I – M) is nonsingular and

(I – M)– = I + M + M + · · · + Mk + · · · ;

(iv) The matrix (I – M) is nonsingular and (I – M)– has nonnegative elements.

Remark . Some examples of matrix convergent to zero are as follows:
. Any matrix M =

( a a
b b
)
, where a, b ∈R+ and a + b < .

. Any matrix M =
( a b

a b

)
, where a, b ∈R+ and a + b < .

. Any matrix M =
( a b

 c

)
, where a, b, c ∈R+ and max a, c < .

For other examples and considerations on matrices which converge to zero, see Precup
[], Rus [], and Turinici [].

2.2 Random variable and some selection theorems
In this section, we introduce notations, definitions, and preliminary facts from multival-
ued analysis and random variable which are used throughout this paper. Let (X, d) be a
metric space or a generalized metric space and Y be a subset of X. We denote:

• P(X) = {Y ⊂ X : Y 	= ∅} and
• Pp(X) = {Y ∈P(X) : Y has the property ‘p’}, where p could be: cl = closed, b =

bounded, cp = compact, etc.
Thus

• Pcl(X) = {Y ∈P(X) : Y closed},
• Pb(X) = {Y ∈P(X) : Y bounded},
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• Pcv(X) = {Y ∈P(X) : Y convex}, where X is a Banach space,
• Pcp(X) = {Y ∈P(X) : Y compact}.

Let (�,�) be a measurable space and F : � →P(X) be a multivalued mapping, F is called
measurable if F+(Q) = {ω ∈ � : F(ω) ⊂ Q} for every Q ∈ Pcl(X); equivalently, for every U
open set of X, the set F–(Q) = {ω ∈ � : F(ω) ∩ U 	= ∅} is measurable.

If X is a metric space, we shall useB(X) to denote the Borel σ -algebra on X. The �⊗B(X)
denotes the smallest σ -algebra on � × X which contains all the sets A × S, where Q ∈ �

and S ∈ B(X). Let F : X → P(Y ) be a multivalued map. A single-valued map f : X → Y is
said to be a selection of G, and we write (f ⊂ F) whenever f (x) ∈ F(x) for every x ∈ X.

Definition . Recall that a mapping F : � × X → X is said to be a random operator if,
for any x ∈ X, f (·, x) is measurable.

Definition . A random fixed point of f is a measurable function y : � → X such that

y(ω) = f
(
ω, y(ω)

)
for all ω ∈ �.

Equivalently, a measurable selection for the multivalued map Fix Fω : � →P(X) is defined
by

Fix Fω(x) =
{

x ∈ X : x = f (ω, x)
}

.

Theorem . ([]) Let (�,�), Y be a separable metric space and F : � →Pcl(Y ) be mea-
surable multivalued. Then F has a measurable selection.

As a consequence of Kuratowski-Ryll-Nardzewski and Aumann’s selection theorems, we
can conclude the following results.

Theorem . ([]) Let (�,�), Y be a separable generalized metric space and F : � →
Pcl(Y ) be measurable multivalued. Then F has a measurable selection.

Theorem . ([]) Let X be a separable metric space, Y be a metric space, f : �×X → X
be a Carathéodory function, and U be an open subset of Y . Then the multivalued map
F : � →P(X) defined by

F(ω) =
{
ω ∈ � : f (ω, x) ∈ U

}

is measurable. In particular, if f is real-valued, then

F∗(ω) =
{
ω ∈ � : f (ω, x) > λ

}
, F̃(ω) =

{
ω ∈ � : f (ω, x) < λ

}

are measurable.

Next, we present some random fixed point theorem in a separable vector Banach space.

Theorem . ([]) Let (�,F ,μ) be a probability space, X be a real separable gen-
eralized Banach space and F : � × X → X be a continuous random operator, and let
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M(ω) ∈Mn×n(R+) be a random variable matrix such that M(ω) converges to  a.s. and

d
(
F(ω, x), F(ω, x)

)≤ M(ω)d(x, x) for each x, x ∈ X,ω ∈ �.

Then there exists any random variable x : � → X which is the unique random fixed point
of F .

Theorem . ([]) Let (�,F ) be a measurable space, X be a real separable general-
ized Banach space and F : � × X → X be a continuous random operator, and let M(ω) ∈
Mn×n(R+) be a random variable matrix such that, for every ω ∈ �, the matrix M(ω) con-
verges to  and

d
(
F(ω, x), F(ω, x)

)≤ M(ω)d(x, x) for each x, x ∈ X,ω ∈ �.

Then there exists any random variable x : � → X which is the unique random fixed point
of F .

Theorem . ([]) Let X be a separable generalized Banach space, and let F : �×X → X
be a completely continuous random operator. Then either of the following holds:

(i) The random equation F(ω, x) = x has a random solution, i.e., there is a measurable
function x : � → X such that F(ω, x(ω)) = x(ω) for all ω ∈ �, or

(ii) The set M = {x : � → X is measurable|λ(ω)F(ω, x) = x} is unbounded for some
measurable λ : � → X with  < λ(ω) <  on �.

Definition . A function f : [, b] × R × � → R is called random Carathéodory if the
following conditions are satisfied:

(i) The map (t,ω) �−→ f (t, x,ω) is jointly measurable for all x ∈ R,
(ii) The map x �−→ f (t, x,ω) is continuous for all t ∈ [, b] and ω ∈ �.

Lemma . ([]) Let X be a separable generalized metric space and G : � × X → X be
a mapping such that G(·, x) is measurable for all x ∈ X and G(ω, ·) is continuous for all
ω ∈ �. Then the map (ω, x) → G(ω, x) is jointly measurable.

Proposition . ([]) Let X be a separable Banach space, and D be a dense linear
subspace of X. Let L : � × D → X be a closed linear random operator such that, for
each ω ∈ �, L(ω) is one to one and onto. Then the operator S : � × X → X defined by
S(ω)x = L–(ω)x is random.

2.3 C0-semigroups
In all this section, B(X) refers to the Banach space of linear bounded operators from X to
X with the norm

‖A‖B(X) = sup
{∣
∣A(y)

∣
∣, |y| = 

}
.

Definition . A one-parameter family {S(t), t ≥ } ⊂ B(X) is said to be of class C if it
satisfies the conditions:
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(i) S() = I (I is the identity operator on X).
(ii) S(t + s) = S(t) ◦ S(s) for t, s ≥  (the semigroup property).

(iii) The map x �−→ S(t)x is strongly continuous for each x ∈ E, i.e.,

lim
t→

S(t)x = x for all x ∈ X.

A semigroup of bounded linear operators T(t) is uniformly continuous if

lim
t→

∥
∥S(t) – I

∥
∥

B(X) = .

Theorem . ([]) Let {S(t), t ≥ } be a C-semigroup of bounded linear operators, then
there exist constants α ∈R and K >  such that

∥
∥S(t)

∥
∥

B(X) ≤ Keαt for t ≥ .

Definition . Let S(t) be a semigroup of class C defined on X. The infinitesimal gener-
ator A of S(t) is the linear operator defined by

A(x) = lim
h→

S(h)x – x
h

for x ∈ D(A),

where D(A) = {x ∈ X| limh→
T(h)x–x

h exists in X}.

Theorem . ([]) Let S(t) be a C-semigroup, and let A be its infinitesimal generator.
Then, for x ∈ D(A), S(t)x ∈ D(A) and

d
dt

S(t)x = AS(t)x = S(t)Ax.

More details on evolution systems and their properties could be found in the books of
Engel and Nagel [], Pazy [], and Vrabie [].

3 Main results
In this section, we establish the existence, uniqueness, and compactness of solutions set
of a random system of impulsive differential equations (.).

3.1 Existence of solution
Let Jk = (tk , tk+], k = , . . . , m, and let yk be the restriction of a function y to Jk . In order to
define mild solutions for problem (.), consider the space

PC =
{

y : [, b] → X, yk ∈ C(Jk , X), k = , . . . , m, such that

y
(
t–
k
)

and y
(
t+
k
)

exist and satisfy y(t–
k ) = y

(
tk
)

for k = , . . . , m
}

.

Endowed with the norm

‖y‖PC = max
{‖yk‖∞, k = , . . . , m

}
,

PC is a Banach space.
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Definition . A function x, y : � → PC([, b], X) is called a random mild solution of (.)
if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(t,ω) = S(ω, t)ϕ(ω) +
∫ t

 S(ω, t – s)f(s, x(s,ω), y(s,ω),ω) ds

+
∑

<tk <t S(ω, t – tk)Ik(x(tk ,ω), y(tk ,ω)), t ∈ [, b],

y(t,ω) = S(ω, t)ϕ(ω) +
∫ t

 S(ω, t – s)f(s, x(s,ω), y(s,ω),ω) ds

+
∑

<tk <t S(ω, t – tk)Ik(x(tk ,ω), y(tk ,ω)), t ∈ [, b],

(.)

where {S(ω, t)}t≥, {S(ω, t)}t≥ are random C-semigroups of bounded linear operators
on X with infinitesimal generators A, A, respectively.

Theorem . Let f, f : J × X × X × � → X be two Carathéodory functions. Assume that
the following conditions hold:

(H) There exist p, p, p, p : � → L([, b],R+) random variables such that

∣
∣f(t, x, y,ω) – f(t, x̃, ỹ,ω)

∣
∣

≤ p(ω, t)|x – x̃| + p(ω, t)|y – ỹ|, x, y, x̃, ỹ ∈ X, t ∈ J ,ω ∈ �

and

∣
∣f(t, x, y,ω) – f(t, x̃, ỹ,ω)

∣
∣

≤ p(ω, t)|x – x̃| + p(ω, t)|y – ỹ|, x, y, x̃, ỹ ∈ X, t ∈ J ,ω ∈ �.

(H) There exist random variables K, K : � −→ (, +∞) such that

∥
∥S(ω, t)

∥
∥≤ K(ω),

∥
∥S(ω, t)

∥
∥≤ K(ω) for each ω ∈ �.

If M(ω) converges to , then problem (.) has a unique random solution.

Proof We are going to study problem (.) in the intervals [, t], (t, t], . . . , (tm, b],
respectively. The proof will be given in three steps and then continued by induc-
tion.

Step . We consider the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t,ω) = A(ω)x(t,ω) + f(t, x(t,ω), y(t,ω),ω), t ∈ [, t],

y′(t,ω) = A(ω)y(t,ω) + f(t, x(t,ω), y(t,ω),ω), t ∈ [, t],

x(,ω) = ϕ(ω), ω ∈ �,

y(,ω) = ϕ(ω), ω ∈ �.

(.)

Consider the operator N : C([, t], X) × C([, t], X) × � → C([, t], X) × C([, t], X),

(x, y) �→ (
N 

 (ω, x, y), N 
(ω, x, y)

)
,
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where

N 

(
x(t,ω), y(t,ω),ω

)
= S(ω, t)ϕ(ω)

+
∫ t


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds, t ∈ [, t]

and

N 

(
x(t,ω), y(t,ω),ω

)
= S(ω, t)ϕ(ω)

+
∫ t


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds, t ∈ [, t].

First we show that N is a random operator on C([, t], X) × C([, t], X).
Since f and f are Carathéodory functions, then ω �−→ f(t, x, y,ω) and ω �−→ f(t, x, y,ω)

are measurable maps in view of Lemma .. By the Crandall-Liggett formula, we have

Si(ω, t) = lim
n→∞

(

I –
t
n

Ai(ω)
)–n

x, i = , .

From Proposition ., we know that ω → (I – t
n Ai(ω))–nx are measurable operators,

thus ω → Si(ω, t) are measurable. Using the continuity properties of the semigroups
S(ω, ·), S(ω, ·), we get

ω → Si(ω, t)φi(ω) and (s,ω) → Si(ω, t – s)fi
(
s, x(s,ω), y(s,ω),ω

)

are measurable. Further, the integral is a limit of a finite sum of measurable functions;
therefore, the maps

ω �−→ N 

(
x(t,ω), y(t,ω),ω

)
, ω �−→ N 


(
x(t,ω), y(t,ω),ω

)

are measurable. As a result, N is a random operator on C([, t], X)×C([, t], X)×� into
C([, t], X) × C([, t], X).

We show that N satisfies all the conditions of Theorem . on C([, t], X)×C([, t], X).
Let (x, y), (̃x, ỹ) ∈ C([, t], X) × C([, t], X), then

∣
∣N 


(
x(t,ω), y(t,ω),ω

)
– N 


(
x̃(t,ω), ỹ(t,ω),ω

)∣
∣

=
∣
∣
∣
∣S(ω, t)ϕ(ω) +

∫ t


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds

– S(ω, t)ϕ(ω) –
∫ t


S(ω, t – s)f

(
s, x̃(s,ω), ỹ(s,ω),ω

)
ds
∣
∣
∣
∣

≤
∫ t



∥
∥S(ω, t – s)

∥
∥
∣
∣f
(
s, x(s, x), y(s,ω),ω

)
– f

(
s, x̃(s,ω), ỹ(s,ω),ω

)∣
∣ds

≤ K(ω)
(∫ t


p(ω, t)

∣
∣x(s,ω) – x̃(s,ω)

∣
∣ds +

∫ t


p(ω, t)

∣
∣y(s,ω) – ỹ(s,ω)

∣
∣ds

)

.
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Thus

∥
∥N 

 (x, y,ω) – N 
 (̃x, ỹ,ω)

∥
∥∗ ≤ K(ω)

τ
‖x – x̃‖∗ +

K(ω)
τ

‖y – ỹ‖∗),

where

‖x‖∗ = sup
t∈[,t]

e–τ
∫ t

 p(s,ω) ds∣∣x(t)
∣
∣, p(t,ω) =

∑

i=

pi(t,ω), τ > K(ω) + K(ω).

Similarly, we obtain

∥
∥N(x, y,ω) – N(̃x, ỹ,ω)

∥
∥∗ ≤ K(ω)

τ
‖x – x̃‖∗ +

K(ω)
τ

‖y – ỹ‖∗).

Hence

d
(
N(x, y,ω), N(̃x, ỹ,ω)

)≤ M(ω)d
(
(x, y), (̃x, ỹ)

)
,

where

d(x, y) =

(
‖x – y‖∗
‖x – y‖∗

)

and

M(ω) =

(
K(ω)

τ

K(ω)
τ

K(ω)
τ

K(ω)
τ

)

.

It is clear that the radius spectral ρ(M(ω)) = K(ω)+K(ω)
τ

< . By Lemma ., M(ω) converges
to zero. From Theorem . there exists a unique random solution of problem (.). We
denote by (x(t,ω), y(t,ω)) the mild solution of (.).

Step . We consider the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t,ω) = A
(ω)x(t,ω) + f(t, x(t,ω), y(t,ω),ω) t ∈ (t, t],

y′(t,ω) = A
(ω)y(t,ω) + f(t, x(t,ω), y(t,ω),ω) t ∈ (t, t],

x(t+
 ,ω) = x(t,ω) + I(x(t,ω), y(t,ω)),

y(t+
 ,ω) = y(t,ω) + Ī(x(t,ω), y(t,ω)).

(.)

Let

C∗
(
[t, t], X

)
=
{

y ∈ C
(
(t, t], X

)
: y
(
t+

)

exists
}

.

Consider the operator N : C∗([t, t], X) × C∗([t, t], X) × � −→ C∗([t, t], X) ×
C∗([t, t], X),

(x, y) �−→ (
N 

(ω, x, y), N
 (ω, x, y)

)
,
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where

N 
(x, y,ω) = S(ω, t)x(ω, t) + I

(
x(t,ω), y(t,ω)

)

+
∫ t

t

S(ω, t – s)f
(
s, x(s,ω), y(s,ω),ω

)
ds t ∈ (t, t]

and

N
 (x, y,ω) = S(ω, t)y(t,ω) + I

(
x(t,ω), y(t,ω)

)

+
∫ t

t

S(ω, t – s)f
(
s, x(s,ω), y(s,ω),ω

)
ds t ∈ (t, t].

N is a random operator on C∗([t, t], X) × C∗([t, t], X). Now we show that N satisfies
all the conditions of Theorem . on C∗([t, t], X) × C∗([t, t], X).

Let (x, y), (̃x, ỹ) ∈ C∗([t, t], X) × C∗([t, t], X), then

∣
∣N 


(
x(·,ω), y(·,ω),ω

)
– N 


(
x̃(·,ω), ỹ(·,ω),ω

)∣
∣

≤ K(ω)
∫ t

t

p(ω, t)
∣
∣x(s,ω) – x̃(s,ω)

∣
∣ds

+ K(ω)
∫ t


p(ω, t)

∣
∣y(s,ω) – ỹ(s,ω)

∣
∣ds.

Then

∥
∥N 


(
x(·,ω), y(·,ω),ω

)
– N 


(
ω, x̃(·,ω), ỹ(·,ω),ω

)∥
∥∗∗

≤ K(ω)
τ

‖x – x̃‖∗∗ +
K(ω)

τ
‖y – ỹ‖∗∗,

where

‖x‖∗ = sup
t∈[,t]

e–τ
∫ t

t
p(s,ω) ds∣∣x(t)

∣
∣, p(t,ω) =

∑

i=

pi(t,ω), τ > K(ω) + K(ω).

Similarly, we have

∥
∥N


(
x(·,ω), y(·,ω),ω

)
– N


(
x̃(·,ω), ỹ(·,ω),ω

)∥
∥∗∗ ≤ K(ω)

τ
‖x – x̃‖∗∗ +

K(ω)
τ

‖y – ỹ‖∗∗.

Therefore

d
(
N(x, y,ω), N(̃x, ỹ,ω)

)≤ M(ω)d
(
(x, y), (̃x, ỹ)

)
,

where

d(x, y) =

(
‖x – y‖∗∗
‖x – y‖∗∗

)
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and

M(ω) =

(
K(ω)

τ

K(ω)
τ

K(ω)
τ

K(ω)
τ

)

.

From Theorem . there exists a unique random solution of problem (.), we denote it
by (x(t,ω), y(t,ω)).

Step . We continue this process until we arrive at the random variable ω → (xm+(·,ω),
ym+(·,ω)) as a solution of the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′(t,ω) = A
(ω)x(t,ω) + f(t, x(t,ω), y(t,ω),ω) t ∈ (tm, b],

y′(t,ω) = A
(ω)y(t,ω) + f(t, x(t,ω), y(t,ω),ω) t ∈ (tm, b],

x(t+
m,ω) = x(tm,ω) + Im(xm(tm,ω), ym(tm,ω)),

y(t+
m,ω) = ym(tm,ω) + Īm(xm(tm,ω), ym(tm,ω)).

(.)

Then a random solution of problem (.) is defined by

(
x(t,ω), y(t,ω)

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x(t,ω), y(t,ω)), if t ∈ [, t],

(x(t,ω), y(t,ω)), if t ∈ (t, t],

. . . . . .

(xm+(t,ω), ym+(t,ω)), if t ∈ (tm, b]. �

3.2 Existence and compactness results
In this subsection, we prove the existence and compactness of a solution set of problem
(.). For this we assume that the C-semigroup S(·, t), S(·, t), t >  is compact.

Now, we consider the following set of hypotheses in what follows:
(H) The functions f and f are random Carathéodory on [, b] × X × X × �.
(H) There exist bounded measurable functions γ,γ : � → L([, b],R+) and

nondecreasing continuous functions ψ,ψ : R+ → (,∞) such that
∣
∣f(t, x, y,ω)

∣
∣≤ γ(t,ω)ψ

(|x| + |y|) a.e. t ∈ [, b]

and
∣
∣f(t, x, y,ω)

∣
∣≤ γ(t,ω)ψ

(|x| + |y|) a.e. t ∈ [, b]

for all ω ∈ � and x, y ∈ X .
(H) There exist constants αi ≥  and λi ≥  for i ∈ {, } such that

∥
∥Si(t,ω)

∥
∥≤ λieαit for all ω ∈ �.

(H) There exist constants ck , c̄k >  with k = , . . . , n and continuous functions φk ,
φk : R+ −→R+ such that

∣
∣Ik(x, y)

∣
∣≤ ckφk

(|x| + |y|) for all x, y ∈ X,
∣
∣Ik(x, y)

∣
∣≤ c̄kφk

(|x| + |y|) for all x, y ∈ X.

The following result is known as the Gronwall-Bihari theorem.
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Lemma . ([]) Let u, ḡ : [a, b] −→ R be positive real continuous functions. Assume that
there exist c >  and a continuous nondecreasing function φ : R+ −→ (, +∞) such that

u(t) ≤ c +
∫ t

a
ḡ(s)φ

(
u(s)

)
ds, ∀t ∈ J .

Then

u(t) ≤ H–
(∫ t

a
ḡ(s) ds

)

, ∀t ∈ J

provided that

∫ +∞

c

dy
φ(y)

>
∫ b

a
ḡ(s) ds.

Here, H– refers to the inverse of the function H(u) =
∫ u

c
dy

φ(y) for u ≥ c.

Now, we give our existence and compactness results for problem (.).

Theorem . Assume that (H)-(H) are satisfied and

∫ b


�(s,ω) ds <

∫ ∞

c

du
ψ(u)

for all ω ∈ �,

where

c = λeαb∣∣ϕ(ω)
∣
∣+λeαb∣∣ϕ(ω)

∣
∣, ψ = ψ + ψ and � = γ + γ.

Then problem (.) has a random solution defined on [, b].

Proof Consider the operator T : C([, b], X) × C([, b], X) × � −→ C([, b], X) ×
C([, b], X),

(x, y) �−→ (
T(ω, x, y), T(ω, x, y)

)
, (x, y) ∈ PC × PC,

where

T
(
x(t,ω), y(t,ω),ω

)
= S(ω, t)ϕ(ω) +

∫ t


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds

+
∑

<tk <t

S(ω, t – tk)Ik
(
x(tk ,ω), y(tk ,ω)

)
, t ∈ [, b]

and

T
(
ω, x(t,ω), y(t,ω)

)
= S(ω, t)ϕ(ω) +

∫ t


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds

+
∑

<tk <t

S(ω, t – tk)Īk
(
x(tk ,ω), y(tk ,ω)

)
, t ∈ [, b].
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Clearly fixed points of the operator T are random mild solutions of problem (.). For
ω ∈ � fixed, consider Tω : PC × PC → PC × PC by

Tω

(
x(t,ω), y(t,ω)

)
=
(
T
(
x(t,ω), y(t,ω),ω

)
, T

(
x(t,ω), y(t,ω),ω

))
, (x, y) ∈ PC × PC.

We shall show that T satisfies assumptions of Theorem .. We split the proof into several
steps. First we show that Tω is completely continuous.

Step . T maps bounded sets into bounded sets in PC × PC.
Let

Bp × Bq =

{

(x, y) ∈ PC × PC :

∥
∥
∥
∥
∥

(
x
y

)∥
∥
∥
∥
∥

≤
(

p
q

)}

,

where
∥
∥
∥
∥
∥

(
x
y

)∥
∥
∥
∥
∥

=

(
‖x‖PC

‖y‖PC

)

.

Let (x, y) ∈ Bp × Bq, then for each t ∈ [, b],

∣
∣T

(
x(t,ω), y(t,ω),ω

)∣
∣ =

∣
∣
∣
∣S(ω, t)ϕ(ω) +

∫ t


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds

+
∑

<tk <t

S(ω, t – tk)Ik
(
x(tk ,ω), y(tk ,ω)

)
∣
∣
∣
∣

≤ λeαb∣∣ϕ(ω)
∣
∣ + λeαb

∫ t



∣
∣f
(
s, x(s,ω), y(s,ω),ω

)∣
∣ds

+ λeαb
m∑

k=

ckφk
(∣
∣x(t,ω)

∣
∣ +

∣
∣y(t,ω)

∣
∣
)

≤ λeαb|ϕ| + λeαb
∫ t


γ(s,ω)ψ

(∣
∣x(s,ω)

∣
∣ +

∣
∣y(s,ω)

∣
∣
)

ds

+ eαb
m∑

k=

ckφk
(‖x‖PC + ‖y‖PC

)
.

Then

∣
∣T

(
x(t,ω), y(t,ω),ω

)∣
∣≤ λeαb

(
∣
∣ϕ(ω)

∣
∣ + ψ(ρ)‖γ‖L +

m∑

k=

ckφk(ρ)

)

:= l < ∞.

Similarly, for T, we have

∥
∥T(x, y,ω)

∥
∥≤ λeαb

(
∣
∣ϕ(ω)

∣
∣ + ψ(ρ)‖γ‖L +

m∑

k=

c̄kφk(ρ)

)

:= l < ∞.

Step . Tω maps bounded sets into equicontinuous sets of PC × PC. Let Bp × Bq be a
bounded set in PC ×PC as in Step  is an equicontinuous set of PC ×PC. Let τ, τ ∈ [, b]



Baliki et al. Fixed Point Theory and Applications  (2017) 2017:27 Page 14 of 29

such that  < τ < τ ≤ b, and (x, y) ∈ (Bp, Bq). Then

∣
∣h(τ) – h(τ)

∣
∣ ≤ ∣

∣S(ω, τ)ϕ(ω) – S(ω, τ)ϕ(ω)
∣
∣

+
∫ τ



∥
∥S(ω, τ – s) – S(ω, τ – s)

∥
∥|f

(
s, x(s,ω), y(s,ω),ω

)
ds

+
∑

<tk <τ

∥
∥S(ω, τ – tk) – S(ω, τ – tk)

∥
∥
∣
∣Ik
(
ω, x(ω, tk), y(ω, tk)

)∣
∣

–
∫ τ

τ

∥
∥S(ω, τ – s)

∥
∥
∣
∣f
(
s, x(s,ω), y(s,ω),ω

)∣
∣ds

–
∑

τ<tk <τ

∥
∥S(ω, τ – tk)

∥
∥
∣
∣Ik
(
x(tk ,ω), y(tk ,ω)

)∣
∣.

Then

∣
∣h(τ) – h(τ)

∣
∣ ≤ ∥

∥S(ω, τ – τ) – I
∥
∥
∣
∣S(ω, τ)ϕ(ω)

∣
∣

+
∫ τ



∥
∥S(ω, τ – τ) – I)

∥
∥
∥
∥S(ω, τ – s)

∥
∥
∣
∣f
(
s, x(s,ω), y(s,ω),ω

)∣
∣ds

+
∫ τ

τ

∥
∥S(ω, τ – s)

∥
∥
∣
∣f
(
s, x(s,ω), y(s,ω),ω

)∣
∣ds

+
∑

<tk <τ

∥
∥S(ω, τ – τ) – I)

∥
∥
∥
∥S(ω, τ – tk)

∥
∥
∣
∣Ik
(
x(tk ,ω), y(tk ,ω)

)∣
∣

+
∑

τ<tk<τ

∥
∥S(ω, τ – tk)

∥
∥
∣
∣Ik
(
x(tk ,ω), y(tk ,ω)

)∣
∣,

where

h(τi) = T
(
ω, x(ω, τi), y(ω, τi)

)
, i = , .

By (H), we get

∣
∣h(τ) – h(τ)

∣
∣ ≤ λeαb∥∥S(ω, τ – τ) – I

∥
∥

+ λeαbψ(p + q)
∥
∥S(ω, τ – τ) – I

∥
∥
∫ τ


γ(s,ω) ds

+ λeαbψ(p + q)
∫ τ

τ

γ(s,ω) ds

+ λeαb
∑

<tk <τ

ckφk(p + q)
∥
∥S(ω, τ – τ) – I

∥
∥

+
∑

τ<tk<τ

ckφk(p + q)
∥
∥S(ω, τ + h – tk)

∥
∥.

Since {S(ω, t)}t≥ is uniformly continuous, then ‖S(h)–I‖ →  as h → +. Thus the right-
hand side tends to zero as τ → τ. This proves equicontinuity for the case where t 	= ti,
i = , . . . , m.
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Now we prove equicontinuity at t = t–
i . Let ξ >  such that {tk : k 	= i}∩ [ti –ξ, ti +ξ] 	= ∅.

For  < ε < ξ, we get

∣
∣h(ti) – h(ti – ε)

∣
∣ ≤ ∣

∣S(ω, ti)ϕ(ω) – S(ω, ti – ε)ϕ(ω)
∣
∣

+ ψ(p + q)
∫ ti



∥
∥S(ω, ti – s) – S(ω, ti – ε – s)

∥
∥γ(s,ω) ds

+
i–∑

k=

∥
∥S(ω, ti – tk) – S(ω, ti – ε – tk)

∥
∥φk(p + q)

+ ψ(p + q)
∫ ti

ti–ε

∥
∥S(ω, ti – ε – s)

∥
∥γ(s,ω) ds.

The right-hand side tends to zero as ε −→ . Next we prove equicontinuity at t = t+
i . Fix

ξ >  such that {tk : k 	= i} ∩ [ti – ξ, ti + ξ] 	= ∅. For  < ε < ξ, we have

∣
∣h(ti + ε) – h(ti)

∣
∣ ≤ ∣

∣S(ω, ti + ε)ϕ(ω) – S(ω, ti)ϕ(ω)
∣
∣

+ ψ(p + q)
∫ ti



∥
∥S(ω, ti + ε – s) – S(ω, ti – s)

∥
∥γ(s,ω) ds

+
∑

<tk <tk

∥
∥S(ω, ti + ε – tk) – S(ω, ti – tk)

∥
∥ckφk(p + q)

+ ψ(p + q)
∫ ti+ε

ti

∥
∥S(ω, ti – s)

∥
∥γ(s,ω) ds

+
∑

ti<tk<ti+ε

ck
∥
∥S(ω, ti + ε – tk)

∥
∥φk(p + q).

The right-hand side tends to zero as h −→ . By a similar way we can prove the equicon-
tinuity for T(Bp, Bq).

Step . Now we will prove that Tω(Bp × Bq)(t) for t ∈ [, b] is relatively compact in PC.
For  < ε < t and t ∈ [, b], let

Tε(x, y,ω) =
(
Tε

 (x, y,ω), Tε
 (x, y,ω)

)
,

where

Tε

(
ω, x(t,ω), y(t,ω)

)

= S(ω, t)ϕ(ω) +
∫ t–ε


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds

+
∑

<tk <t–ε

S(ω, t – tk)Ik
(
ω, x(tk ,ω), y(tk ,ω)

)

= S(ω, t)ϕ(ω) + S(ω, ε)
∫ t–ε


S(ω, t – s – ε)f

(
s, x(s,ω), y(s,ω),ω

)
ds

+ S(ω, ε)
∑

<tk <t–ε

S(ω, t – tk)Ik
(
x(tk ,ω), y(tk ,ω)

)
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and

Tε

(
ω, x(t,ω), y(t,ω)

)

= S(ω, t)ϕ(ω) + S(ω, ε)
∫ t–ε


S(ω, t – s – ε)f

(
s, x(s,ω), y(s,ω),ω

)
ds

+ S(ω, ε)
∑

<tk <t–ε

S(ω, t – tk)Īk
(
x(tk ,ω), y(tk ,ω)

)
.

The compactness of the semigroup {Si(ω, t)}t> for i = ,  implies that the set Tε(Bp ×
Bq)(t) is precompact. Moreover,

∣
∣Tε


(
ω, x(t,ω), y(t,ω)

)
– T

(
ω, x(t,ω), y(t,ω)

)∣
∣

=
∣
∣
∣
∣S(ω, ε)

∫ t

t–ε

S(ω, t – s – ε)f
(
s, x(s,ω), y(s,ω),ω

)
ds

+ S(ω, ε)
∑

t–ε<tk <t
S(ω, t – tk)Ik

(
x(tk ,ω), y(tk ,ω)

)
∣
∣
∣
∣

≤ λeαb
∫ t

t–ε

γ(ω, s)ψ
(∣
∣x(s,ω)

∣
∣ +

∣
∣y(ω, s)

∣
∣
)

ds

+ λeαb
∑

t–ε<tk <t
ckφk

(∣
∣x(s,ω)

∣
∣ +

∣
∣y(s,ω)

∣
∣
)

≤ λeαbψ(p + q)
∫ t

t–ε

γ(ω, s) ds + λeαb
∑

t–ε<tk<t
ckφk(p + q).

The right-hand term tends to  uniformly in t as ε −→ .This implies that the set Tε
 (Bp)(t)

is relatively compact for t ∈ [, b].
By a similar way as above, we prove that Tε

 (Bp × Bq)(t) is also relatively compact. This
implies that Tε(Bp × Bq)(t) is relatively compact.

Step . Now we show that the operator T is continuous.
Let (xn, xn) be a sequence such that (xn, yn) −→ (x, y) in PC × PC as n −→ ∞. By (H),

(H) we obtain

∣
∣T

(
xn(t,ω), yn(t,ω),ω

)
– T

(
x(t,ω), y(t,ω),ω

)∣
∣

≤ λeαb
∫ t



∣
∣f
(
s, xn(ω, s), yn(s,ω),ω

)
– f

(
s, x(s,ω), y(s,ω),ω

)∣
∣ds

+ λeαb
∑

<tk <t

∣
∣Ik
(
ω, xn(tk ,ω), yn(tk ,ω)

)
– Ik

(
x(tk ,ω), y(tk ,ω)

)∣
∣.

Hence

∥
∥T

(
xn(·,ω), yn(·,ω),ω

)
– T

(
x(·,ω), y(·,ω),ω

)∥
∥

PC

≤ λeαb
∫ b



∣
∣f
(
s, xn(s,ω), yn(s,ω),ω

)
– f

(
s, x(s,ω), y(s,ω),ω

)∣
∣ds

+ λeαb
m∑

k=

∣
∣Ik
(
xn(tk ,ω), yn(tk ,ω)

)
– Ik

(
x(tk ,ω), y(tk ,ω)

)∣
∣.
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Since f is a Carathéodory function, by the Lebesgue dominated convergence theorem and
the continuity of Ik , we get

∥
∥T(xn, yn,ω) – T(x, y,ω)

∥
∥

PC −→  as n −→ ∞.

Similarly

∥
∥T(xn, yn,ω) – T(x, y,ω)

∥
∥

PC −→  as n −→ ∞.

Thus T is continuous.
Step . Now, we show that the set

M =
{

(x, y) ∈ PC × PC : (x, y) = λ(ω)T(x, y),λ(ω) ∈ (, )
}

is bounded for some measurable function λ : � −→R.
Let (x, y) ∈M, then for each t ∈ [, t],

x(t,ω) = λ(ω)T
(
x(t,ω), y(t,ω),ω

)
, y(t,ω) = λ(ω)T

(
x(t,ω), y(t,ω),ω

)

such that

T
(
x(t,ω), y(t,ω),ω

)
= S(ω, t)ϕ(ω) +

∫ t


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds

and

T
(
x(t,ω), y(t,ω),ω

)
= S(ω, t)ϕ(ω) +

∫ t


S(ω, t – s)f

(
s, x(s,ω), y(s,ω),ω

)
ds.

For some  < λ(ω) < , we have

∣
∣x(t,ω)

∣
∣ =

∣
∣λ(ω)T

(
ω, x(t,ω), y(t,ω)

)∣
∣

≤ ∣
∣λ(ω)

∣
∣

(
∣
∣S(ω, t)ϕ(ω)

∣
∣ +

∫ t



∥
∥S(ω, t – s)

∥
∥
∣
∣f
(
s, x(s,ω), y(s,ω),ω

)∣
∣ds

)

≤ λeαb∣∣ϕ(ω)
∣
∣ + λeαb

∫ t


γ(s,ω)ψ

(∣
∣x(s,ω)

∣
∣ +

∣
∣y(s,ω)

∣
∣
)

ds.

Thus

∣
∣x(t,ω)

∣
∣≤ λeαb∣∣ϕ(ω)

∣
∣ + λeαb

∫ t


γ(s,ω)ψ

(∣
∣x(s,ω)

∣
∣ +

∣
∣y(s,ω)

∣
∣
)

ds.

Similarly

∣
∣y(t,ω)

∣
∣≤ λeαb∣∣ϕ(ω)

∣
∣ + λeαb

∫ t


γ(s,ω)ψ

(∣
∣x(s,ω)

∣
∣ +

∣
∣y(s,ω)

∣
∣
)

ds.

By the two above inequalities, we get

∣
∣x(t,ω)

∣
∣ +

∣
∣y(t,ω)

∣
∣≤ c + λeαb

∫ t


�(s,ω)ψ

(∣
∣x(s,ω)

∣
∣ +

∣
∣y(s,ω)

∣
∣
)

ds.
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Applying the Bihari lemma, we obtain

∣
∣x(t,ω)

∣
∣ +

∣
∣y(t,ω)

∣
∣≤ H–

(∫ t

c
�(s,ω) ds

)

for each t ∈ [, b], (.)

where

H(u) =
∫ u

c

du
ψ(u)

.

Finally from (.) there exists a constant σ >  such that

‖x‖PC ≤ σ and ‖y‖PC ≤ σ .

This shows that M is bounded. Thus by Theorem . the operator T has at least one fixed
point which is a random mild solution of problem (.). �

4 Random Sadovskii’s fixed point theorem type
In this section, we present the random Sadovskii’s fixed point theorem in a vector Banach
space. First, we give definitions and properties for a measure of noncompactness.

Definition . Let X be a generalized Banach space and (A,≤) be a partially ordered set.
A map β : P(X) → A × A × . . . × A is called a generalized measure of noncompactness
(m.n.c.) on X if

β(coC) = β(C) for every C ∈P(X),

C ∈P(X), where

β(C) :=

⎛

⎜
⎜
⎝

β(C)
...

βn(C)

⎞

⎟
⎟
⎠ .

Definition . A measure of noncompactness β is called
(a) Monotone if C, C ∈P(X), C ⊂ C implies β(C) ≤ β(C).
(b) Nonsingular if β({a} ∪ C) = β(C) for every a ∈ X , C ∈P(X).
(c) Invariant with respect to the union with compact sets if β(K ∪ C) = β(C) for every

relatively compact set K ⊂ X , and C ∈P(X).
(d) Real if A = R+ and β(C) < ∞ for every i = , . . . , n and every bounded C.
(e) Semi-additive if β(C ∪ C) = max(β(C),β(C)) for every C, C ∈P(X).
(f ) Lower-additive if β is real and β(C + C) ≤ β(C) + β(C) for every C, C ∈P(X).
(g) Regular if the condition β(C) =  is equivalent to the relative compactness of C.

A typical example of an MNC is the Hausdorff measure of noncompactness χ defined, for
all C ⊂ X, by

χ (C) := inf
{
ε ∈R

n
+ : there exists n ∈N such that C has finite ε-net

}
.
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Definition . Let X, Y be two generalized normed spaces and F : X →P(Y ) be a multi-
valued map. F is called an M-contraction (with respect to β) if there exists M ∈Mn×n(R+)
converging to zero such that, for every D ∈P(X), we have

β
(
F(D)

)≤ Mβ(D).

The next result is concerned with β-condensing or M-contractivity.

Theorem . ([]) Let V ⊂ X be a bounded closed convex subset and N : V → V be a
generalized β-condensing continuous mapping, where β is a nonsingular measure of non-
compactness defined on the subsets of X. Then the set

Fix(N) =
{

x ∈ V : x = N(x)
}

is nonempty.

As a consequence of Theorem ., we present versions of Schaefer’s fixed point theorem
and the nonlinear alternative Leray-Schauder-type theorem for β-condensing operators
in a generalized Banach space.

Theorem . ([]) Let E be a generalized Banach space and N : E → E be a continuous
and β-condensing operator. Moreover, assume that the set

A =
{

x ∈ E : x = λN(x) for some λ ∈ (, )
}

is bounded. Then N has a fixed point.

Now Theorems ., . establish the results.

Theorem . Let (�,F ) be a measurable space, C be a closed, convex, bounded subset of
a separable vector Banach space, and F : � × C → C be a continuous condensing random
operator. Then F has at least one random fixed point.

Proof Let ω ∈ �. Consider Fω : C → C defined by Fω(x) = F(ω, x). By Theorem ., there
exists x(ω) ∈ C such that

x(ω) = F
(
ω, x(ω)

)
.

Define T : C →Pcl(C) by

T (ω) =
{

x ∈ X : x = F(ω, x)
}

.

Since F is a Carathéodory function, then the function � : � × C →R
n
+ defined by

�(ω, x) = d
(
x, F(ω, x)

)
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is also a Carathéodory operator. From Theorem ., the set multivalued map Gp is mea-
surable, so

Gp(ω) =
{

x ∈ � : x – F(ω, x) ∈ B(, εp)
}

, εp =

⎛

⎜
⎜
⎝


p
...

p

⎞

⎟
⎟
⎠ , p ∈N.

Moreover,

T (ω) =
∞⋂

n=

Gp(ω), ω ∈ �.

From Theorem ., there exists a measurable selection x : � → C of T which is a random
fixed point of F . �

We can also prove the following result.

Theorem . Let X be a separable generalized Banach space, and let F : � × X → X be a
condensing continuous random operator. Then either of the following holds:

(i) The random equation F(ω, x) = x has a random solution, i.e., there is a measurable
function x : � → X such that F(ω, x(ω)) = x(ω) for all ω ∈ �, or

(ii) The set

M =
{

x : � → X is measurable|λ(ω)F(ω, x) = x
}

is unbounded for some measurable function λ : � → X with  < λ(ω) <  on �.

Lemma . ([], Theorem ..) Let E be a Banach space and N : L([a, b], E) →
C([a, b], E) be an abstract operator satisfying the following conditions:

(S) N is ξ -Lipschitz: there exists ξ >  such that, for every f , g ∈ L([a, b], E),

∣
∣Nf (t) – Ng(t)

∣
∣≤ ξ

∫ b

a

∣
∣f (s) – g(s)

∣
∣ds for all t ∈ [a, b].

(S) N is weakly-strongly sequentially continuous on compact subsets: for any compact
K ⊂ E and any sequence {fn}∞n= ⊂ L([a, b], E) such that {fn(t)}∞n= ⊂ K for a.e. t ∈
[a, b], the weak convergence fn ⇀ f implies the strong convergence N(fn) → N(f) as
n → +∞.

Then, for every semi-compact sequence {fn}∞n= ⊂ L([, b], E), the image sequence N({fn}∞n=)
is relatively compact in C([a, b], E).

Corollary . Let N : L([, b], E) → C([, b], E) be defined by

N(f )(t) =
∫ t


S(t – s)f (s) ds, t ∈ [, b],

where (S(t))t≥ is a C-semigroup, then N satisfies S and S.
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Lemma . ([], Theorem ..) Let an operator N : L([a, b], E) → C([a, b], E) satisfy
conditions (S)-(S) together with

(S) There exists η ∈ L([a, b]) such that, for every integrably bounded sequence {fn}∞n=, we
have

χ
({

fn(t)
}∞

n=

)≤ η(t) for a.e. t ∈ [a, b],

where χ is the Hausdorff MNC.

Then

χ
({

N(fn)(t)
}∞

n=

)≤ ξ

∫ b

a
η(s) ds for all t ∈ [a, b],

where ξ is the constant in (S).

Now we give our main existence result for problem (.) without the compactness of a
C-semigroup, and there exists M >  such that

∥
∥S(t)

∥
∥≤ M for all t ∈ [, b].

We will need to introduce the following hypothesis which is assumed thereafter:
(H) There exists pi : � → L([, b],R+) random variable such that, for every bounded

D, D′ in X ,

χ
(
fi
(
t, D, D′,ω

))≤ pi(t,ω)χ (D) + pi(t,ω)χ
(
D′).

Theorem . Under the conditions of Theorem . and (H), problem (.) has at least
one random mild solution.

Proof We are going to study problem (.) respectively in the intervals [, t], (t, t],
. . . , (tm, b]. The proof will be given in three steps and then continued by induction.

Step . It is clear that all the random mild solutions of problem (.) are fixed points of
the operator N defined in Theorem .. For applied Theorem ., first we prove that N is
a β,-condensing operator for a suitable MNC. Given a bounded subset D ⊂ C([, t], X),
let modC(D) the modulus of quasi-equicontinuity of the set of functions D denote

modC(D) = lim
δ→

sup
x∈D

max
|τ–τ|≤δ

∣
∣x(τ) – x(τ)

∣
∣.

It is well known (see, e.g., Example .. in []) that modC(D) defines an MNC in
C([, t], X), which satisfies all of the properties in Definition . except regularity. Given
the Hausdorff MNC χ , let γ  be the real MNC defined on bounded subsets on C([, t], X)
by

γ (D) = sup
t∈[,t]

e
M
τ

∫ t
 p(s,ω) dsχ

(
D(t)

)
, p(·,ω) = p(·,ω) + p(·,ω).
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Finally, define the following MNC on bounded subsets of D × D∗ ⊂ C([, t], X) ×
C([, t], X) by

β,(D × D∗) :=

(
β(D)
β(D∗)

)

,

β(D) = max
D∈�(C([,t],X))

(
γ(D), modC(D)

)
,

where �(C([, t], X) × C([, t], X)) is the collection of all denumerable subsets of
D × D∗. Then the MNC β is monotone, regular, and nonsingular (see Example .. in
[]). This measure is also used in [, ] in the discussion of semi-linear evolution dif-
ferential inclusions. To show that N is β,-condensing, let B = D × D ⊂ C([, t], X) ×
C([, t], X) be a bounded set in C([, t], X) × C([, t], X) such that

β,(B) ≤ β,
(
N(B)

)
. (.)

We will show that B is relatively compact. Let {(xn, yn) : n ∈ N} ⊂ B, and let Ni
i = Li

 + Li
,

i = , , where Li
 : C([, t], X) → C([, t], X) is defined by

L

(
x(t,ω), y(t,ω)

)
= S(t)x(ω), L


(
x(t,ω), y(t,ω)

)
= S(t)y(ω),

Li
 : C([, t], X) → C([, t], X) is defined by

Li

(
x(t,ω), y(t,ω)

)
=
∫ t


S(t – s)fi

(
s, x(s,ω), y(s,ω)

)
ds, t ∈ [, t], i = , .

From assumption (H), it holds that for a.e. t ∈ [, t],

χ

(

f

(

s,
⋃

n∈N

{
xn(t,ω)

}
,
⋃

n∈N

{
yn(t,ω)

}
,ω
)

≤ χ
(
f
(
s,
{

xn(s,ω)
}

n∈N,
{

yn(s,ω)
}

n∈N,ω
))

≤ p(s,ω)χ
({

xn(s,ω)
}

n∈N
)

+ p(s,ω)χ
({

yn(s,ω)
}

n∈N
)

≤ p(s,ω)eMτ
∫ s

 p(r,ω) dre–Mτ
∫ s

 p(r,ω) drχ
({

xn(s,ω)
}

n∈N
)

+ p(s,ω)eMτ
∫ s

 p(r,ω) dre–Mτ
∫ s

 p(r,ω) drχ
({

yn(s,ω)
}

n∈N
)

≤ p(t,ω)eMτ
∫ s

 p(r,ω) drγ 
({

xn(s,ω)
}

n∈N
)

+ eMτ
∫ s

 p(r,ω) drp(s,ω)γ 
({

yn(s,ω)
}

n∈N
)
.

Hence

χ

(

f

(

s,
⋃

n∈N

{(
xn(t,ω), yn(t,ω)

)}
,ω
)

≤ p(t,ω)eMτ
∫ s

 p(r,ω) drγ 
({

xn(s,ω)
}

n∈N
)

+ p(s,ω)eMτ
∫ s

 p(r,ω) drγ 
({

yn(s,ω)
}

n∈N
)
. (.)
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Lemmas . and . imply that

χ
({

N 

(
xn(t,ω), yn(t,ω)

)}∞
n=

)

≤ γ 
({xn}∞n=

)
M

∫ t


p(s,ω) ds + γ 

({yn}∞n=
)
M

∫ t


p(s) ds

≤ γ 
({xn}∞n=

)
M

∫ t


p(s,ω)eMτ

∫ s
 p(r,ω) dr ds

+ γ 
({yn}∞n=

)
M

∫ t


eMτ

∫ s
 p(r,ω) drp(s,ω) ds.

Hence

e–M
∫ t

 p(s) dsχ
({

N
(
xn(t,ω), yn(t,ω)

)}∞
n=

) ≤ M
τ

γ 
({xn}∞n=

)
+

M
τ

γ 
({yn}∞n=

)

and

χ
(
L


({

xn(t)
}∞

n=,
{

yn(t)
}∞

n=

))
= .

Therefore

γ 
({

N 

(
xn(·,ω), yn(·,ω)

)}∞
n=

) ≤ M
τ

γ 
({xn}∞n=

)
+

M
τ

γ 
({yn}∞n=

)
.

Similarly, we have

γ 
({

N
(
xn(·,ω), yn(·,ω)

)}∞
n=

) ≤ M
τ

γ 
({xn}∞n=

)
+

M
τ

γ 
({yn}∞n=

)
.

So

(
γ (N({xn(·,ω), yn(·,ω)}∞n=))
γ (N({xn(·,ω), yn(·,ω)}∞n=))

)

≤
(

M
τ

M
τ

M
τ

M
τ

)(
γ ({xn(·,ω)}∞n=)
γ ({yn(·,ω)}∞n=)

)

.

From (.), we have

(
γ (N 

 ({xn(·,ω), yn(·,ω)}∞n=))
γ (N 

({xn(·,ω), yn(·,ω)}∞n=))

)

≤ A

(
γ (N 

 ({xn(·,ω), yn(·,ω)}∞n=))
γ (N 

({xn(·,ω), yn(·,ω)}∞n=))

)

,

where A =
( M

τ
M
τ

M
τ

M
τ

)
. Since the spectral radius ρ(A) = M

τ
< , then

γ 
(
N 


({

xn(·,ω), yn(·,ω)
}∞

n=

))
= , γ 

(
N 


({

xn(·,ω), yn(·,ω)
}∞

n=

))
= .

This implies that

γ 
(
N 


({

xn(t,ω), yn(t,ω)
}∞

n=

))
= ,

γ 
(
N 


({

xn(t,ω), yn(t,ω)
}∞

n=

))
=  for t ∈ [, t].

(.)
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Now, we show that modC(B) = , i.e., the set

Bn =
{(

N
(
xn(t,ω), yn(t,ω)

)
, N

({
xn(t,ω), yn(t,ω)

)))}∞
n=

)
: t ∈ [, t]

}

is equicontinuous, we proceed as in the proof of Theorem .. It follows that modC(Bn) = ,
which implies, by (.), that β,(Bn) = . We have proved that B is relatively compact.
Hence N : C([, t], X) × C([, t], X) → C([, t], X) × C([, t], X) is β,-condensing. As
in Theorem ., N is continuous and, for some random variable λ : � → (, ), we have

M =
{

(x, y) : C
(
[, t], X

)× C
(
[, t], X

)
: λ(ω)N(ω, x, y) = (x, y)

}

is bounded. As a consequence of Theorem ., we deduce that N has a fixed point (x, y)
in C([, t], X) × C([, t], X), which is a solution to problem (.) on [, t]. Denote this by
(x, y).

Step . We consider problem (.) on (t, t]. It is clear that the fixed points of the op-
erator defined in Theorem . are the solutions of (.). Thus we only prove that N is a
β,-condensing operator. For a bounded subset B × B ⊂ C∗([t, t], X) × C∗([t, t], X), let
modC(B) be the modulus of quasi-equicontinuity of the set of functions B, γ  be the real
MNC defined on a bounded subset on C∗([t, t], X) by

γ (B) = sup
t∈[t,t]

e–Mτ
∫ t

t
p(r,ω) dr

χ
(
B(t)

)
,

and β the MNC defined on C∗([t, t], X) by

β(B) = max
B∈�(C∗([t,t],X))

(
γ (B), modC(B)

)
,

where �(C∗([t, T], X) is the collection of all denumerable subsets of D×D∗. So, we define
MNC on bounded sets C∗([t, t], X) × C∗([t, t], X) by

β,(D × D∗) :=

(
β(D)
β(D∗)

)

.

As in Step , we can prove that N is continuous and β,-condensing. From Theorem .,
we deduce that N has a fixed point (x, y) in C∗([t, t], X)×C∗([t, t], X) denoted by (x, y).

Step . We continue this process taking into account that (xm, ym) := (x|[tm ,b], y|[tm ,b]) is
a solution of problem (.). A random mild solution (x, y) of problem (.) is ultimately
defined by

(
x(t,ω), y(t,ω)

)
=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x(t,ω), y(t,ω)), if t ∈ [, t],

(x(t,ω), y(t,ω)), if t ∈ (t, t],

. . . . . .

(xm(t,ω), ym(t,ω)), if t ∈ (tm, b]. �

5 Examples
In this section we use the abstract results proved in the above section to study the existence
of a mild solution for random impulsive Stokes and hyperbolic differential equations.
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Example . Let (�,�) be a measurable space and G ⊂ R
 be a bounded open domain

with the smooth boundary ∂G. Consider the following system of impulsive stochastic
Stokes-type partial differential inclusions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut(t, ξ ,ω) – P(�u(t, ξ ,ω)) = f (t, u(t, ξ ,ω), v(t, x,ω),ω), a.e. t ∈ [, b], ξ ∈ G,

vt(t, ξ ,ω) – P(�v(t, ξ ,ω)) = g(t, u(t, ξ ,ω), v(t, ξ ,ω)), a.e. t ∈ [, b], ξ ∈ G,

u(t+
k , ξ ,ω) – u(t–

k , ξ ,ω) = Ik(u(tk , ξ ,ω)),

v(t+
k , ξ ,ω) – v(tk , ξ ,ω) = Ik(v(tk , ξ ,ω)), k = , . . . , m,

∇u = ∇v = , (t, ξ ) ∈ [, b] × ∂G,

u(t, ξ , ·) = v(t, ξ , ·) = , (t, ξ ) ∈ [, b] × ∂G,

u(, ξ , ·) = u(b, ξ , ·), v(, ξ , ·) = v(b, x, ·), ξ ∈ G,

(.)

where n(x) is the outward normal to D at the point ξ ∈ ∂G. Let

E =
{

u ∈ (
C∞

c (G)
) : ∇u =  in � and n · u =  on ∂G

}
,

and let X = E(L(D))
be the closure of Y in (L(G)). It is clear that, endowed with the

standard inner product of the space (L(G)), defined by

〈u, v〉 =
∑

i=

〈ui, vi〉L(G),

X is a Hilbert space. Let P : (L(G)) → E denote the orthogonal projection of (L(G))

onto E, where P(�) is the Stokes operator. Let A : D(A) ⊂ X → X be defined by

⎧
⎨

⎩

D(A) = (H(G) ∩ H
(G)) ∩ X,

Au = –P(�u), u ∈ D(A).

Lemma . (Fujita-Kato, Theorem .., []) The operator A, defined as above, is the
generator of a compact and analytic C-semigroup of contractions in X.

Let us assume that

(K) fi, gi : [, b] × G ×R×R× � →R, i = , , are Carathéodory functions.
(K) φ,ψ : � → L([, b],R+) are random functions such that

∣
∣f (t, x, u, v,ω)

∣
∣≤ φi(t,ω) and

∣
∣g(t, x, u, v,ω)

∣
∣≤ ψi(t,ω), i = , ,

for each (t, x, u, v,ω) ∈ [, b] × G ×R×R× �.

Let

x(t,ω)(ξ ) = u(t, ξ ,ω), y(t,ω)(ξ ) = v(t, ξ ,ω), t ∈ [, b], ξ ∈ G,

Ik
(
x(tk ,ω)

)
= Kk

x(t–
k ,ω)

 + |x(t–
k ,ω)|X , ξ ∈ G, k = , . . . , m,
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Ik
(
y(tk , ·,ω)

)
= K̄k

y(t–
k ,ω)

 + |y(t–
k ,ω)|X , ξ ∈ �, k = , . . . , m,

x(,ω)(ξ ) = u(, ξ ,ω) = u(b, ξ ,ω) = x(b,ω)(ξ ),

y(,ω)(ξ ) = v(, ξ ,ω) = v(b, ξ ,ω) = y(b,ω)(ξ )ξ ∈ G,

where Kk , K̄k ∈R, k = , . . . , m. Assume that (K)-(K) are satisfied. Thus problem (.) can
be written in the abstract form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t,ω) – Ax(t,ω) = f(t, x(t,ω), y(t,ω),ω), t ∈ [, b],

y′(t,ω) – Ay(t,ω) = f(t, x(t,ω), y(t,ω),ω), t ∈ [, b],

x(t+
k ,ω) – x(t–

k ,ω) = Ik(x(tk ,ω)),

y(t+
k ,ω) – y(t–

k ,ω) = Ik(y(tk ,ω)), k = , . . . , m,

x(,ω) = x(ω), y(,ω) = y(ω),

(.)

where A = A = A. Since, for each k = , . . . , m, we have

∣
∣Ik(x)

∣
∣ =

∣
∣
∣
∣Kk

x
 + |x|X

∣
∣
∣
∣
X

≤ |Kk|,
∣
∣Īk(x)

∣
∣ =

∣
∣
∣
∣K̄k

x
 + |x|X

∣
∣
∣
∣
X

≤ |K̄k| for all x ∈ X.

Then Theorem . ensures that problem (.) possesses at least one solution.

Example . Consider the following hyperbolic system of impulsive partial differential
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

utt(t, ξ ,ω) – �u(t, ξ ,ω) = f (t, ξ , u(t, ξ ,ω), v(t, x,ω), a.e. t ∈ J , ξ ∈ G,

vtt(t, ξ ,ω) – �v(t, ξ ,ω) = g(t, u(t, ξ ,ω), v(t, ξ ,ω)), a.e. t ∈ J , ξ ∈ G,

u(t+
k , ξ ,ω) – u(t–

k , ξ ,ω) = Ik(u(tk , ξ ,ω)), k = , . . . , m,

v(t+
k , x,ω) – v(tk , x,ω) = Ik(v(tk , ξ ,ω)), k = , . . . , m,

u(, ξ ,ω) = v(, ξ ,ω) = ,

(t, ξ ) ∈ [, b] × ∂G,ω ∈ �,

u(, ξ ,ω) = u(ξ ,ω), ut(, x,ω) = u(ξ ,ω), ξ ∈ G,ω ∈ �,

v(, ξ ,ω) = v(ξ ,ω), vt(, x,ω) = v(ξ ,ω), ξ ∈ G,ω ∈ �,

(.)

where G is bounded in R
d with a sufficiently regular boundary. Let x, y : � → PC([, b],

L(G,R)) be defined by

x(t,ω)(ξ ) = u(t, ξ ,ω), y(t,ω) = v(t, ξ ,ω)

and f, f : [, b] × L(G,R) × L(G,R) × � → L(G,R) by

f
(
t, x(t,ω), y(t,ω),ω

)
(ξ ) = f

(
t, ξ , u(t, ξ ,ω), v(t, ξ ,ω),ω

)

and

f
(
t, x(t,ω), y(t,ω),ω

)
(ξ ) = g

(
t, ξ , u(t, ξ ,ω), v(t, ξ ,ω),ω

)
.
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Hence problem (.) can be rewritten in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′′(t,ω) – Ax(t,ω) = f(t, x(t,ω), y(t,ω),ω), t ∈ [, b],

y′′(t,ω) – Ay(t,ω) = f(t, x(t,ω), y(t,ω),ω), t ∈ [, b],

x(t+
k ,ω) – x(t–

k ,ω) = Ik(x(tk ,ω)), k = , . . . , m,

y(t+
k ,ω) – y(t–

k ,ω) = Ik(y(tk ,ω)), k = , . . . , m,

x(,ω) = x(ω), x′(,ω) = x̄(ω),

y(,ω) = y(ω), y′(,ω) = ȳ(ω),

(.)

where A = A = A : D(A) = W ,(G,R) ∩ W ,
 (G,R) ⊂ L(G,R) →R defined as

Au = �u, u ∈ W ,(G,R) ∩ W ,
 (G,R).

We introduce the Hilbert space X = W ,
 (G,R) × L(G,R) with the inner product

〈(
u

u

)

,

(
v

v

)〉

=
∫

G
∇u∇v dξ +

∫

G
uu dξ +

∫

G
vv dξ .

The following linear operator

A =

(
 I
A 

)

, D(A) = D(A) × W ,
 (G,R),

generates a strongly continuous semigroup (see []). So, we can transform problem (.)
to a first-order system of random semilinear differential equations in X.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X ′(t,ω) – AX(t,ω) = F(t, X(t,ω), Y (t,ω),ω), t ∈ [, b],

Y ′(t,ω) – AY (t,ω) = F(t, X(t,ω), Y (t,ω),ω), t ∈ [, b],

X(t+
k ,ω) – X(t–

k ,ω) = Rk(X(tk ,ω)), k = , . . . , m,

Y (t+
k ,ω) – Y (t–

k ,ω) = Rk(Y (tk ,ω)), k = , . . . , m,

X(,ω) = X(ω),

Y (,ω) = Y(ω),

(.)

where F, F : [, b] × X × X × � → X is defined as

F(t, X, Y ,ω) =

(


f(t, x, y,ω)

)

,

F(t, X, Y ,ω) =

(


f(t, x, y,ω)

)

,

X =

(
x

x

)

, Y =

(
y

y

)

,

Rk
(
X(tk ,ω)

)
=

(


Ik(x(tk ,ω))

)

, Rk
(
Y (tk ,ω)

)
=

(


Ik(y(tk ,ω))

)

,
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and

X(,ω) =

(
x(ω)
x̄(ω)

)

, Y =

(
y(ω)
ȳ(ω)

)

.

Observe that the semigroup generated by A is noncompact. Assume that (K)-(K), (H)
are satisfied and Ik , Ik are continuous functions. Then from Theorem . problem (.)
has at least one random mild solution.

6 Conclusions
In this paper, we investigated some problem of an impulsive random differential system
under various assumptions on the right hand-side nonlinearity, and we obtained a num-
ber of new results regarding the existence and uniqueness of mild solutions. The main
assumptions on the nonlinearity are the Carathéodory and the Lipschitz conditions and
some Nagumo-Bernstein-type growth conditions. We have used fixed point theory in vec-
tor metric spaces. Also, we established a random version of Sadovskii’s fixed point theorem
type in a vector Banach space. We hope this paper can provide some contribution to the
questions of existence and compactness of solution sets for random systems of impulsive
first-order differential equations on a bounded domain.
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