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Abstract
In this paper, we prove the existence of a common best proximity point for a pair of
multivalued non-self mappings in partially ordered metric spaces. Also, we provide
some interesting examples to illustrate our main results.
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1 Introduction
The study of multivalued mappings plays a vital role in pure and applied mathematics
because of its many applications, for instance, in real and complex analysis. In the litera-
ture, there are many researchers focusing on the study of abstract and practical problems
which involve multivalued mappings. As a matter of fact, amongst the various approaches
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Definition . Let T : A → B be any multivalued mapping. Then an element x ∈ A is
said to be a best proximity point if D(x, Tx) = D(A, B).

Definition . Given multivalued non-self mappings S : A → B and T : A → B, an el-
ement a ∈ A is called a common best proximity point of the mappings if they satisfy the
condition that D(a, Sa) = D(a, Ta) = D(A, B).

Definition . ([]) A function ψ : [,∞) → [,∞) is said to be an altering distance
function if it satisfies the following conditions:

(i) ψ is continuous and nondecreasing.
(ii) ψ(t) =  if and only if t = .

Example . Define ψ : [,∞) → [,∞) by ψ(t) = kt, where k < . Then ψ is an altering
distance function.

Definition . ([]) Let (A, B) be a pair of nonempty subsets of a metric space X with
A �= ∅. Then the pair (A, B) is said to have the P-property if and only if

d(a, b) = D(A, B)

d(a, b) = D(A, B)

�
�

�
�⇒ d(a, a) = d(b, b),

where a, a ∈ A and b, b ∈ B.

The existence of fixed points in partially ordered metric spaces was first established by
Nieto and Rodriguez-Lopez []. In this direction, Choudhury and Metiya [] proved the
existence of a fixed point for multivalued self mappings in partially ordered metric spaces.

In this paper, our main objective is to establish the existence of best proximity points
and common best proximity points of multivalued mappings in partially ordered metric
spaces. Also, our results generalize the corresponding results of []. In particular, the
aim of this paper is to initiate the study of common best proximity points of multivalued
mappings in partially ordered metric spaces.

Here we define the notion of proximal relation between two subsets of X.

Definition . ([]) Let A and B be two nonempty subsets of a partially ordered met-
ric space (X, d,�) such that A �= ∅. Let B and B be two nonempty subsets of B. The
proximal relations between B and B are denoted and defined as follows:

(i) B ≺() B if, for every b ∈ B with d(a, b) = D(A, B), there exists b ∈ B with
d(a, b) = D(A, B) such that a � a.

(ii) B ≺() B if, for every b ∈ B with d(a, b) = D(A, B), there exists b ∈ B with
d(a, b) = D(A, B) such that a � a.

(iii) B ≺() B if B ≺() B and B ≺() B.

3 Main results
Now, we state our first main result in this section.

Theorem . Let (X,�, d) be a partially ordered complete metric space. Let A and B be
nonempty closed subsets of the metric space (X, d) such that A �= ∅ and (A, B) satisfies the
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P-property. Let T : A → CB(B) be a multivalued mapping such that the following conditions
are satisfied:

(i) There exist elements a, a in A and b ∈ Ta such that

d(a, b) = D(A, B) and a � a.

(ii) Ta is included in B for all a ∈ A and

δ(Ta, Tb) ≤ ψ
�
M(a, b)

�
+ LN(a, b) for all comparable a, b ∈ A, ()

where M(a, b) = max{d(a, b), D(a, Ta) – D(A, B), D(b, Tb) – D(A, B),
D(a,Tb)+D(b,Ta)

 – D(A, B)}, L ≥ , N(a, b) = min{D(a, Ta) – D(A, B), D(b, Tb) – D(A, B),
D(a, Tb) – D(A, B), D(b, Ta) – D(A, B)} and ψ : [,∞) → [,∞) is a nondecreasing
and upper-semicontinuous function with ψ(t) < t for each t > .

(iii) For a, b ∈ A, a � b implies Ta ≺() Tb.
(iv) If {an} is a nondecreasing sequence in A such that an → a, then an � a for all n.

Then there exists an element a in A such that

D(a, Ta) = D(A, B).

Proof By assumption (i), there exist two elements a, a in A and b ∈ Ta such that
d(a, b) = D(A, B) and a � a. By assumption (iii), Ta ≺() Ta, there exists b ∈ Ta with
d(a, b) = D(A, B) such that a � a. In general, for each n ∈ N, there exist an+ ∈ A and
bn ∈ Tan such that d(an+, bn) = D(A, B). Hence, we obtain

d(an+, bn) = D(an+, Tan) = D(A, B)

for all n ∈ N with a � a � a � · · · � an � an+ � · · · . ()

If there exists n such that an = an+, then D(an+, Tan ) = D(an , Tan ) = D(A, B). This
means that an is a best proximity point of T and hence the proof. Thus, we can suppose
that an �= an+ for all n. Since d(an+, bn) = D(A, B) and d(an, bn–) = D(A, B) and (A, B) has
the P-property,

d(an, an+) = d(bn–, bn) for all n ∈N. ()

Since an– ≺ an,

d(an, an+) = d(bn–, bn) ≤ δ(Tan–, Tan) ≤ ψ
�
M(an–, an)

�
+ LN(an–, an). ()

By the triangle inequality of d, we have

M(an–, an)

= max
	

d(an–, an), D(an–, Tan–) – D(A, B), D(an, Tan) – D(A, B),

D(an–, Tan) + D(an, Tan–)


– D(A, B)
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≤ max
	

d(an–, an), d(an–, bn–) – D(A, B), d(an, bn) – D(A, B),

d(an–, bn) + d(an, bn–)


– D(A, B)



≤ max
	

d(an–, an), d(an–, bn–) + d(bn–, bn–) – D(A, B), d(an, bn–)

+ d(bn–, bn) – D(A, B),
d(an–, bn–) + d(bn–, bn–) + d(bn–, bn) + d(an, bn–)



– D(A, B)



≤ max
	

d(an–, an), D(A, B) + d(an–, an) – D(A, B), D(A, B) + d(an, an+) – D(A, B),

D(A, B) + d(an–, an) + d(an, an+) + D(A, B)


– D(A, B)



= max
�

d(an–, an), d(an, an+)
�

. ()

Also, we have

N(an–, an) = min
�

D(an–, Tan–) – D(A, B), D(an, Tan)

– D(A, B), D(an–, Tan) – D(A, B),

D(an, Tan–) – D(A, B)
�

≤ min
�

d(an–, bn–) – D(A, B), d(an, bn) – D(A, B),

d(an–, bn) – D(A, B), d(an, bn–) – D(A, B)
�

.

Since d(an, bn–) = D(A, B), hence N(an–, an) =  for all n ∈ N.
Using () and the inequality in (), we get

d(an, an+) ≤ ψ
�
max

�
d(an–, an), d(an, an+)

��
. ()

If d(an, an+) > d(an–, an). From () we obtain

d(an, an+) ≤ ψ
�
d(an, an+)

�
< d(an, an+),

which is a contradiction. So, we have

d(an, an+) ≤ d(an–, an). ()

Hence, the sequence {d(an, an+)} is monotone nonincreasing and bounded below. Thus,
there exists k ≥  such that

lim
n→∞ d(an, an+) = k ≥ . ()

Suppose that limn→∞ d(an, an+) = k > . Using (), inequality () becomes

d(an, an+) ≤ ψ
�
d(an–, an)

�
.
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Taking n → ∞ in the above inequality and using the properties of ψ , we have

k ≤ limsup
n→∞

ψ
�
d(an–, an)

� ≤ ψ(k),

which is a contradiction unless k = . Hence,

lim
n→∞ d(an, an+) = . ()

Now, we claim that the sequence {an} is a Cauchy sequence. Suppose that {an} is not a
Cauchy sequence. Then there exists ε >  with subsequences {am(r)} and {an(r)} of {an}
such that n(r) is the smallest index for which n(r) > m(r) > r, d(am(r), an(r)) ≥ ε. This means
that

d(am(r), an(r)–) < ε. ()

Now, we have

ε ≤ d(am(r), an(r))

≤ d(am(r), an(r)–) + d(an(r)–, an(r))

< ε + d(an(r)–, an(r)).

Letting r → ∞ and using (), we can conclude that

lim
r→∞ d(am(r), an(r)) = ε. ()

Again,

d(am(r), an(r)–) ≤ d(am(r), an(r)) + d(an(r), an(r)–)

and

d(am(r), an(r)) ≤ d(am(r), an(r)–) + d(an(r), an(r)–).

Therefore,

�
�d(am(r), an(r)–) – d(am(r), an(r))

�
� ≤ d(an(r), an(r)–).

Taking r → ∞ and using () and (), we get

lim
r→∞ d(am(r), an(r)–) = ε. ()

Similarly, we can prove that

lim
r→∞ d(am(r)–, an(r)) = lim

r→∞ d(am(r)–, an(r)–) = lim
r→∞ d(am(r)+, an(r))

= lim
r→∞ d(am(r), an(r)+) = ε. ()
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Since m(r) < n(r), am(r)– � an(r)–, from () and (), we have

d(am(r), an(r)) ≤ δ(Tam(r)–, Tan(r)–) ≤ ψ
�
M(am(r)–, an(r)–)

�
+ LN(am(r)–, an(r)–), ()

where

M(am(r)–, an(r)–)

= max
	

d(am(r)–, an(r)–), D(am(r)–, Tam(r)–) – D(A, B),

D(an(r)–, Tan(r)–) – D(A, B),
D(am(r)–, Tan(r)–) + D(an(r)–, Tam(r)–)



– D(A, B)



≤ max
	

d(am(r)–, an(r)–), d(am(r)–, bm(r)–) – D(A, B), d(an(r)–, bn(r)–)

– D(A, B),
d(am(r)–, bn(r)–) + d(an(r)–, bm(r)–) – D(A, B)






≤ max
	

d(am(r)–, an(r)–), d(am(r)–, am(r)) + d(am(r), bm(r)–) – D(A, B),

d(an(r)–, an(r)) + d(an(r), bn(r)–) – D(A, B),
�




d(am(r)–, an(r))

+ d(an(r), bn(r)–) + d(an(r)–, am(r)) + d(am(r), bm(r)–) – D(A, B)



.

Using d(an+, bn) = D(A, B) in the above inequality, we get

M(am(r)–, an(r)–) ≤ max
	

d(am(r)–, an(r)–), d(am(r)–, am(r)), d(an(r)–, an(r)),

d(am(r)–, an(r)) + d(an(r)–, am(r))




()

and

N(am(r)–, an(r)–)

= min
�

D(am(r)–, Tam(r)–) – D(A, B), D(an(r)–, Tan(r)–) – D(A, B),

D(am(r)–, Tan(r)–) – D(A, B), D(an(r)–, Tam(r)–) – D(A, B)
�

≤ min
�

d(am(r)–, bm(r)–) – D(A, B), d(an(r)–, bn(r)–) – D(A, B),

d(am(r)–, bn(r)–) – D(A, B), d(an(r)–, bm(r)–) – D(A, B)
�

≤ min
�

d(am(r)–, am(r)) + d(am(r), bm(r)–) – D(A, B), d(an(r)–, an(r))

+ d(an(r), bn(r)–) – D(A, B), d(am(r)–, an(r)) + d(an(r), bn(r)–) – D(A, B),

d(an(r)–, am(r)) + d(am(r), bm(r)–) – D(A, B)
�

.
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Using d(an+, bn) = D(A, B) in the above inequality, we get

N(am(r)–, an(r)–) ≤ min
�

d(am(r)–, am(r)), d(an(r)–, an(r)),

d(am(r)–, an(r)), d(an(r)–, am(r))
�

. ()

Using () and () in () and taking r → ∞, from (), (), () and (), we get

ε ≤ ψ
�
max{ε, , , ε}� + L min{, , ε, ε} ()

= ψ(ε) < ε, ()

which is a contradiction to the property of ψ . Thus, {an} is a Cauchy sequence in A and
hence it converges to some element a in A. Since d(an, an+) = d(bn–, bn), the sequence {bn}
in B is Cauchy and hence it is convergent. Suppose that bn → b. By the relation d(an+, bn) =
D(A, B), for all n, we conclude that d(a, b) = D(A, B). We now claim that b ∈ Ta.

Since {an} is an increasing sequence in A and an → a, by hypothesis (iv), an � a, ∀n.

D(bn, Ta)

≤ δ(Tan, Ta)

≤ ψ
�

max
	

d(an, a), D(an, Tan) – D(A, B), D(a, Ta) – D(A, B),

D(an, Ta) + D(a, Tan)


– D(A, B)



+ L min
�

D(an, Tan) – D(A, B),

D(a, Ta) – D(A, B), D(an, Ta) – D(A, B), D(a, Tan) – D(A, B)
�

≤ ψ(max
	

d(an, a), d(an, bn) – D(A, B), D(a, Ta) – D(A, B),
D(an, Ta) + d(a, bn)



– D(A, B)



+ L min
�

d(an, bn) – D(A, B), D(a, Ta) – D(A, B), D(an, Ta) – D(A, B),

d(a, bn) – D(A, B)
�

.

As n → ∞ in the above inequality, using an → a, bn → b, d(a, b) = D(A, B) and since ψ is
upper-semicontinuous, we get

D(b, Ta) ≤ ψ
�

max
	

, , D(a, Ta) – D(A, B),
D(a, Ta) + D(A, B)


– D(A, B)




+ L min
�

, D(a, Ta) – D(A, B), D(a, Ta) – D(A, B), 
�

= ψ
�
D(a, Ta) – D(A, B)

�

≤ ψ
�
d(a, b) + D(b, Ta) – D(A, B)

�

= ψ
�
D(b, Ta)

�
< D(b, Ta),

which is a contradiction unless D(b, Ta) = .
This implies that b ∈ Ta, and hence D(a, Ta) = D(A, B). That is, a is a best proximity

point of the mapping T . �
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Example . Let X := R
 with the order � defined as follows: for (a, b), (a, b) ∈

X, (a, b) � (a, b) if and only if a ≤ a, b ≤ b, where ≤ is the usual order in R. Then
(X,�, d) becomes a complete partially ordered metric space with respect to a metric
d((a, b), (a, b)) = |a – a| + |b – b| for each (a, b), (a, b) ∈ X.

Let A = {(, ), (, ), (, ), (, )} and B = {(, –), (, ), (, ), (, )}. Then (A, B) satisfies
the P-property, and D(A, B) = . Let T : A → CB(B) be defined as follows:

Ta =

�
�

�
{(, ), (, )} if a = (, ),

{(, )} otherwise,

and define ψ : [,∞) → [,∞) as ψ(t) = t
 .

It is easy to see that for all comparable a, b ∈ X and L ≥ , T satisfies the following:

δ(Ta, Tb) ≤ ψ
�

max
	

d(a, b), D(a, Ta) – D(A, B), D(b, Tb) – D(A, B),

D(a, Tb) + D(b, Ta)


– D(A, B)



+ L min
�

D(a, Ta) – D(A, B),

D(b, Tb) – D(A, B), D(a, Tb) – D(A, B), D(b, Ta) – D(A, B)
�

.

Also, it is easy to verify that this T satisfies all the conditions in Theorem .. It is clear
that (, ) is a best proximity point of T .

The following corollary is a particular case of Theorem . when A = B. Also, it is a
partial generalization of Theorem . in [].

Corollary . Let (X,�, d) be a partially ordered complete metric space. Let A be a
nonempty closed subset of X and T : A → CB(A) be a multivalued mapping such that the
following conditions are satisfied:

(i) There exist elements a, a in A and b ∈ Ta such that d(a, b) =  and
a � a = b.

(ii) T satisfies

δ(Ta, Tb) ≤ ψ
�

max
	

D(a, b), D(a, Ta), D(b, Tb),
D(a, Tb) + D(b, Ta)






+ L min
�

D(a, Ta), D(b, Tb), D(a, Tb), D(b, Ta)
�

for all comparable a, b ∈ A, where L ≥  and ψ is an altering distance function.
(iii) For a, b ∈ A, a � b implies Ta ≺() Tb.
(iv) If {an} is a nondecreasing sequence in A such that an → a, then an � a for all n.

Then there exists an element a in A such that D(a, Ta) = . That is, a is a fixed point of the
mapping T .

The following corollary is a particular case of Theorem . when T is a single-valued
self mapping.
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Corollary . Let (X,�, d) be a partially ordered complete metric space. Let A be a
nonempty closed subset of X. Let T : A → A be a single-valued mapping such that the fol-
lowing conditions are satisfied:

(i) There exist elements a and a in A such that

d(a, Ta) =  and a � a.

(ii) T satisfies

δ(Ta, Tb) ≤ ψ
�

max
	

d(a, b), d(a, Ta), d(b, Tb),
d(a, Tb) + d(b, Ta)






+ L min
�

d(a, Ta), d(b, Tb), d(a, Tb), d(b, Ta)
�

for all comparable a, b ∈ A, where L ≥ , and ψ is an altering distance function.
(iii) For a, b ∈ A, a � b implies {Ta} ≺() {Tb}.
(iv) If {an} is a nondecreasing sequence in A such that an → a, then an � a for all n.

Then there exists an element a in A such that d(a, Ta) = . That is, a is a fixed point of the
mapping T .

Now, we state our second main result in this section.

Theorem . Let (X,�, d) be a partially ordered complete metric space. Let A and B be
nonempty closed subsets of the metric space (X, d) such that A �= ∅ and (A, B) satisfies
the P-property. Let S, T : A → CB(B) be a multivalued mapping such that the following
conditions are satisfied:

(i) Sa, Ta ⊆ B for all a ∈ A.
(ii) There exists a ∈ A with d(a, b) = D(A, B) for some b ∈ B with {b} ≺() Ta.

(iii) For any a, b ∈ A with a � b implies Sb ≺() Ta.
(iv) If {an} is any sequence in A whose consecutive terms are comparable with an → a,

then an � a for all n.
(v) T and S satisfy

δ(Ta, Sb) ≤ αM(a, b) + LN(a, b) for all comparable a, b ∈ A, ()

where M(a, b) = max{d(a, b), D(a, Ta) – D(A, B), D(b, Sb) – D(A, B),
D(a,Sb)+D(b,Ta)

 – D(A, B)}, L ≥  and N(a, b) = min{D(a, Ta) – D(A, B),
D(b, Sb) – D(A, B), D(a, Sb) – D(A, B), D(b, Ta) – D(A, B)},  < α < .

Then T and S have a common best proximity point.

Proof By assumption (ii), there exists a ∈ A with d(a, b) = D(A, B) such that {b} ≺()

Ta. For this b ∈ B, there exists b ∈ Ta with d(a, b) = D(A, B) such that a � a. By
assumption (iii), Sa ≺() Ta, which implies Sa ≺() Ta. So, for this b ∈ Ta, there exists
b ∈ Sa with d(a, b) = D(A, B) such that a � a. Again, by assumption (iii), Sa ≺() Ta,
which implies Sa ≺() Ta. Therefore, there exists b ∈ Ta with d(a, b) = D(A, B) such
that a � a. Continuing in this way, we can construct a sequence {an} such that

() for each n, an ∈ A and bn+ ∈ Tan and bn+ ∈ San+ with d(an, bn) = D(A, B);
() for each n, an � an+ and an+ � an+.
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First we claim that any best proximity point of T is a best proximity point of S and con-
versely. Now suppose that p is a best proximity point of T but not a best proximity point
of S. Consider

D(p, Sp) ≤ D(p, Tp) + δ(Tp, Sp) = D(A, B) + δ(Tp, Sp).

Hence, D(p, Sp) – D(A, B) ≤ δ(Tp, Sp). Then, by condition (v),

D(p, Sp) – D(A, B) ≤ δ(Tp, Sp)

≤ α max
	

d(p, p), D(p, Tp) – D(A, B), D(p, Sp) – D(A, B),

D(p, Sp) + D(p, Tp)


– D(A, B)



+ L min
�

D(p, Tp) – D(A, B),

D(p, Sp) – D(A, B), D(p, Sp) – D(A, B), D(p, Tp) – D(A, B)
�

= α max
	

, , D(p, Sp) – D(A, B),
D(p, Sp) – D(A, B)






+ L min
�

, D(p, Sp) – D(A, B)
�

= α
�
D(p, Sp) – D(A, B)

�
,

which is a contradiction, unless D(p, Sp) = D(A, B). Hence p is a best proximity point to S.
Using a similar argument, we can prove that any best proximity of S is a best proximity
point of T .

If there exists a positive integer N such that aN = aN+, then aN becomes a com-
mon best proximity point. Similarly, the same conclusion holds if aN+ = aN+ for
some N . Therefore, we may assume that an �= an+ for all n ≥ . We know that d(an, bn) =
d(an+, bn+) = D(A, B) and so by the P-property, we have d(an, an+) = d(bn, bn+).

Now,

d(an+, an+) = d(bn+, bn+) ≤ δ(Tan, San+). ()

Consider

M(an, an+) = max
	

d(an, an+), D(an, Tan) – D(A, B), D(an+, San+) – D(A, B),

D(an, San+) + D(an+, Tan)


– D(A, B)



≤ max
	

d(an, an+), d(an, bn+) – D(A, B), d(an+, bn+) – D(A, B),

d(an, bn+) + d(an+, bn+)


– D(A, B)



≤ max
	

d(an, an+), d(an, bn) + d(bn, bn+) – D(A, B),

d(an+, bn+) + d(bn+, bn+) – D(A, B),
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d(an, bn) + d(bn, bn+) + d(bn+, bn+) + D(A, B)


– D(A, B)



= max
	

d(an, an+), d(an+, an+),
d(an, an+) + d(an+, an+)






= max
�

d(an, an+), d(an+, an+)
�

and

N(an, an+) = min
�

D(an, Tan) – D(A, B), D(an+, San+) – D(A, B),

D(an, San+) – D(A, B), D(an+, Tan) – D(A, B)
�

≤ min
�

d(an, bn+) – D(A, B), d(an+, bn+) – D(A, B),

d(an, bn+) – D(A, B), d(an+, bn+) – D(A, B)
�

= min
�

d(an, bn+) – D(A, B), d(an+, bn+)

– D(A, B), d(an, bn+) – D(A, B), 
�

= .

Therefore, by inequality () and by inequality (), we get

d(an+, an+) ≤ α max
�

d(an, an+), d(an+, an+)
�

. ()

Suppose that d(an, an+) ≤ d(an+, an+) for some positive integer n. Then from () we
have

d(an+, an+) ≤ αd(an+, an+) < d(an+, an+),

which is a contradiction. Hence, d(an+, an+) < d(an, an+) for all n ≥ . In a similar
way, we can prove that d(an+, an+) < d(an+, an+) for all n > . Then {d(an, an+)} is
a monotone decreasing sequence of nonnegative real numbers. Hence there exists k ≥ 
such that limn→∞ d(an, an+) = k. We will now claim that k = .

From the above discussion, we have

d(an+, an+) ≤ αd(an, an+) for all n ≥ .

Taking n → ∞ in the above inequality, we get

k ≤ αk,

which is a contradiction unless k = . Therefore,

lim
n→∞ d(an, an+) = .

Now we will prove that {an} is a Cauchy sequence. Let m > n. Then

d(am, an) ≤ d(am, am–) + d(am–, am–) + · · · + d(an+, an)

≤ �
αm– + αm– + · · · + αn�

d(a, a) ≤ αn

 – α
d(a, a) → , as n → ∞,
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which implies that {an} is a Cauchy sequence in A. From the completeness of X, there
exists a ∈ X such that an → a as n → ∞. Since A is closed, a ∈ A. Also, by assumption
(iv), an � a for all n. Since d(an, an+) = d(bn, bn+), the sequence {bn} becomes Cauchy.
Hence it converges to some b ∈ X. By the relation d(an, bn) = D(A, B) for all n, we conclude
that d(a, b) = D(A, B). We now claim that b ∈ Ta.

D(Ta, bn+)

≤ δ(Ta, San+)

≤ α max
	

d(a, an+), D(a, Ta) – D(A, B), D(an+, San+) – D(A, B),

D(a, San+) + D(an+, Ta)


– D(A, B)



+ L min
�

D(a, Ta) – D(A, B),

D(an+, San+) – D(A, B), D(an+, Ta) – D(A, B), D(a, San+) – D(A, B)
�

≤ α max
	

d(a, an+), D(a, Ta) – D(A, B), d(an+, bn+) – D(A, B),

d(a, bn+) + D(an+, Ta)


– D(A, B)



+ L min
�

D(a, Ta) – D(A, B),

d(an+, bn+) – D(A, B), D(an+, Ta) – D(A, B), d(a, bn+) – D(A, B)
�

≤ α max
	

d(a, an+), D(a, Ta) – D(A, B), d(bn+, bn+),

d(a, bn+) + D(an+, Ta)


– D(A, B)



+ L min
�

D(a, Ta) – D(A, B),

d(bn+, bn+), D(an+, Ta) – D(A, B), d(a, bn+) – D(A, B)
�

.

As n → ∞ in the above inequality, and using the properties of sequences {an} and {bn},
we get

D(Ta, b) ≤ α max
	

, D(a, Ta) – D(A, B), ,
d(a, b) + D(a, Ta)


– D(A, B)




+ L min
�

D(a, Ta) – D(A, B), , D(a, Ta) – D(A, B), d(a, b) – D(A, B)
�

≤ α max
	

d(a, b) + D(b, Ta) – D(A, B),
d(a, b) + d(a, b) + D(b, Ta)


– D(A, B)




= αD(b, Ta),

which is true only if D(b, Ta) = . Hence b ∈ Ta, that is, a is the best proximity point of T .
By what we have proved already, a is a common best proximity point of T and S. �

Example . Let X := R
 with the order � defined as follows: for (a, b), (a, b) ∈

X, (a, b) � (a, b) if and only if a ≤ a, b ≤ b, where ≤ is the usual order in R. Then
(X,�, d) becomes a complete partially ordered metric space with respect to a metric
d((a, b), (a, b)) = |a – a| + |b – b| for each (a, b), (a, b) ∈ X.
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Let A = {(, ), (, ), (, ), (, )} and B = {(, –), (, ), (, ), (, )}. Then (A, B) satisfies
the P-property, and D(A, B) = . Let T : A → CB(B) and S : A → CB(B) be defined as fol-
lows:

Ta =

�
�

�
{(, ), (, )} if a = (, ),

{(, )} otherwise,

and Sa = {(, )} for all a ∈ A respectively. It is easy to see that for all comparable a, b ∈ X,
α = 

 and L ≥ , T and S satisfy the following:

δ(Ta, Sb) ≤ α max
	

d(a, b), D(a, Ta) – D(A, B), D(b, Sb) – D(A, B),

D(a, Sb) + D(b, Ta)


– D(A, B)



+ L min
�

D(a, Ta) – D(A, B),

D(b, Sb) – D(A, B), D(a, Sb) – D(A, B), D(b, Ta) – D(A, B)
�

.

Also, T and S satisfy all the other conditions in Theorem .. It is easy to check that (, )
is a common best proximity point to S and T .
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