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From now onward, the set of positive integers and the set of nonnegative integers will
be denoted byN andN� , respectively. Further, the symbolsR,R+ andR+

� indicate the real
numbers, positive real numbers and nonnegative real numbers, respectively.

Notice that the concepts of open ball and closed ball are de“ned on BMS as the cor-
responding notions in the setting of the standard metric space. Hence, there is a proper
topology on BMS (X,� ).

Definition  (see e.g. [� ])
() A sequence {xn} in a BMS (X,� ) is BMS convergent to a limit x if and only if

� (xn,x) � � as n � � .
() A sequence {xn} in a BMS (X,� ) is BMS Cauchy if and only if, for every � > � , there

exists a positive integer N(� ) such that � (xn,xm) < � for all n > m > N(� ).
() A BMS (X,� ) is called complete if every BMS Cauchy sequence in X is BMS

convergent.
() A mapping T : (X,� ) � (X,� ) is continuous if, for any sequence {xn} in X such that

� (xn,x) � � as n � � , we have � (Txn,Tx) � � as n � � .

On the other hand, the topology of BMS (X,� ) brings some di�culties. We state the
following example to illustrate the possible handicaps.

Example  (cf. [�	 , 
� ]) Let Y = { �
n
 +�

: n � N} and Z = {�, z� ,z
 ,z }, wherez� ,z
 ,z are
distinct real numbers such thatz� ,z
 ,z > 
. Set X = Y � Z and consider the function� :
X × X � [�, � ) in the following way:

� (x,y) =

⎧
⎪⎪⎨

⎪⎪⎩

� if x = y,

� if x �= y and [{x,y} � Y or {x,y} � Z],

y if x � Y,y � Z.

We have� (y,z) = � (z,y) = z whenevery � Y and z � Z; and (X,� ) is a complete BMS.
Notice that statements (P�)-( P�) are ful“lled:

(p�) Since limn��
�

n
 +�
= � , we have limn�� � ( �

n
 +�
, �

� ) �= � (�, �
� ). Thus, the function � is

not continuous;
(p
) There is no r > � such that Br(�) 	 Br (zi ) = 
 for i = �, 
,  , and hence it is not Hausdorff;
(p) It is clear that the ball B

�
( �

� ) = {�, �
� ,z� ,z
 ,z } since there is no r > � such that Br(�) �

B
�
( �

� ), that is, open balls may not be an open set;
(p�) The sequence { �

n
 +�
: n � N} converges to �, z� ,z
 ,z , and hence it is not Cauchy.

Despite a high similarity rate between the de“nitions of topological notions in BMS and
in standard metric space, there are signi“cant di�erences between their topologies due
to the diversity between the quadrilateral inequality and the triangle inequality. For being
more clear, we can express the variations as follows:

(p�) Branciari metric is not necessarily continuous (see e.g. Example );
(p
) BMS is not necessarily Hausdorff (limit is not necessarily unique) (see e.g. Example );
(p) open ball need not be an open set (see e.g. Example );
(p�) a convergent sequence in BMS needs not be Cauchy (see e.g. Example );
(p�) the mentioned topologies are incompatible (see e.g. Example  in []).
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Lemma  (see e.g. [�� , �	 ]) Let (X,� ) be a BMS, and let {xn} be a Cauchy sequence in

X such that xm �= xn whenever m�= n. Then the sequence{xn} can converge to at most one

point.

Later, regarding the well-knownb-metric de“ned by Czerwik [
� ], the notion of Bran-

ciari metric is re“ned asb-Branciari metric (see e.g. [
	 ]).

Definition  Let X be a nonempty set, and letd : X × X Š� [�, � ) satisfy the following

conditions for all x,y � X and all distinctu,v � X \ { x,y}:

(b�) d(x,y) = � if and only if x = y (indistancy),

(b
) d(x,y) = d(y,x) (symmetry), (�.
)

(b) d(x,y) � s
[
d(x,u) + d(u,v) + d(v,y)

]
(modi“ed quadrilateral inequality).

Then the mapd is called ab-Branciari metric (or rectangular metric, or generalized met-

ric). The pair (X,d) is called ab-Branciari metric space and abbreviated as •b-BMS•.

Analogously, one can state the topological concepts forb-BMS (see e.g. [
	 ]).

Definition 
() A sequence {xn} in a b-BMS (X,� ) is b-BMS convergent to a limit x if and only if

� (xn,x) � � as n � � .
() A sequence {xn} in a b-BMS (X,� ) is b-BMS Cauchy if and only if, for every � > � ,

there exists a positive integer N(� ) such that � (xn,xm) < � for all n > m > N(� ).
() A b-BMS (X,� ) is called complete if every b-BMS Cauchy sequence in X is b-BMS

convergent.
() A mapping T : (X,� ) � (X,� ) is continuous if, for any sequence {xn} in X such that

� (xn,x) � � as n � � , we have � (Txn,Tx) � � as n � � .

As in the discussion on the topology of BMS, the topology ofb-BMS has the same di�-

culties (p�)-(p�) above. Since these problems arise from the topology of BMS, Example

can be adopted forb-BMS to illustrate that the same problems hold for the topology of

b-BMS (see e.g. [
	 ]).

Inspired by the corresponding Lemma� , we propose the following.

Lemma  Let (X,d) be a b-BMS, and let {xn} be a Cauchy sequence in X such that xm �= xn

whenever m�= n. Then the sequence{xn} can converge to at most one point.

Proof

Suppose, on the contrary, that{xn} is a Cauchy sequence which converges to bothx

andy, wherex �= y. Thus, for any� , there existsN � N such that

d(x,xn) <
�
 s

, d(xn,xm) <
�
 s

and d(xm,y) <
�
 s

,

for all n,m > N.
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Now, by using the modi“ed quadrilateral inequality, we get

d(x,y) � s
[
d(x,xn) + d(xn,xm) + d(xm,y)

]
< � .

Thus, one can getd(x,y) = � and hence x = y, a contradiction. Thus, under the axiom, the

given sequence has a unique limit point. �

Let � be a family of increasing mappings� : [�, � ) � [�, � ) satisfying� n(t) � �,

n � � for anyt � [�, � ). In the literature such functions are called comparison functions

(see e.g. [
� ]). The basic example of such mappings is� (t) = kt
n , wherek � [�, �) and n �

{
, , . . . }.

Lemma  (see e.g. [
� ]) If � � � , then the following hold:

(i) � is continuous at � ;
(ii) � (t) < t for any t � R

+.

In this manuscript, we investigate some nonunique “xed point results in the context of

b-BMS. Our results extend and generalize several results in the corresponding literature.

2 Nonunique fixed points on b-BMS
First, we shall give the analog of the crucial topological notions, orbitally continuous and

orbitally complete, in the context ofb-BMS.

Definition  (see [� ]) Let (X,d) be ab-BMS andT be a self-map ofX.

() T is called orbitally continuous if

lim
i��

T ni x = z (
.�)

implies

lim
i��

TT ni x = Tz (
.
)

for each x � X.
() (X,d) is called orbitally complete if every Cauchy sequence of type {T ni x}i� N

converges with respect to � d .

A point z is said to be a periodic point of a functionT of period m if T m(z) = z, where

T � (x) = x andT m(x) is de“ned recursively byT m(x) = T(T m…�(x)).

2.1 Ćirić type nonunique fixed point results
Theorem  Let T be an orbitally continuous self-map on the T-orbitally complete b-

BMS(X,d) with s � �. If there is� � � such that

min
{
d(Tx,Ty),d(x,Tx),d(y,Ty)

}
…min

{
d(x,Ty),d(Tx,y)

}
� �

(
d(x,y)

)
(
.)

for all x,y � X, then, for each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.
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Proof For an arbitraryx � X, we shall construct an iterative sequence{xn} as follows:

x� := x and xn = Txn…� for all n � N. (
.�)

We suppose that

xn �= xn…� for all n � N. (
.�)

Indeed, if for somen � N we have the inequalityxn = Txn…�= xn…�, then the proof is com-

pleted.

By substitutingx = xn…� andy = xn in inequality (
. ), we derive that

min
{
d(Txn…�,Txn),d(xn…�,Txn…�),d(xn,Txn)

}
…min

{
d(xn…�,Txn),d(Txn…�,xn)

}

� �
(
d(xn…�,xn)

)
. (
.	)

It implies that

min
{
d(xn,xn+� ),d(xn,xn…�)

}
� �

(
d(xn…�,xn)

)
. (
.�)

Since� (t) < t for all t > �, the cased(xn,xn…�) � � (d(xn…�,xn)) is impossible. Thus, we have

d(xn,xn+� ) � �
(
d(xn…�,xn)

)
< d(xn…�,xn). (
.�)

Iteratively, we “nd that

d(xn,xn+� ) � �
(
d(xn…�,xn)

)
� � 
 (d(xn…
,xn…�)

)
� · · · � � n(d(x� ,x� )

)
. (
.�)

On account of (
.� ), we also observe that the sequence{d(xn,xn+� )} is nonincreasing.

Since� n(t) � �, n � � for anyt � [�, � ), and� (t) < t, and regarding the Archimedean

property, there exist a real numberq � [�, �) and a natural number M such that

� k(t) � qk · t and s· qk < � for each n > M. (
.��)

We shall show that the sequence{xn} has no periodic point, that is,

xn �= xn+k for all k � N and for all n � N� . (
.��)

Actually, if xn = xn+k for somen � N� andk � N, we “nd xn+� = Txn = Txn+k = xn+k+� . Keep-

ing inequality (
.� ) in mind, by utilizing (
. ), we derive that

d(xn,xn+� ) = min
{
d(Txn…�,Txn),d(xn…�,Txn…�),d(xn,Txn)

}

…min
{
d(xn…�,Txn),d(Txn…�,xn)

}

= min
{
d(Txn+k…�,Txn+k),d(xn+k…�,Txn+k…�),d(xn,Txn+k)

}

…min
{
d(xn+k…�,Txn+k),d(Txn+k…�,xn+k)

}
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� �
(
d(xn+k…�,xn+k)

)

� � k…�(d(xn,xn+� )
)

< d(xn,xn+� ), (
.�
)

a contradiction. Consequently, throughout the proof, we suppose that

xn �= xm for all distinct n,m � N. (
.�)

Observe thatxn+k �= xm+k for all distinct n,m � N andxn+k,xm+k � X \ { xn,xm}.
In what follows, we shall prove that the sequence{xn} is Cauchy. By using the modi“ed

quadrilateral inequality together with (
.� ) and estimation (
.�� ), we have

d(xm,xn) � s
[
d(xm,xm+k) + d(xm+k,xn+k) + d(xn+k,xn)

]

� s� m(
d(x� ,xk)

)
+ s� k(d(xm,xn)

)
+ s� n(d(xk,x� )

)

� s� m(
d(x� ,xk)

)
+ sqk · d(xm,xn) + s� n(d(xk,x� )

)
. (
.��)

After a routine calculation, we get that

d(xm,xn) �
s

� …sqk

[
� m(

d(x� ,xk)
)

+ � n(d(xk,x� )
)]

.

Since� n(t) � �, n � � , for anyt � [�, � ), the inequality above yields thatd(xm,xn) � �
asn,m � � . Hence, the sequence{xn} is Cauchy inb-BMS (X,d).

On account of theT-orbital completeness, we conclude that there isz � X such that
xn � z. Due to the orbital continuity of T , we conclude thatxn � Tz. Hence, by taking
Lemma� into account, we “nd z = Tz, which terminates the proof. �

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-BMS
(X,d) with s � �. If there is q� [�, �) such that

min
{
d(Tx,Ty),d(x,Tx),d(y,Ty)

}
…min

{
d(x,Ty),d(Tx,y)

}
� qd(x,y) (
.��)

for all x,y � X, then for each x� � X the sequence{T nx� }n� N converges to a “xed point of T.

Proof It is su�cient to take � (t) = qt, whereq � [�, �), in Theorem �� . �

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d) with s � �. If there is� � � such that

min
{
d(Tx,Ty),d(x,Tx),d(y,Ty)

}
…min

{
d(x,Ty),d(Tx,y)

}
� �

(
d(x,y)

)
(
.�	)

for all x,y � X, then for each x� � X the sequence{T nx� }n� N converges to a “xed point of T.

Proof It is su�cient to take s= � in Theorem �� . �

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d) with s � �. If there is q� [�, �) such that

min
{
d(Tx,Ty),d(x,Tx),d(y,Ty)

}
…min

{
d(x,Ty),d(Tx,y)

}
� qd(x,y) (
.��)
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for all x,y � X, then for each x� � X the sequence{T nx� }n� N converges to a “xed point

of T.

Proof It is su�cient to take � (t) = qt, whereq � [�, �), in Corollary �
 . �

Example  Let X = A � B, whereA = {a� ,a
 ,a ,a� } andB = [�, 
] with A 	 B = 
 and each

ai distinct from aj, wheneveri �= j. De“ne d : X × X � [�, � ) such thatd(x,y) = d(y,x) for

all x � X,

d(a� ,a ) = �, d(a� ,a
 ) = d(a
 ,a ) =
�
�

,

d(a� ,a� ) = d(a
 ,a� ) = d(a ,a� ) =
�
�

,

d(a,b) =
�
�	

, for all a � A,b � B, and,

d(x,y) = |x …y|
 for any other case.

It is clear that (X,d) forms a completeb-BMS (X,d) with s= 
. Note also that (X,d) is

not metric, b-metric and Branciari metric. De“ne a mappingT : X � X as

f (a� ) = f (a
 ) = a� and f (a ) = f (a� ) = a� and f (b) = a� for all b � B.

It is clear that T satis“es all the conditions of Theorem�� for any choice of� and T has

two distinct “xed points, namely,a� anda .

2.2 Ćirić-Jotić type nonunique fixed point results [3]
Theorem Let T be an orbitally continuous self-map on the T-orbitally complete b-BMS

(X,d). Suppose that there exist� � � and a � � such that

P(x,y) …aQ(x,y) � �
(
R(x,y)

)
(
.��)

for all distinct x,y � X, where

P(x,y) = min

{
d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty), d(x,Tx)[�+ d(y,Ty)]

�+ d(x,y) ,
d(y,Ty)[�+ d(x,Tx)]

�+ d(x,y) , min{d
 (Tx,Ty),d
 (x,Tx),d
 (y,Ty)}
� (d(x,y))

}

,

Q(x,y) = min
{
d(x,Ty),d(y,Tx)

}
,

R(x,y) = max
{
d(x,y),d(x,Tx)

}
.

Then, for each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

Proof As in Theorem�� , by starting from an arbitrary initial valuex� := x � X, we easily

construct an iterative sequence{xn = Txn…�}n� N for which adjacent terms are distinct from

each other, that is,

xn �= xn…� for all n � N.
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Letting x = xn…� andy = Txn…�= xn in inequality (
.�� ), we derive that

P(xn…�,xn) …aQ(xn…�,xn) � �
(
R(xn…�,xn)

)
, (
.��)

where

Q(xn…�,xn) = min
{
d(xn…�,xn+� ),d(xn,xn)

}
= �,

R(xn…�,xn) = max
{
d(xn…�,xn),d(xn…�,xn)

}
= d(xn…�,xn)

and

P(xn…�,xn) = min

{
d(xn,xn+� ),d(xn…�,xn),d(xn…�,xn),d(xn,xn+� ),

d(xn…�,xn)[�+ d(xn,xn+� )]
�+ d(xn…�,xn) ,

d(xn,xn+� )[�+ d(xn…�,xn)]
�+ d(xn…�,xn) , min{d
 (xn,xn+� ),d
 (xn…�,xn),d
 (xn,xn+� )}

� (d(xn…�,xn))

}

= min
{

d(xn,xn+� ),d(xn…�,xn), d(xn…�,xn)[�+ d(xn,xn+� )]
�+ d(xn…�,xn) , d
 (xn,xn+� )

� (d(xn…�,xn))

}
.

We examine inequality (
.�� ) regarding the possible cases inP(xn…�,xn). Notice that the
caseP(xn…�,xn) = d(xn…�,xn) is impossible. Indeed, if it were the case, inequality (
.�� )
would turn into

d(xn…�,xn) � �
(
d(xn…�,xn)

)
< d(xn…�,xn)

since� (t) < t for all t > �. Thus, we observe that

d(xn,xn+� ) � d(xn…�,xn).

Consequently, inequality (
.�� ) yields the following three cases. IfP(xn…�,xn) = d(xn,xn+� )
or P(xn…�,xn) = d
 (xn,xn+� )

� (d(xn…�,xn)) , then inequality (
.�� ) turns into

d(xn,xn+� ) � �
(
d(xn…�,xn)

)
. (
.
�)

If P(xn…�,xn) = d(xn…�,xn)[�+ d(xn,xn+� )]
�+ d(xn…�,xn) , then inequality (
.�� ) becomes

d(xn…�,xn)
[
� + d(xn,xn+� )

]
� �

(
d(xn…�,xn)

)[
� + d(xn…�,xn)

]

= �
(
d(xn…�,xn)

)
+ �

(
d(xn…�,xn)

)
d(xn…�,xn)

< d(xn…�,xn) + �
(
d(xn…�,xn)

)
d(xn…�,xn).

The required simpli“cation implies (
.
� ). In other words, for any possibilities inP(xn…�,
xn), inequality (
.�� ) yields inequality (
.
� ). Recursively, we get that

d(xn+� ,xn) � �
(
d(xn,xn…�)

)
< d(xn,xn…�) and d(xn+� ,xn) < � n(d(x� ,x� )

)
for all n.

Due to the observation above, we notice that the sequence{d(xn,xn+� )} is nonincreasing.
As the next step, we shall indicate that the sequence{xn} has no periodic point, that is,

xn �= xn+k for all k � N and for all n � N� . (
.
�)
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Indeed, if xn = xn+k for somen � N� and k � N, we “nd xn+� = Txn = Txn+k = xn+k+� . On
account of the observations and estimations above, we haveP(xn…�,xn) = d(xn,xn+� ). Thus,
by taking inequalities (
.� ) and (
. ) into account, we “nd that

d(xn,xn+� ) = P(xn…�,xn) …aQ(xn…�,xn) � �
(
R(xn…�,xn)

)

� �
(
R(xn+k…�,xn+k)

)

� �
(
d(xn+k…�,xn+k)

)

� � k…�(d(xn,xn+� )
)

< d(xn,xn+� ), (
.

)

a contradiction. As a result, we suppose that

xn �= xm for all distinct n,m � N. (
.
)

A verbatim repetition of the related lines in the proof of Theorem�� completes the
proof. �

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-
BMS(X,d). Suppose that there exist q� [�, �) and a � � such that

P(x,y) …aQ(x,y) � qR(x,y)

for all distinct x,y � X, where P(x,y),Q(x,y),R(x,y) are de“ned as in Theorem�� . Then, for
each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-
BMS(X,d). Suppose that there exist q� [�, �) and a � � such that

min
{
d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty)

}
…aQ(x,y) � qR(x,y)

for x,y � X, where Q(x,y),R(x,y) are de“ned as in Theorem�� . Then, for each x� � X, the
sequence{T nx� }n� N converges to a “xed point of T.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-
BMS(X,d). Suppose that there exist k,p � [�, �) with k + p < � and a � � such that

min
{
d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty)

}
…aQ(x,y) � kd(x,y) + pd(x,Tx)

for x,y � X, where Q(x,y),R(x,y) are de“ned as in Theorem�� . Then, for each x� � X, the
sequence{T nx� }n� N converges to a “xed point of T.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exist� � � and a � � such that

P(x,y) …aQ(x,y) � �
(
R(x,y)

)

for all distinct x,y � X, where P(x,y),Q(x,y),R(x,y) are de“ned as in Theorem�� . Then, for
each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.
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Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exist q� [�, �) and a � � such that

P(x,y) …aQ(x,y) � qR(x,y)

for all distinct x,y � X, where P(x,y),Q(x,y),R(x,y) are de“ned as in Theorem�� . Then, for
each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exist q� [�, �) and a � � such that

min
{
d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty)

}
…aQ(x,y) � qR(x,y)

for x,y � X, where Q(x,y),R(x,y) are de“ned as in Theorem�� . Then, for each x� � X, the
sequence{T nx� }n� N converges to a “xed point of T.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exist k,p � [�, �) with k + p < � and a � � such that

min
{
d(Tx,Ty),d(x,y),d(x,Tx),d(y,Ty)

}
…aQ(x,y) � kd(x,y) + pd(x,Tx)

for x,y � X, where Q(x,y),R(x,y) are de“ned as in Theorem�� . Then, for each x� � X, the
sequence{T nx� }n� N converges to a “xed point of T.

Theorem Let T be an orbitally continuous self-map on the T-orbitally complete b-BMS
(X,d). Suppose that there exist� � � and a � � such that

K(x,y) …aQ(x,y) � �
(
S(x,y)

)
(
.
�)

for all distinct x,y � X, where

K(x,y) = min
{
d(Tx,Ty),d(y,Ty)

}
,

Q(x,y) = min
{
d(x,Ty),d(y,Tx)

}
,

S(x,y) = max
{
d(x,y),d(x,Tx),d(y,Ty)

}
.

Then, for each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

Proof We use the same construction as in Theorem�� to get an iterative sequence{xn =
Txn…�}n� N, with an arbitrary initial valuex� := x � X. Repeating the same arguments in the
proof of Theorem�� , we derive that adjacent terms of the sequence{xn} are distinct, that
is,

xn �= xn…� for all n � N.

For x = xn…� andy = xn, inequality (
.
� ) infers that

K(xn…�,xn) …aQ(xn…�,xn) � �
(
S(xn…�,xn)

)
, (
.
�)
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where

K(xn…�,xn) = min
{
d(Txn…�,Txn),d(xn,Txn)

}
= d(xn,xn+� ),

Q(xn…�,xn) = min
{
d(xn…�,Txn)d(xn,Txn…�)

}
= �,

S(xn…�,xn) = min
{
d(xn…�,xn),d(xn…�,Txn…�),d(xn,Txn)

}

= min
{
d(xn…�,xn),d(xn,xn+� )

}
.

Since� (t) < t for all t > �, the caseS(xn…�,xn) = d(xn,xn+� ) is impossible. More precisely, it
is the case, inequality (
.
� ) turns into

d(xn,xn+� ) � � d(xn,xn+� ) < d(xn,xn+� ),

a contradiction. Hence, inequality (
.
� ) yields that

d(xn,xn+� ) � � d(xn…�,xn) < d(xn…�,xn) and d(xn,xn+� ) � � nd(x� ,x� )

for all n � N.
Hence, we conclude that the sequence{d(xn,xn+� )} is nonincreasing. In what follows we

show that the iterative sequence{xn} has no periodic point, that is,

xn �= xn+k for all k � N and for all n � N� . (
.
	)

Indeed, ifxn = xn+k for somen � N� andk � N, we havexn+� = Txn = Txn+k = xn+k+� . Based
on the observations above, we obtain thatK(xn…�,xn) = d(xn,xn+� ). Consequently, inequal-
ities (
.
	 ) and (
.
� ) imply that

d(xn,xn+� ) = K(xn…�,xn) …aQ(xn…�,xn) � �
(
S(xn…�,xn)

)

� �
(
S(xn+k…�,xn+k)

)

� �
(
d(xn+k…�,xn+k)

)

� � k…�(d(xn,xn+� )
)

< d(xn,xn+� ), (
.
�)

which is a contradiction. Hence, we assume that

xn �= xm for all distinct n,m � N. (
.
�)

A verbatim repetition of the related lines in the proof of Theorem�� completes the
proof. �

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-
BMS(X,d). Suppose that there exist q� [�, �) and a � � such that

K(x,y) …aQ(x,y) � qS(x,y)

for all distinct x,y � X, where K(x,y),Q(x,y),S(x,y) are de“ned as in Theorem
 . Then, for
each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.
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Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-
BMS(X,d). Suppose that there exist k,p,r � [�, �) with k + p + r < � and a � � such that

K(x,y) …aQ(x,y) � kd(x,y) + pd(x,Tx) + rd(x,Tx)

for x,y � X, where K(x,y),Q(x,y) are de“ned as in Theorem
 . Then, for each x� � X, the
sequence{T nx� }n� N converges to a “xed point of T.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exist� � � and a � � such that

K(x,y) …aQ(x,y) � �
(
S(x,y)

)

for all distinct x,y � X, where K(x,y),Q(x,y),S(x,y) are de“ned as in Theorem
 . Then, for
each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exist q� [�, �) and a � � such that

K(x,y) …aQ(x,y) � qRS(x,y)

for all distinct x,y � X, where K(x,y),Q(x,y),S(x,y) are de“ned as in Theorem
 . Then, for
each x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exist k,p,r � [�, �) with k + p + r < � and a � � such that

K(x,y) …aQ(x,y) � kd(x,y) + pd(x,Tx) + rd(y,Ty)

for x,y � X, where K(x,y),Q(x,y) are de“ned as in Theorem
 . Then, for each x� � X, the
sequence{T nx� }n� N converges to a “xed point of T.

2.3 Achari type nonunique fixed point results [3]
Theorem Let T be an orbitally continuous self-map on the T-orbitally complete b-BMS
(X,d). Suppose that there exists� � � such that

A(x,y) …B(x,y)
C(x,y)

� �
(
d(x,y)

)
(
.
�)

for all x,y � X, where

A(x,y) = min
{
d(Tx,Ty)d(x,y),d(x,Tx)d(y,Ty)

}
,

B(x,y) = min
{
d(x,Tx)d(x,Ty),d(y,Ty)d(Tx,y)

}
,

C(x,y) = min
{
d(x,Tx),d(y,Ty)

}

with R(x,y) �= �. Then, for each x� � X, the sequence{T nx� }n� N converges to a “xed point
of T.
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Proof By following line by line the proof of Theorem�� , we construct an iterative sequence
{xn = Txn…�}n� N starting from an arbitrary initial valuex� := x � X. Regarding the discus-
sion in the proof of Theorem�� , we know that the terms of the sequence{xn} are distinct,
that is,

xn �= xn…� for all n � N.

Employing inequality (
.
� ), by takingx = xn…� andy = xn in, we attain that

A(xn…�,xn) …B(xn…�,xn)
C(xn…�,xn)

� �
(
d(xn…�,xn)

)
,

where

A(xn…�,xn) = min
{
d(Txn…�,Txn)d(xn…�,xn),d(xn…�,Txn…�)d(xn,Txn)

}
,

B(xn…�,xn) = min
{
d(xn…�,Txn…�)d(xn…�,Txn),d(xn,Txn)d(Txn…�,xn)

}
,

C(xn…�,xn) = min
{
d(xn…�,Txn…�),d(xn,Txn)

}
.

On account ofb-BMS, we simplify the above inequality as follows:

d(xn,xn+� )d(xn…�,xn)
min{d(xn…�,xn),d(xn,xn+� )}

� �
(
d(xn…�,xn)

)
. (
.�)

Notice that for the casemin{d(xn…�,xn),d(xn,xn+� )} = d(xn,xn+� ), inequality (
.� ) turns
into

d(xn…�,xn) � �
(
d(xn…�,xn)

)
< d(xn…�,xn),

a contraction (since� (t) < t for all t > �). Accordingly, we conclude that

d(xn,xn+� ) � �
(
d(xn…�,xn)

)
.

Recursively, we get

d(xn,xn+� ) � �
(
d(xn…�,xn)

)
� � 
 (d(xn…
,xn…�)

)
� · · · � � n(d(x� ,x� )

)
. (
.�)

Due to the de“nition of comparison function, we have

lim
n��

d(xn+� ,xn) = �.

Furthermore, one can easily show that the sequence{xn} has no periodic point, that is,

xn �= xn+k for all k � N and for all n � N� . (
.
)

Indeed, if xn = xn+k for some n � N� and k � N, we getxn+� = Txn = Txn+k = xn+k+� . On
account of (
.� ), we derive that

d(xn,xn+� ) = d(xn+k,xn+k+� ) � � k(d(xn,xn+� )
)

< d(xn,xn+� ), (
.)
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a contradiction. Accordingly, we suppose that

xn �= xm for all distinct n,m � N. (
.�)

A verbatim repetition of the related lines in the proof of Theorem�� completes the
proof. �

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-
BMS(X,d). Suppose that there exists� � � such that

A(x,y) …B(x,y)
C(x,y)

� �
(
d(x,y)

)
(
.�)

for all x,y � X, where A(x,y),B(x,y),C(x,y) are de“ned as in Theorem
� . Then, for each
x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

The following is an immediate consequence of Theorem
� by letting � (t) = qt, where
q � [�, �).

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-
BMS(X,d). Suppose that there exists q� [�, �) such that

A(x,y) …B(x,y)
C(x,y)

� qd(x,y), (
.	)

for all x,y � X, where A(x,y),B(x,y),C(x,y) are de“ned as in Theorem
� . Then, for each
x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

The following is an immediate consequence of Theorem
� by letting s= �.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exists� � � such that

A(x,y) …B(x,y)
C(x,y)

� �
(
d(x,y)

)
(
.�)

for all x,y � X, where A(x,y),B(x,y),C(x,y) are de“ned as in Theorem
� . Then, for each
x� � X, the sequence{T nx� }n� N converges to a “xed point of T.

The following is an immediate consequence of Corollary
 by letting � (t) = qt, where
q � [�, �).

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exists q� [�, �) such that

A(x,y) …B(x,y)
C(x,y)

� qd(x,y) (
.�)

for all x,y � X, where A(x,y),B(x,y),C(x,y) are de“ned as in Theorem
� . Then, for each
x� � X, the sequence{T nx� }n� N converges to a “xed point of T.
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2.4 Pachpatte type nonunique fixed point results [2]
Theorem  Let T be an orbitally continuous self-map on the T-orbitally complete b-

BMS(X,d). Suppose that there exists� � � such that

m(x,y) …n(x,y) � �
(
d(x,Tx)d(y,Ty)

)
(
.�)

for all x,y � X, where

m(x,y) = min
{[

d(Tx,Ty)
]


,d(x,y)d(Tx,Ty),
[
d(y,Ty)

]
 }
,

n(x,y) = min
{
d(x,Tx)d(y,Ty),d(x,Ty)d(y,Tx)

}

with R(x,y) �= �. Then, for each x� � X, the sequence{T nx� }n� N converges to a “xed point

of T.

Proof Again by following line by line the proof of Theorem�� , we construct an iterative

sequence{xn = Txn…�}n� N whose terms are distinct from each other, by starting from an

arbitrary initial value x� := x � X.

Utilizing inequality (
.� ) for x = xn…� andy = xn, we obtain that

m(xn…�,xn) …n(xn…�,xn) � �
(
d(xn…�,Txn…�)d(xn,Txn)

)
, (
.��)

where

m(xn…�,xn) = min
{[

d(Txn…�,Txn)
]


,d(xn…�,xn)d(Txn…�,Txn),
[
d(xn,Txn)

]
 }
,

n(xn…�,xn) = min
{
d(xn…�,Txn…�)d(xn,Txn),d(xn…�,Txn)d(xn,Txn…�)

}
.

By simplifying the inequality above, we “nd that

m(xn…�,xn) � �
(
d(xn…�,xn)d(xn,xn+� )

)
, (
.��)

where

m(xn…�,xn) = min
{[

d(xn,xn+� )
]


,d(xn…�,xn)d(xn,xn+� )
}
.

It is clear that the case

m(xn…�,xn) = d(xn…�,xn)d(xn,xn+� )

is not possible. If it were the case, inequality (
.�� ) would turn into

d(xn…�,xn)d(xn,xn+� ) � �
(
d(xn…�,xn)d(xn,xn+� )

)
< d(xn…�,xn)d(xn,xn+� ), (
.�
)

a contraction (since� (t) < t for all t > �). Consequently, we derive

[
d(xn,xn+� )

]

� �

(
d(xn…�,xn)d(xn,xn+� )

)
< d(xn…�,xn)d(xn,xn+� ), (
.�)
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which yields

d(xn,xn+� ) < d(xn…�,xn). (
.��)

Regarding the fact that� is nondecreasing, and combining inequalities (
.� ) and (
.�� ),
we obtain that

[
d(xn,xn+� )

]

� �

(
d(xn…�,xn)d(xn,xn+� )

)
< �

([
d(xn…�,xn)

]
 )
. (
.��)

Iteratively, we get that

[
d(xn,xn+� )

]

� �

([
d(xn…�,xn)

]
 )
� � 
 ([d(xn…
,xn…�)

]
 )
� · · · � � n([d(x� ,x� )

]
 )
.

Hence, we have

lim
n��

[
d(xn+� ,xn)

]

= � � lim

n��
d(xn+� ,xn) = �.

The rest of the proof is a verbatim repetition of the related lines in the proof of Theo-
rem �� . �

If we take� (t) = qt, then Theorem� implies the following result.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete b-
BMS(X,d). Suppose that there exists q� [�, �) such that

m(x,y) …n(x,y) � qd(x,Tx)d(y,Ty) (
.�	)

for all x,y � X,where m(x,y) and n(x,y) are de“ned as in Theorem� .Then, for each x� � X,
the sequence{T nx� }n� N converges to a “xed point of T.

If the statements of Theorem� are considered in the setting of BMS instead ofb-BMS,
we get the following consequence.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exists� � � such that

m(x,y) …n(x,y) � �
(
d(x,Tx)d(y,Ty)

)
(
.��)

for all x,y � X, where m(x,y) and n(x,y) are de“ned as in Theorem� . For each x� � X, the
sequence{T nx� }n� N converges to a “xed point of T.

If we take� (t) = qt in Corollary 	 , then the following consequence is obtained imme-
diately.

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS
(X,d). Suppose that there exists q� [�, �) such that

m(x,y) …n(x,y) � qd(x,Tx)d(y,Ty) (
.��)
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for all x,y � X,where m(x,y) and n(x,y) are de“ned as in Theorem� .Then, for each x� � X,

the sequence{T nx� }n� N converges to a “xed point of T.

2.5 Karapınar type nonunique fixed point results [28]
Theorem Let T be an orbitally continuous self-map on the T-orbitally complete b-BMS

(X,d).Suppose that there exist real numbers a� ,a
 ,a ,a� ,a� and a self-mapping T: X � X

satis“es the conditions

� �
a� …a


a� + a

< �, a� + a
 �= �, a� + a
 + a > � and � � a …a� (
.��)

a� d(Tx,Ty) + a

[
d(x,Tx) + d(y,Ty)

]
+ a

[
d(y,Tx) + d(x,Ty)

]

� a� d(x,y) + a� d
(
x,T 
 x

)
(
.��)

hold for all x,y � X. Then T has at least one “xed point.

Proof For arbitrary x� � X, we shall construct a sequence{xn} as follows:

xn+� := Txn, n = �, �, 
, . . . (
.��)

Utilizing the inequality by takingx = xn andy = xn+� , we “nd that

a� d(Txn,Txn+� ) + a

[
d(xn,Txn) + d(xn+� ,Txn+� )

]
+ a

[
d(xn+� ,Txn) + d(xn,Txn+� )

]

� a� d(xn,xn+� ) + a� d
(
xn,T 
 xn

)
(
.�
)

for all a� ,a
 ,a ,a� ,a� , which ful“ls ( 
.�� ). On account of (
.�� ), statement (
.�
 ) becomes

a� d(xn+� ,xn+
 ) + a

[
d(xn,xn+� ) + d(xn+� ,xn+
 )

]
+ a

[
d(xn+� ,xn+� ) + d(xn,xn+
 )

]

� a� d(xn,xn+� ) + a� d(xn,xn+
 ). (
.�)

By a simple computation, we derive

(a� + a
 )d(xn+� ,xn+
 ) + (a …a� )d(xn,xn+
 ) � (a� …a
 )d(xn,xn+� ). (
.��)

So, the inequality above yields that

d(xn+� ,xn+
 ) � qd(xn,xn+� ), (
.��)

whereq = a� …a

a� +a


. Due to (
.�� ), we have �� q < �. Regarding (
.�� ), we recursively obtain

d(xn,xn+� ) � qd(xn…�,xn) � q
 d(xn…
,xn…�) � · · · � qnd(x� ,x� ). (
.�	)

Thus, the sequence{d(xn,xn+� )} is nonincreasing.

In what follows we shall prove that the sequence{xn} has no periodic point, that is,

xn �= xn+k for all k � N and for all n � N� . (
.��)
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Actually, if xn = xn+k for somen � N� andk � N, we “nd xn+� = Txn = Txn+k = xn+k+� . Keep-

ing inequality (
.�� ) in mind, we derive that

d(xn,xn+� ) = d(xn+k,xn+k+� ) � qkd(xn,xn+� ), (
.��)

which is a contradiction. Consequently, we suppose that

xn �= xm for all distinct n,m � N. (
.��)

One can easily discover thatxn+k �= xm+k for all distinct n,m � N and xn+k,xm+k � X \

{xn,xm}.

There exists a natural numberM such that

� < qks< � for all k � M,

sincek � [�, �) and hence limn�� kn = �.

As a next step, we shall indicate that{xn} is a Cauchy sequence. By regarding the modi“ed

quadrilateral inequality, we “nd

d(xm,xn) � s
[
d(xm,xm+k) + d(xm+k,xn+k) + d(xn+k,xn)

]

� sqmd(x� ,xk) + sqkd(xm,xn) + sqnd(xk,x� ). (
.	�)

By rearranging the term in the inequality above, we attain that

d(xm,xn) �
s(qm + qn)

� …qks
d(xk,x� ). (
.	�)

Consequently, we derive that (xn)n� N is a Cauchy sequence.

The rest of the proof is deduced by following the corresponding lines in the proof of

Theorem�� . �

Corollary  Let T be an orbitally continuous self-map on the T-orbitally complete BMS

(X,d).Suppose that there exist real numbers a� ,a
 ,a ,a� ,a� and a self-mapping T: X � X

satis“es the conditions

� �
a� …a


a� + a

< �, a� + a
 �= �, a� + a
 + a > � and � � a …a�

a� d(Tx,Ty) + a

[
d(x,Tx) + d(y,Ty)

]
+ a

[
d(y,Tx) + d(x,Ty)

]
� a� d(x,y) + a� d

(
x,T 
 x

)

hold for all x,y � X. Then T has at least one “xed point.

Proof Takes= � in the proof of Theorem � . �
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