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1 Introduction
In theorems cited further, we apply notations that are better suited to the results of the
next sections of our paper.

Meir and Keeler proved the following theorem.

Theorem . ([], Theorem) Let (X,ρ) be a complete metric space, and f a mapping of X
into itself. If

given α > , there exists ε >  such that

α ≤ ρ(y, x) < α + ε implies ρ(fy, fx) < α,

then f has a unique fixed point x. Moreover, limn→∞ f nx = x for any x ∈ X.

Let us recall that if (X,ρ) is a metric space, then a selfmapping f on X is contractive if
the following condition is satisfied:

ρ(fy, fx) < ρ(y, x), x �= y, x, y ∈ X. ()

The result of Meir and Keeler was extended by Matkowski and Ćirić.

Theorem . ([], Theorem .., []) Let f be a contractive selfmapping on a complete
metric space (X,ρ) that satisfies the following condition:

for any α > , there exists ε >  such that

α < ρ(y, x) < α + ε implies ρ(fy, fx) ≤ α, x, y ∈ X.
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Then f has a unique fixed point x, and f nx → x for each x ∈ X.

Both theorems are more general than the next theorem of Boyd and Wong [].

Theorem . ([], Theorem ) Let (X,ρ) be a complete metric space, and let f : X → X
satisfy

ρ(fy, fx) ≤ ϕ
(
ρ(y, x)

)
, x, y ∈ X,

where ϕ : [,∞) → [,∞) is upper semicontinuous from the right and such that ϕ(t) < t for
all t ∈ (,∞). Then, f has a unique fixed point x, and f nx → x for each x ∈ X.

In an extension of this theorem ([], Theorem .), we assumed that ϕ(t) < t for all t ∈
(,∞) and

for each α > , there exists ε > 

such that ϕ(·) ≤ α on (α,α + ε).
()

In addition, the metric was replaced by a dislocated metric (for definitions, see Section ).
Clearly, our theorem is more general than the Boyd-Wong one even for metric spaces.

Jachymski [] obtained the following more general result for metric spaces.

Theorem . ([], Corollary) Let f be a selfmapping of a complete metric space (X,ρ) such
that ρ(fy, fx) < d(y, x) for x �= y and ρ(fy, fx) ≤ ϕ(ρ(y, x)) for all x, y ∈ X, where ϕ : [,∞) →
[,∞) satisfies condition (). Then f has a unique fixed point x, and f nx → x for any
x ∈ X.

It appears that the simple reasoning presented in [] applies to conditions of the Meir-
Keeler type. Consequently, we easily obtain extensions of the well-known theorems to the
case of dislocated metric spaces or partial metric spaces. In addition, new results for cyclic
mappings are proved. Also, the next theorem of Proinov is strongly extended in Section 
(see Theorems ., .).

Theorem . ([], Theorem .) Let (X,ρ) be a complete metric space, and let f be a
continuous selfmapping such that limn→∞ ρ(f n+x, f nx) = , x ∈ X, and for

D(x, y) = ρ(y, x) + γ
[
ρ(fy, y) + ρ(fx, x)

]
(a γ ≥ ), x, y ∈ X,

the following conditions are satisfied:

ρ(fy, fx) < D(y, x), x, y ∈ X,

for any α > , there exists ε >  such that

α < D(y, x) < α + ε implies ρ(fy, fx) ≤ α, x, y ∈ X.

Then f has a unique fixed point x, and f nx → x for each x ∈ X.
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2 Lemmas
Lemma . Let (an)n∈N be a nonnegative sequence such that

an+ >  yields an+ < an, n ∈N. ()

Then limn→∞ an =  iff the following condition is satisfied:

for each α > , there exists ε >  such that

α < an < α + ε implies an+ ≤ α, n ∈N.
()

Proof Assume that () holds and suppose limn→∞ an =  is false. If an = , then () yields
an+k = , k ∈ N, and limn→∞ an = . Therefore, an > , n ∈ N, and (an)n∈N decreases to an
α > . We have α < an+ < an, n ∈ N, and an < α + ε for large n. Now, from () it follows
that α < an+ ≤ α, a contradiction. In turn, assume that limn→∞ an = . If α >  is such that
an ≤ α, n ∈ N, then () is satisfied. If there exists an > α, then an+ < an (see ()), and for
some n and ε, an is the unique element of (an)n∈N in (α,α + ε), that is, () is satisfied. �

We use the term of dislocated metric (i.e., d-metric) following Hitzler and Seda [];
d-metric differs from metric since p(x, y) =  yields x = y (no equivalence). The topology
of a d-metric space is generated by balls. If p is a d-metric, then the pair (X, p) was first
defined by Matthews as a metric domain (see [], Definition, p.).

In the present section, we put xn = f nx, n ∈ N .

Lemma . Let (X, p) be a d-metric space, and let f be a selfmapping satisfying

p(xn+, xn+) >  implies p(xn+, xn+) < p(xn+, xn), n ∈N. ()

Then limn→∞ p(xn+, xn) =  iff the following condition holds:

for each α > , there exists ε >  such that

α < p(xn+, xn) < α + ε implies p(xn+, xn+) ≤ α, n ∈N.
()

Proof We apply Lemma . to an = p(xn+, xn), n ∈N. �

The subsequent definition is equivalent to the classical one (see ()) if p is a metric.

Definition . Let (X, p) be a d-metric space. Then a selfmapping f on X is contractive if
the following condition is satisfied:

p(fy, fx) >  implies p(fy, fx) < p(y, x), x, y ∈ X. ()

If f : X → X is a contractive mapping, then () holds for each x ∈ X. Now, from
Lemma . we obtain the following:

Corollary . Let (X, p) be a d-metric space, and let f be a contractive selfmapping on X.
Then limn→∞ p(xn+, xn) =  iff () holds.
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Let us consider

cf (y, x) = max
{

p(y, x), p(fy, y), p(fx, x)
}

and

p(fy, fx) >  implies p(fy, fx) < cf (y, x), x, y ∈ X. ()

Then we obtain

p(xn+, xn+) >  implies

p(xn+, xn+) < cf (xn+, xn) = max
{

p(xn+, xn), p(xn+, xn+)
}

= p(xn+, xn), n ∈N

(otherwise, a contradiction). Consequently, () yields (), and we have the following:

Corollary . Let (X, p) be a d-metric space, and let f be a selfmapping on X satisfying
() (or () or ()). Then limn→∞ p(xn+, xn) =  iff () holds (α < p(· · · ) < α + ε can be also
replaced by α < cf (· · · ) < α + ε in ()).

Let us recall the notion of partial metric from Matthews [], Definition .. A partial
metric is a mapping p : X × X → [,∞) such that

x = y iff p(x, x) = p(x, y) = p(y, y), x, y ∈ X, (a)

p(x, x) ≤ p(x, y), x, y ∈ X, (b)

p(x, y) = p(y, x), x, y ∈ X, (c)

p(x, z) ≤ p(x, y) + p(y, z) – p(y, y), x, y, z ∈ X. (d)

From (b) it follows that p(x, y) =  yields p(x, x) = p(y, y) = , that is, x = y (see (a)), and
consequently, each partial metric is a d-metric. Therefore, all results of the present paper
for d-metric spaces remain valid also for partial metric spaces, though the partial metric
topology (see []) differs from the d-metric one.

Let us consider

mf (y, x) = max
{

p(y, x), p(fy, y), p(fx, x),
[
p(fy, x) + p(fx, y)

]
/

}

and

p(fy, fx) >  implies p(fy, fx) < mf (y, x), x, y ∈ X. ()

We have (see (d))

[
p(xn+, xn) + p(xn+, xn+)

]
/

≤ [
p(xn+, xn+) + p(xn+, xn) – p(xn+, xn+) + p(xn+, xn+)

]
/

=
[
p(xn+, xn+) + p(xn+, xn)

]
/ ≤ max

{
p(xn+, xn+), p(xn+, xn)

}

= cf (xn+, xn).
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Consequently, mf (xn+, xn) = cf (xn+, xn), and the reasoning for cf applies. Each partial met-
ric is a d-metric, and the previous reasoning, together with Corollary ., yields the fol-
lowing:

Corollary . Let (X, p) be a partial metric space, and let f be a selfmapping on X satis-
fying () (or () or () or ()). Then limn→∞ p(xn+, xn) =  iff () holds (α < p(· · · ) < α + ε

can be also replaced by α < mf (· · · ) < α + ε or by α < cf (· · · ) < α + ε in ()).

Lemma . Let (X, p) be a d-metric space, and let f be a selfmapping on X satisfying the
following conditions:

p(xn+k+, xk+) >  implies

p(xn+k+, xk+) < cf (xn+k , xk), k, n ∈ N,
()

for each α > , there exists ε >  such that

α < cf (xn+k , xk) < α + ε implies p(xn+k+, xk+) ≤ α, k, n ∈ N.
()

Then limm,n→∞ p(xn, xm) = . In addition, cf can be replaced by p in () or () (so also in
both of them). Similarly, if p is a partial metric, then cf can be replaced by mf in () or ().

Proof From the triangle inequality it follows that it is sufficient to consider m �= n. Clearly,
if () and () hold, then, in particular, () and () are satisfied. Therefore, we have
limn→∞ p(xn+, xn) =  (see Corollary . or Corollary .). Suppose that limm,n→∞ p(xn,
xm) =  is false. Then, for an infinite subset K of N and each k ∈K, there exists n ∈ N such
that  < α < p(xn+k+, xk+). Let n = n(k) be the smallest such number. For large k, we obtain
(see ())

α < p(xn+k+, xk+) < cf (xn+k , xk) = p(xn+k , xk)

≤ p(xn+k , xk+) + p(xk+, xk) ≤ α + p(xk+, xk).

The inequality

cf (xn+k , xk) ≤ mf (xn+k , xk) < p(xn+k , xk+) + ε ≤ α + ε

for large k when p is a partial metric is a consequence of
[
p(xn+k+, xk) + p(xn+k , xk+)

]
/

≤ [
p(xn+k+, xn+k) + p(xn+k , xk) – p(xn+k , xn+k) + p(xn+k , xk+)

]
/

≤ [
p(xn+k+, xn+k) + p(xn+k , xk+) + p(xk+, xk) – p(xk+, xk+)

– p(xn+k , xn+k) + p(xn+k , xk+)
]
/

= p(xn+k , xk+) +
[
p(xn+k+, xn+k) – p(xn+k , xn+k) + p(xk+, xk) – p(xk+, xk+)

]
/

and (b). Now, α < cf (xn+k , xk) < α + ε for large k and () yield

α < p(xn+k+, xk+) ≤ α,

a contradiction. �
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In a similar way, we prove the following lemma suitable for cyclic mappings.

Lemma . Let (X, p) be a d-metric space, and let f be a selfmapping on X satisfying the
following conditions for a fixed t ∈N:

p(xnt+k+, xk+) >  implies

p(xnt+k+, xk+) < cf (xnt+k+, xk), k ∈ N, n ∈ N∪ {},
()

for each α > , there exists ε >  such that

α < cf (xnt+k+, xk) < α + ε implies

p(xnt+k+, xk+) ≤ α, k ∈ N, n ∈ N∪ {}.
()

Then limm,n→∞ p(xn, xm) = . In addition, cf can be replaced by p in () or () (so also
in both of them). Similarly, if p is a partial metric, then cf can be replaced by mf in ()
or ().

Proof Clearly, if () and () hold, then, in particular, () and () are satisfied. There-
fore, we have limn→∞ p(xn+, xn) =  (see Corollary . or Corollary .). Suppose that
limk,n→∞ p(xnt+k+, xk+) =  is false. Then, for an infinite subset K of N and each k ∈ K,
there exists n ∈ N such that  < α < p(x(n+)t+k+, xk+). Let n = n(k) be the smallest such
number. For large k, we obtain (see ())

α < p(x(n+)t+k+, xk+) < cf (x(n+)t+k+, xk) = p(x(n+)t+k+, xk)

≤ p(x(n+)t+k+, x(n+)t+k) + · · · + p(xnt+k+, xk+) + p(xk+, xk)

≤ p(x(n+)t+k+, x(n+)t+k) + · · · + α + p(xk+, xk).

Therefore (see Corollary .), we have

α < p(x(n+)t+k+, xk+) < cf (x(n+)t+k+, xk) < α + ε

for large k. Now, condition () yields

α < p(x(n+)t+k+, xk+) ≤ α,

a contradiction. Therefore, limk,n→∞ p(xnt+k+, xk+) = . For any s ∈ {, . . . , t}, we have

p(xnt+k+s, xk+) ≤ p(xnt+k+s, xnt+k+s–) + · · · + p(xnt+k+, xk+),

and Lemma . yields limk,n→∞ p(xnt+k+s, xk+) = , that is, the proof of our lemma is com-
pleted. �

It can be seen that Lemma . is a consequence of Lemma . for t = .
For a mapping β : [,∞)×[,∞) → [,∞) continuous at (, ) and such that β(, ) = ,

let us consider

Df (y, x) = p(y, x) + β
(
p(fy, y), p(fx, x)

)
()
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and

p(fy, fx) >  implies p(fy, fx) < Df (y, x), x, y ∈ X, ()

Lemma . Let (X, p) be a d-metric space, and let f be such a selfmapping on X that
limn→∞ p(xn+, xn) = , and the following conditions hold for a fixed t ∈N:

p(xnt+k+, xk+) >  implies

p(xnt+k+, xk+) < Df (xnt+k+, xk), k ∈N, n ∈N∪ {},
()

for each α > , there exists ε >  such that

α < Df (xnt+k+, xk) < α + ε implies

p(xnt+k+, xk+) ≤ α, k ∈ N, n ∈ N∪ {}.
()

Then limm,n→∞ p(xn, xm) = . In addition, p(y, x) can be replaced by cf (y, x) (or by mf (y, x)
if p is a partial metric) in () for () or ().

Proof Suppose that limk,n→∞ p(xnt+k+, xk+) =  is false. Then for an infinite subset K of N
and each k ∈ K, there exists n ∈ N such that  < α < p(x(n+)t+k+, xk+). Let n = n(k) be the
smallest such number. We obtain (see ())

α < p(x(n+)t+k+, xk+) < Df (x(n+)t+k+, xk)

= p(x(n+)t+k+, xk) + β
(
p(x(n+)t+k+, x(n+)t+k+), p(xk+, xk)

)

≤ p(x(n+)t+k+, x(n+)t+k) + · · · + p(xnt+k+, xk+) + p(xk+, xk)

+ β(. . . , . . .)

≤ p(x(n+)t+k+, x(n+)t+k) + · · · + α + p(xk+, xk) + β(. . . , . . .)

for large k. Therefore (β is continuous at (, ), and β(, ) = ), we have

α < Df (x(n+)t+k+, xk) < α + ε

for large k. Our condition () yields

α < p(x(n+)t+k+, xk+) ≤ α,

a contradiction. Therefore, limk,n→∞ p(xnt+k+, xk+) = . Now, we follow the final part of
the proof of Lemma .. �

Definition . A selfmapping f on a d-metric space (X, p) is -continuous at x if
limn→∞ p(x, xn) =  implies limn→∞ p(fx, fxn) =  for each sequence (xn)n∈N in X; f is
-continuous if it is -continuous at each point x ∈ X.

Lemma . Let (X, p) be a d-metric space, and let f be a selfmapping on X. If f is contrac-
tive, then f has at most one fixed point; the same holds if f satisfies () or () and p satisfies
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(b) or if p is a metric and () holds. If f is -continuous at x (e.g., if f is contractive) and
limn→∞ p(x, f nx) = , then x = fx and p(x, x) = .

Proof If x, y are fixed points of f and (b) holds, then we obtain

mf (y, x) = max
{

p(y, x), p(y, y), p(x, x),
[
p(y, x) + p(x, y)

]
/

}

= cf (y, x) = p(y, x).

In addition, if x �= y, then each of conditions (), (), and() yields

 < p(y, x) = p(fy, fx) < p(y, x),

a contradiction. If p is a metric and () holds, then we have

 < p(y, x) = p(fy, fx) < Df (y, x) = p(y, x) + β(, ) = p(y, x),

also a contradiction. Let us consider x ∈ X with limn→∞ p(x, xn) = . Then we have

p(fx, x) ≤ p(fx, xn+) + p(xn+, x),

and in view of the -continuity of f at x, we also obtain limn→∞ p(fx, xn+) = , that is,
p(fx, x) = . �

3 Theorems
Let us recall ([], Definition .) that a d-metric space (X, p) is -complete if for
each sequence (xn)n∈N in X with limm,n→∞ p(xn, xm) = , there exists x ∈ X such that
limn→∞ p(x, xn) = .

Now, we are ready to extend the Ćirić theorem [] and the Matkowski Theorem .. in
[] (here Theorem .) to the case of d-metric spaces (and cf in place of p).

Theorem . Let f be a -continuous selfmapping on a -complete d-metric space (X, p).
Assume that () or () holds and the following condition is satisfied:

for each α > , there exists ε >  such that

α < cf (y, x) < α + ε implies p(fy, fx) ≤ α, x, y ∈ X.
()

Then f has a unique fixed point, say x, and limn→∞ p(x, f nx) = p(x, x) = , x ∈ X.

Proof Our space is -complete, and, therefore, the sequence (f nx)n∈N converges (Lem-
ma .) to a unique fixed point of f (Lemma .). �

Lemma  from [] and the previous theorem yield the following result.

Theorem . Let h be a selfmapping on a -complete d-metric space (X, p) such that f = hs

(for some s ∈ N) satisfies the assumptions of Theorem .. Then h has a unique fixed point,
say x, and limn→∞ p(x, hnx) = p(x, x) = , x ∈ X.
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Lemma . enables us to extend the previous theorems to the case of cyclic mappings.
The idea was introduced by Kirk et al. [], and we apply Definition . from []. For a
fixed t ∈N, we put t + + =  and j + + = j +  for j ∈ {, . . . , t – }. Then f : X → X is cyclic if
X = X ∪ · · · ∪ Xt and f (Xj) ⊂ Xj++, j = , . . . , t.

Theorem . Let f be a -continuous cyclic selfmapping on a -complete d-metric space
(X, p), and let the following conditions be satisfied:

p(fy, fx) >  implies

p(fy, fx) < cf (y, x), x ∈ Xj, y ∈ Xj++, j = , . . . , t,
()

for each α > , there exists ε >  such that

α < cf (y, x) < α + ε implies

p(fy, fx) ≤ α, x ∈ Xj, y ∈ Xj++, j = , . . . , t.

()

Then f has a unique fixed point, say x, and limn→∞ p(x, f nx) = p(x, x) = , x ∈ X.

Proof Our space is -complete, and, therefore, the sequence (f nx)n∈N converges (Lem-
ma .) to a unique fixed point of f (Lemma .). �

An analogue of Theorem . for cyclic mappings is the following consequence of The-
orem . and of [], Lemma .

Theorem . Let h be a selfmapping on a -complete d-metric space (X, p) such that f = hs

(for some s ∈N) satisfies the assumptions of Theorem .. Then h has a unique fixed point,
say x, and limn→∞ p(x, hnx) = p(x, x) = , x ∈ X.

Let us note that a partial metric space (X, p) is -complete iff (X, p) treated as a d-metric
space is -complete (see [], Corollary , Proposition ).

Remark . In view of Lemma ., cf can be replaced by p in any of conditions of The-
orems ., ., ., and .; if p is a partial metric, then in view of Lemma ., cf can be
replaced by mf in any condition of those theorems. Theorem . for mf becomes an ex-
tension of a theorem of Jachymski ([], Theorem ) to the case of partial metric spaces.

Theorem . Let (X, p) be a -complete d-metric space, and let f be a -continuous cyclic
selfmapping on X such that limn→∞ p(f n+x, f nx) = , x ∈ X. Assume that the following
conditions hold:

p(fy, fx) >  implies

p(fy, fx) < Df (y, x), x ∈ Xj, y ∈ Xj++, j = , . . . , t,
()

for each α > , there exists ε >  such that

α < Df (y, x) < α + ε implies

p(fy, fx) ≤ α, x ∈ Xj, y ∈ Xj++, j = , . . . , t.

()
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Then f has a fixed point, say x, such that limn→∞ p(x, f nx) = , x ∈ X, and x is unique if
p is a metric. In addition, p(y, x) can be replaced by cf (y, x) (or by mf (y, x) if p is a partial
metric) in () for () or () (so also for both of them).

Proof We apply Lemmas . and .. �

Theorem . with t =  yields the following one.

Theorem . Let (X, p) be a -complete d-metric space, and let f be a -continuous self-
mapping on X such that limn→∞ p(f n+x, f nx) = , x ∈ X. Assume that the following con-
ditions hold:

p(fy, fx) >  implies p(fy, fx) < Df (y, x), x, y ∈ X, ()

for each α > , there exists ε >  such that

α < Df (y, x) < α + ε implies p(fy, fx) ≤ α, x, y ∈ X.
()

Then f has a fixed point, say x, such that limn→∞ p(x, f nx) = , x ∈ X, and x is unique if
p is a metric. In addition, p(y, x) can be replaced by cf (y, x) (or by mf (y, x) if p is a partial
metric) in () for () or () (so also for both of them).

We can easily present extensions of the previous theorems for f = hs (see Theorems .
and .).

Theorem . is a further extension of Theorem . in [] (here Theorem .).

Remark . Clearly, the results of the present section stay valid if we assume that (X, p)
is -complete for orbits of f because in the proofs of our lemmas only orbits were used.
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