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Let T : C → C be a continuous mapping, and φ : C → R be a mapping. Very recently,
Rahaman et al. [] considered the generalized mixed equilibrium problem of finding a
point x ∈ C such that

F
(
λx + ( – λ)z, y

)
+ 〈Tx, y – x〉 + φ(y) – φ(x)≥  (.)

for all y, z ∈ C and λ ∈ (, ]. The set of solutions of problem (.) is denoted by
GMEP(F ,T ,φ).
Let H, H, and H be real Hilbert spaces, and C and Q be nonempty closed and

convex subsets of H and H, respectively. Let F : C × C → R and G : Q × Q → R

be two bifunctions, T : C → C and S : Q → Q be nonlinear mappings, φ : C → R ∪
{+∞} and ϕ : Q → R ∪ {+∞} be proper lower semicontinuous and convex mappings
such that C ∩ dom φ �= ∅ and Q ∩ dom ϕ �= ∅, and A : H → H and B : H → H be
bounded linear mappings. In , Rahaman et al. [] introduced the following split
equality generalized mixed equilibrium problem (SEGMEP): find x∗ ∈ C and y∗ ∈ Q such
that

F
(
λx∗ + ( – λ)b,x

)
+

〈
Tx∗,x – x∗〉 + φ(x) – φ

(
x∗) ≥ ,

G
(
λy∗ + ( – λ)c, y

)
+

〈
Sy∗, y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥ , and (.)

Ax∗ = By∗

for all x,b ∈ C, y, c ∈ Q, and λ,λ ∈ (, ]. The solution set of problem (.) is denoted
by SEGMEP(F ,G,T ,S,φ,ϕ). This problem is a generalization of all the following prob-
lems.

. If T = S =  and λ = λ = , then the split equality generalized mixed equilibrium
problem (SEGMEP) is reduced to the split equality mixed equilibrium problem
(SEMEP) introduced by Ma et al. []: find x∗ ∈ C and y∗ ∈ Q such that

F
(
x∗,x

)
+ φ(x) – φ

(
x∗) ≥ , ∀x ∈ C,

G
(
y∗, y

)
+ ϕ(y) – ϕ

(
y∗) ≥ , ∀y ∈ Q, and (.)

Ax∗ = By∗.

. If T = S = φ = ϕ = , B = I , H = H, and λ = λ = , then problem (.) is reduced to
the split equilibrium problem (SEqP) introduced by He []: find x∗ ∈ C such that

F
(
x∗,x

) ≥ , ∀x ∈ C, and

Ax∗ = y∗ ∈ Q solves G
(
y∗, y

) ≥ , ∀y ∈ Q.
(.)

. If T = S = φ = ϕ =  and λ = λ = , then problem (.) is reduced to the split equality
equilibrium problem (SEEP) of finding x∗ ∈ C and y∗ ∈ Q such that

F
(
x∗,x

) ≥ , ∀x ∈ C,

G
(
y∗, y

) ≥ , ∀y ∈ Q, and (.)

Ax∗ = By∗.
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. If F = G = T = S = , then problem (.) is reduced to the split equality convex
minimization problem (SECMP) of finding x∗ ∈ C and y∗ ∈ Q such that

φ(x) ≥ φ
(
x∗), ∀x ∈ C, ϕ(y) ≥ ϕ

(
y∗), ∀y ∈ Q, and

Ax∗ = By∗.
(.)

. If F = G = T = S = , B = I , and H = H, then problem (.) is reduced to the split
convex minimization problem (SCMP) of finding x∗ ∈ C such that

φ(x) ≥ φ
(
x∗), ∀x ∈ C, ϕ(y) ≥ ϕ

(
y∗), ∀y ∈ Q, and

Ax∗ = y∗ ∈ Q.
(.)

. If F = G = φ = ϕ = T = S = , then problem (.) is reduced to the split equality
problem (SEP) of finding x∗ ∈ C and y∗ ∈ Q such that

Ax∗ = By∗. (.)

. If F = G = φ = ϕ = T = S = , B = I , and H = H, then problem (.) is reduced to the
split feasibility problem (SFP) of finding x∗ ∈ C such that

Ax∗ ∈ Q. (.)

This problem was introduced by Censor and Elfving [].
Since these kinds of problems are related implicitly or explicitly to many areas, such

as engineering, science optimization, economics, transportation, network and structural
analysis, Nash equilibrium problems in noncooperative games, computer tomograph, ra-
diation therapy treatment planing, physics, inverse problems that arise from phase re-
trievals and in medical image reconstruction, and so on, it is very important in mathe-
matics. So, many authors have proposed some algorithms to solve such problems; see, for
instance, [–]. We further give some of them.
In ,Ma et al. [] introduced the following simultaneous iterative algorithm to obtain

weak and strong convergence theorems for (SEMEP):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un,u) + φ(u) – φ(un) + 
rn

〈u – un,un – xn〉 ≥ ,
G(vn, v) + ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ ,

xn+ = αnun + ( – αn)T(un – γnA∗(Aun – Bvn)),
yn+ = αnun + ( – αn)S(vn + γnB∗(Aun – Bvn))

(.)

for all u ∈ C, v ∈ Q, where n ≥ , and T : H → H and S : H → H are nonexpansive map-
pings. In the same year, Rahaman et al. [] gave the following method as a generalization
of algorithm (.):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(λun + ( – λ)b,u) + φ(u) – φ(un)
+ 〈Tun,u – un〉 + 

rn
〈u – un,un – xn〉 ≥ ,

G(λvn + ( – λ)c, v) + ϕ(v) – ϕ(vn)
+ 〈Svn, v – vn〉 + 

rn
〈v – vn, vn – yn〉 ≥ ,

xn+ = ( – αn)(un – δnA∗(Aun – Bvn)) + αnP(un – δnA∗(Aun – Bvn)),
yn+ = ( – αn)(vn + δnB∗(Aun – Bvn)) + αnQ(vn + δnB∗(Aun – Bvn))

(.)
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for all u,b ∈ C, v, c ∈ Q, where n ≥ , and P : H → H and Q : H → H are two demicon-
tractive mappings. They also proved that the sequence {(xn, yn)} generated by algorithm
(.) converges weakly and strongly to the solution of the split equality generalizedmixed
equilibrium problem (.) under some suitable conditions.
In this paper, inspired by algorithm (.), we introduce a modified algorithm to obtain

weak and strong convergence results for the split equality generalized mixed equilibrium
problem. Also, we give some corollaries and applications for the split equality problem,
the split feasibility problem, the split equality mixed convex differentiable optimization
problem, the split equality convex minimization problem, and the split equality mixed
equilibrium problem. Our results extend some correspoing results of many authors.

2 Preliminaries
Throughout this paper, we use the symbols → and ⇀ for the strong and weak conver-
gence, respectively. Now, we recall some definitions, lemmas, and properties, which we
need in the proof of our main theorem.
Let T be a mapping on a Hilbert space H . The set of fixed points of T is denoted by

F(T), that is, F(T) = {x ∈ H : Tx = x}. Let C be a nonempty closed convex subset of H .
A mapping T : C → C it is said to be

(i) a nonexpansive mapping if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ C;

(ii) a firmly nonexpansive mapping if

‖Tx – Ty‖ ≤ 〈Tx – Ty,x – y〉, ∀x, y ∈ C.

Lemma  ([]) Let C be a nonempty closed convex subset of a uniformly convex Banach
space X, and T : C → C be a nonexpansive mapping with F(T) �= ∅. Then F(T) is closed
and convex.

Lemma  ([]) Let C be a nonempty closed convex subset of a real Hilbert space H , and T
be a nonexpansive self-mapping on C. If F(T) �= ∅, then I – T is demiclosed, that is, if {xn}
is a sequence in C weakly converging to some x ∈ C and the sequence {(I – T)xn} strongly
converges to some y, then (I – T)x = y. Here, I is the identity operator of H .

Recall that T is said to be demicompact if every bounded sequence {xn} in C such that
{(I – T)xn} converges strongly contains a strongly convergent subsequence.
To solve a generalized mixed equilibrium problem for a bifunction F : C × C → R and

mappings T : C → C and φ : C → R, let us assume that the following conditions are sat-
isfied:

A. F(λx + ( – λ)b,x) = , ∀x ∈ C;
A. F is monotone, that is, for all x, y ∈ C,

F
(
λx + ( – λ)b, y

)
+ F

(
λy + ( – λ)b,x

) ≤ ;

A. T is monotone, that is, for all x, y ∈ C,

〈Tx – Ty,x – y〉 ≥ ;
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A. ∀x ∈ C, y �→ F(λx + ( – λ)b, y) is convex and lower semicontinuous;
A. F is hemicontinuous in the first argument;
A. T is weakly upper semicontinuous;
A. For all x ∈ C, λ ∈ (, ], and r > , there exist a bounded subset D ⊆ C and a ∈ C

such that, for all z ∈ C\D and b ∈ C,

–F
(
λa + ( – λ)b, z

)
+ 〈Tz,a – z〉 + φ(a) – φ(z) +


r
〈a – z, z – x〉 < .

Lemma  ([]) Let C be a nonempty closed convex subset of a Hilbert space H. Suppose
that the bifunction F : C ×C →R and the mapping T : C → C satisfy conditions (A)-(A).
Let φ : C → R ∪ {+∞} be a proper lower semicontinuous and convex mapping such that
C ∩ dom φ = ∅. For r > , λ ∈ (, ], and x ∈ H , let JF ,T

r : H → C be the resolvent operator
of F and T defined by

JF ,T
r (x) =

{
z ∈ C : F

(
λz + ( – λ)b, y

)
+ 〈Tz, y – z〉

+ φ(y) – φ(z) +

r
〈y – z, z – x〉 ≥ ,∀y,b ∈ C

}
. (.)

Then:
(i) For each x ∈ H, JF ,T

r (x) �= ∅;
(ii) JF ,T

r is single valued;
(iii) JF ,T

r is firmly nonexpansive, that is,

∥∥JF ,T
r (x) – JF ,T

r (y)
∥∥ ≤ 〈

JF ,T
r (x) – JF ,T

r (y),x – y
〉
, ∀x, y ∈ H;

(iv) F(JF ,T
r ) = GMEP(F ,T ,φ), and it is closed and convex.

Let the bifunction G : Q × Q → R and the mapping S : Q → Q satisfy conditions (A)-
(A). Let ϕ : C →R∪ {+∞} be a proper lower semicontinuous and convex mapping such
that Q ∩ dom ϕ = ∅. For s > , λ ∈ (, ], and u ∈ H, let JG,S

s : H → Q be the resolvent
operator of G and S defined by

JG,S
s (u) =

{
v ∈ Q : G

(
λv + ( – λ)c,w

)
+ 〈Sv,w – v〉

+ ϕ(w) – ϕ(v) +

s
〈w – v, v – u〉 ≥ ,∀w, c ∈ Q

}
. (.)

Then, clearly, JG,S
s satisfies (i)-(iv) of Lemma , and F(JG,S

s ) = GMEP(G,S,ϕ).

Lemma  (Opial’s lemma []) Let H be a real Hilbert space, and {μn} be a sequence in H
such that there exists a nonempty set W ⊂ H satisfying the following conditions:

(i) for every μ ∈ W , limn→∞ ‖μn –μ‖ exists;
(ii) any weak cluster point of the sequence {μn} belongs to W .
Then there exists w∗ ∈ W such that {μn} converges weakly to w∗.
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Lemma  ([]) Let H be a real Hilbert space. Then, we have

‖x – y‖ = ‖x‖ – ‖y‖ – 〈x – y, y〉

and

∥∥λx + ( – λ)y
∥∥ = λ‖x‖ + ( – λ)‖y‖ – λ( – λ)‖x – y‖

for all x, y ∈ H and λ ∈ [, ].

3 Main results
Now, we give a new modified iterative algorithm to solve the split equality generalized
mixed equilibrium problem. Moreover, we prove strong and weak convergence theorems
for nonexpansive mappings in Hilbert spaces. Throughout this section, we always assume
that:

B. H, H, and H are real Hilbert spaces, and C ⊆ H and Q ⊆ H are nonempty
closed convex subsets;

B. F : C × C →R and G : Q × Q →R are bifunctions satisfying conditions (A), (A),
(A), (A), and (A);

B. T : C → C and S : Q × Q →R are mappings satisfying conditions (A), (A), and
(A);

B. φ : C →R∪ {+∞} and ϕ : Q →R∪ {+∞} are proper lower semicontinuous and
convex mappings such that C ∩ dom φ �= ∅ and Q ∩ dom ϕ �= ∅;

B. P,P : H → H and P,P : H → H are nonexpansive mapping;
B. A : H → H and B : H → H are bounded linear mappings.
For an arbitrary initial value (x, y) ∈ C × Q, define the sequence {(xn, yn)} in C × Q

generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(λun + ( – λ)b,u) + φ(u) – φ(un)
+ 〈Tun,u – un〉 + 

rn
〈u – un,un – xn〉 ≥ ,

G(λvn + ( – λ)c, v) + ϕ(v) – ϕ(vn)
+ 〈Svn, v – vn〉 + 

rn
〈v – vn, vn – yn〉 ≥ ,

xn+ = ( – αn)P(un – δnA∗(Aun – Bvn)) + αnP(un – δnA∗(Aun – Bvn)),
yn+ = ( – αn)P(vn + δnB∗(Aun – Bvn)) + αnP(vn + δnB∗(Aun – Bvn))

(.)

for all u,b ∈ C and v, c ∈ Q, where n ≥ , λ,λ ∈ (, ], and the sequences {δn}, {αn}, and
{rn} satisfy the following conditions:

C. {δn} is a positive real sequence such that δn ∈ (ε, 
λA+λB

– ε) for sufficiently small ε,
where λA and λB are the spectral radii of A∗A and B∗B, respectively;

C. {αn} is a sequence in (, ) such that, for some α, β ∈ (, ),  < α ≤ αn ≤ β < ;
C. {rn} ⊂ (,∞) is such that lim infn→∞ rn >  and limn→∞ |rn+ – rn| = .

Theorem  Let H, H, H, F , G, T , S, P, P, P, P, φ, ϕ, A, and B satisfy conditions (B)-
(B). Let {(xn, yn)} be a sequence generated by (.). If F :=

⋂
i= F(Pi) ∩ SEGMEP(F ,G,Pi,

φ,ϕ) �= ∅, then:



Karahan Fixed Point Theory and Applications  (2016) 2016:101 Page 7 of 19

(i) the sequence {(xn, yn)} converges weakly to a solution of problem (.);
(ii) if Pi, i = , , , , are demicompact, then the sequence {(xn, yn)} converges strongly to

a solution of problem (.).

Proof (i) Let (x, y) ∈ F . So, x ∈ F(P) ∩ F(P) and y ∈ F(P) ∩ F(P). It is easy to see from
Lemma  that

‖un – x‖ = ∥
∥JF ,T

rn (xn) – JF ,T
rn (x)

∥
∥ ≤ ‖xn – x‖ (.)

and

‖vn – y‖ = ∥
∥JF ,T

rn (yn) – JF ,T
rn (y)

∥
∥ ≤ ‖yn – y‖. (.)

Since Pi, i = , , , , are nonexpansive mappings and

‖x – y‖ = ‖x‖ + ‖y‖ – 〈y,x〉

for all x, y ∈ H , we get from Lemma  that

‖xn+ – x‖ =
∥∥( – αn)P

(
un – δnA∗(Aun – Bvn)

)

+ αnP
(
un – δnA∗(Aun – Bvn)

)
– x

∥
∥

=
∥∥( – αn)

(
P

(
un – δnA∗(Aun – Bvn)

)
– x

)

+ αn
(
P

(
un – δnA∗(Aun – Bvn)

)
– x

)∥∥

≤ ( – αn)
∥∥un – δnA∗(Aun – Bvn) – x

∥∥

+ αn
∥
∥un – δnA∗(Aun – Bvn) – x

∥
∥

– αn( – αn)
∥∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥

=
∥∥un – δnA∗(Aun – Bvn) – x

∥∥

– αn( – αn)
∥
∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥

= ‖un – x‖ + δn
∥
∥A∗(Aun – Bvn)

∥
∥

– δn
〈
A∗(Aun – Bvn),un – x

〉

– αn( – αn)
∥
∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥

≤ ‖xn – x‖ + δn
∥
∥A∗(Aun – Bvn)

∥
∥

– δn
〈
A∗(Aun – Bvn),un – x

〉

– αn( – αn)
∥∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥. (.)
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On the other hand, we have

δn
∥∥A∗(Aun – Bvn)

∥∥ = δn
〈
Aun – Bvn,AA∗(Aun – Bvn)

〉

≤ λAδn‖Aun – Bvn‖. (.)

So, it follows from (.) and (.) that

‖xn+ – x‖ ≤ ‖xn – x‖ + λAδn‖Aun – Bvn‖

– δn〈Aun – Bvn,Aun – Ax〉
– αn( – αn)

∥
∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥. (.)

In a similar way, we get

‖yn+ – y‖ ≤ ‖yn – y‖ + λBδn‖Aun – Bvn‖

+ δn〈Aun – Bvn,Bvn – By〉
– αn( – αn)

∥∥P
(
vn + δnB∗(Aun – Bvn)

)

– P
(
vn + δnB∗(Aun – Bvn)

)∥∥. (.)

By adding inequalities (.) and (.) side by side and using Ax = By, we obtain

‖xn+ – x‖ + ‖yn+ – y‖

≤ ‖xn – x‖ + ‖yn – y‖ + δn(λA + λB)‖Aun – Bvn‖

– δn‖Aun – Bvn‖ – αn( – αn)
{∥∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥ +
∥∥P

(
vn + δnB∗(Aun – Bvn)

)

– P
(
vn + δnB∗(Aun – Bvn)

)∥∥}

= ‖xn – x‖ + ‖yn – y‖ – δn
(
 – δn(λA + λB)

)‖Aun – Bvn‖

– αn( – αn)
{∥∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥ +
∥∥P

(
vn + δnB∗(Aun – Bvn)

)

– P
(
vn + δnB∗(Aun – Bvn)

)∥∥}. (.)

Let ξn(x, y) = ‖xn – x‖ + ‖yn – y‖. Thus, we have from (.) that

ξn+(x, y) ≤ ξn(x, y) – δn
(
 – δn(λA + λB)

)‖Aun – Bvn‖

– αn( – αn)
{∥∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥ +
∥∥P

(
vn + δnB∗(Aun – Bvn)

)

– P
(
vn + δnB∗(Aun – Bvn)

)∥∥}. (.)
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Since αn ∈ (, ) and δn ∈ (ε, 
λA+λB

– ε), we get  – δn(λA + λB) > . So, from (.) we obtain

ξn+(x, y) ≤ ξn(x, y).

Therefore, the sequence {ξn(x, y)} is nonincreasing and lower bounded by . Hence,
limn→∞ ξn(x, y) exists. Let limn→∞ ξn(x, y) = σ (x, y). So condition (i) of Lemma  is sat-
isfied with μn = (xn, yn), μ∗ = (x, y), and W =F . Since the sequence {ξn(x, y)} converges to
a finite limit, we have from inequality (.) that

lim
n→∞‖Aun – Bvn‖ = , (.)

lim
n→∞

∥
∥P

(
un – δnA∗(Aun – Bvn)

)
– P

(
un – δnA∗(Aun – Bvn)

)∥∥ = , (.)

and

lim
n→∞

∥
∥P

(
vn + δnB∗(Aun – Bvn)

)
– P

(
vn + δnB∗(Aun – Bvn)

)∥∥ = . (.)

Moreover, since ‖xn – x‖ ≤ ξn(x, y) and ‖yn – y‖ ≤ ξn(x, y), the sequences {xn} and {yn}
are bounded, and lim supn→∞ ‖xn – x‖ and lim supn→∞ ‖yn – y‖ exist. Also, it follows from
(.) and (.) that lim supn→∞ ‖un – x‖ and lim supn→∞ ‖vn – y‖ exist. Let us assume that
the sequences {xn} and {yn} converge weakly to points x∗ and y∗, respectively. So, by (.),
the sequence {un – δnA∗(Aun – Bvn)} converges weakly to x∗, and {vn + δnB∗(Aun – Bvn)}
converges weakly to y∗. By Lemma  we get

‖xn+ – xn‖ = ‖xn+ – x – xn + x‖

= ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn,xn – x〉
= ‖xn+ – x‖ – ‖xn – x‖

– 
〈
xn+ – x∗,xn – x

〉
+ 

〈
xn – x∗,xn – x

〉
.

Hence, we obtain

lim
n→∞‖xn+ – xn‖ =  (.)

and, similarly,

lim
n→∞‖yn+ – yn‖ = . (.)

By Lemma , since un = JF ,T
rn (xn) and un+ = JF ,T

rn+ (xn+), we have that, for all u ∈ C,

F
(
λun + ( – λ)b,u

)
+ 〈Tun,u – un〉

+ φ(u) – φ(un) +

rn

〈u – un,un – xn〉 ≥  (.)

and

F
(
λun+ + ( – λ)b,u

)
+ 〈Tun+,u – un+〉

+ φ(u) – φ(un+) +


rn+
〈u – un+,un+ – xn+〉 ≥ . (.)
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Taking u = un in (.) and u = un+ in (.) and adding the resulting inequalities side by
side, we obtain

 ≤ F
(
λun + ( – λ)b,un+

)
+ F

(
λun+ + ( – λ)b,un

)

+ 〈Tun,un+ – un〉 + 〈Tun+,un – un+〉
+


rn

〈un+ – un,un – xn〉 + 
rn+

〈un – un+,un+ – xn+〉.

Using conditions (A)-(A), we have

 ≤ 
rn+

〈un – un+,un+ – xn+〉 + 
rn

〈un+ – un,un – xn〉

≤
〈
un+ – un,

un – xn

rn
–

un+ – xn+

rn+

〉

=
〈
un+ – un,un – un+ + un+ – xn –

rn

rn+
(un+ – xn+)

〉

= 〈un+ – un,un – un+〉

+
〈
un+ – un,xn+ – xn +

(
 –

rn

rn+

)
(un+ – xn+)

〉

= –‖un+ – un‖

+
〈
un+ – un,xn+ – xn +

(
 –

rn

rn+

)
(un+ – xn+)

〉
,

which implies that

‖un+ – un‖ ≤ ‖un+ – un‖
(

‖xn+ – xn‖ +
∣∣
∣∣ –

rn

rn+

∣∣
∣∣‖un+ – xn+‖

)
.

Thus, we get

‖un+ – un‖ ≤ ‖xn+ – xn‖ +
∣∣
∣∣ –

rn

rn+

∣∣
∣∣‖un+ – xn+‖. (.)

Using (.) and (C), from (.) we get

lim
n→∞‖un+ – un‖ = . (.)

In a similar way, we get

lim
n→∞‖vn+ – vn‖ = . (.)

On the other hand, from (.) and (.) we get

‖xn+ – x‖ ≤ ‖un – x‖ + δnλA‖Aun – Bvn‖

– δn〈Aun – Bvn,Aun – Ax〉
– αn( – αn)

∥
∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥ (.)
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and

‖yn+ – y‖ ≤ ‖vn – y‖ + δnλB‖Aun – Bvn‖

+ δn〈Aun – Bvn,Bvn – By〉
– αn( – αn)

∥
∥P

(
vn + δnB∗(Aun – Bvn)

)

– P
(
vn + δnB∗(Aun – Bvn)

)∥∥. (.)

Using Ax = By and adding inequalities (.) and (.) side by side, we have

‖xn+ – x‖ + ‖yn+ – y‖

≤ ‖un – x‖ + ‖vn – y‖

– δn
(
 – δn(λA + λB)

)‖Aun – Bvn‖

– αn( – αn)
{∥∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥

+
∥∥P

(
vn + δnB∗(Aun – Bvn)

)

– P
(
vn + δnB∗(Aun – Bvn)

)∥∥}, (.)

where

‖un – x‖ = ∥
∥JF ,T

rn (xn) – JF ,T
rn (x)

∥
∥ ≤ 〈xn – x,un – x〉

=


{‖xn – x‖ + ‖un – x‖ – ‖xn – un‖

}
(.)

and

‖vn – y‖ = ∥∥JG,S
rn (yn) – JF ,T

rn (y)
∥∥ ≤ 〈yn – y, vn – y〉

=


{‖yn – y‖ + ‖vn – y‖ – ‖yn – vn‖

}
. (.)

From (.)-(.) we conclude that

‖xn – un‖ + ‖yn – vn‖

≤ ‖xn – x‖ – ‖xn+ – x‖ + ‖yn – y‖ – ‖yn+ – y‖

– δn
(
 – δn(λA + λB)

)‖Aun – Bvn‖

– αn( – αn)
{∥∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥

+
∥∥P

(
vn + δnB∗(Aun – Bvn)

)

– P
(
vn + δnB∗(Aun – Bvn)

)∥∥}. (.)

Using (.)-(.), we have

lim
n→∞‖xn – un‖ =  (.)
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and

lim
n→∞‖yn – vn‖ = . (.)

Hence, un ⇀ x∗ and vn ⇀ y∗.
Since Pi, i = , , , , are nonexpansive mappings, we obtain

‖un – Pun‖ = ‖un – xn+ + xn+ – Pun‖
≤ ‖un – xn+‖ + ‖xn+ – Pun‖
= ‖un – un+ + un+ – xn+‖

+
∥∥( – αn)P

(
un – δnA∗(Aun – Bvn)

)

+ αnP
(
un – δnA∗(Aun – Bvn)

)
– Pun

∥
∥

≤ ‖un – un+‖ + ‖un+ – xn+‖
+

∥
∥P

(
un – δnA∗(Aun – Bvn)

)
– Pun

∥
∥

+ αn
∥
∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥

≤ ‖un – un+‖ + ‖un+ – xn+‖
+ |δn|

∥∥A∗∥∥‖Aun – Bvn‖ + αn
∥∥P

(
un – δnA∗(Aun – Bvn)

)

– P
(
un – δnA∗(Aun – Bvn)

)∥∥.

Using (.), (.), (.), and (.), we have

lim
n→∞‖un – Pun‖ = . (.)

Similarly, using the same steps as before for P, P, and P, we get

lim
n→∞‖un – Pun‖ = , lim

n→∞‖vn – Pvn‖ = , and lim
n→∞‖vn – Pvn‖ = . (.)

Since

‖xn – Pxn‖ = ‖xn – un + un – Pun + Pun – Pxn‖
≤ ‖xn – un‖ + ‖un – Pun‖ + ‖un – xn‖
= ‖xn – un‖ + ‖un – Pun‖,

we have from (.) and (.) that

lim
n→∞‖xn – Pxn‖ = . (.)

Similarly, we have

lim
n→∞‖xn – Pxn‖ = , lim

n→∞‖yn – Pyn‖ = , and lim
n→∞‖yn – Pyn‖ = . (.)
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Since the sequences {xn} and {yn} converge weakly to x∗ and y∗, respectively, and (I – Pi),
i = , , , , are demiclosed at zero, it follows from (.) and (.) that x∗ ∈ F(P)∩ F(P)
and y∗ ∈ F(P)∩F(P). On the other hand, it is well known that everyHilbert space satisfies
Opial’s condition. So, we have that the weakly subsequential limit of {(xn, yn)} is unique.
Now, we show that x∗ ∈ GMEP(F ,T ,φ) and y∗ ∈ GMEP(G,S,ϕ). Since un = JF ,T

rn (xn), we
have

F
(
λun + ( – λ)b,u

)
+ 〈Tun,u – un〉 + φ(u) – φ(un) +


rn

〈u – un,un – xn〉 ≥ 

for all b,u ∈ C and λ ∈ (, ]. From conditions (A) and (A) we obtain

φ(u) – φ(un) +

rn

〈u – un,un – xn〉 ≥ –F
(
λun + ( – λ)b,u

)
– 〈Tun,u – un〉

≥ F
(
λu + ( – λ)b,un

)
+ 〈Tu,un – u〉,

and hence

φ(u) – φ(unk ) +


rnk

〈u – unk ,unk – xnk 〉 ≥ F
(
λu + ( – λ)b,unk

)
+ 〈Tu,unk – u〉.

From (.) it is easy to see that unk ⇀ x∗. So, we can write limk→∞
‖unk –xnk ‖

rnk
= , and from

the lower semicontinuity of φ we get

F
(
λu + ( – λ)b,x∗) +

〈
Tu,x∗ – u

〉
+ φ

(
x∗) – φ(u) ≤  (.)

for all b,u ∈ C. Set ut = tu + ( – t)x∗ for t ∈ (, ] and u ∈ C. Since C is a convex set, we
have ut ∈ C. Hence, from (.) we have

F
(
λut + ( – λ)b,x∗) +

〈
Tut ,x∗ – ut

〉
+ φ

(
x∗) – φ(ut) ≤ . (.)

Using inequality (.), the convexity of φ, and conditions (A)-(A), we get

 = F
(
λut + ( – λ)b,ut

)
+ ( – t)〈Tut ,ut – ut〉 + φ(ut) – φ(ut)

≤ tF
(
λut + ( – λ)b,u

)
+ ( – t)F

(
λut + ( – λ)b,x∗)

+ tφ(u) + ( – t)φ
(
x∗) – φ(ut) + ( – t)

〈
Tut ,ut – x∗〉

+ ( – t)
〈
Tut ,x∗ – ut

〉

= t
{

F
(
λut + ( – λ)b,u

)
+ ( – t)

〈
Tut ,u – x∗〉 + φ(u) – φ(ut)

}

+ ( – t)
{

F
(
λut + ( – λ)b,x∗) +

〈
Tut ,x∗ – ut

〉
+ φ

(
x∗) – φ(ut)

}

≤ t
{

F
(
λut + ( – λ)b,u

)
+ ( – t)

〈
Tut ,u – x∗〉 + φ(u) – φ(ut)

}
,

which implies that

F
(
λut + ( – λ)b,u

)
+ ( – t)

〈
Tut ,u – x∗〉 + φ(u) – φ(ut) ≥ 
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for all b,u ∈ C. From the definition of ut it is clear that ut → x∗ as t → . Using conditions
(A) and (A) and the proper lower semicontinuity of φ, we obtain

F
(
λx∗ + ( – λ)b,u

)
+ ( – t)

〈
Tx∗,u – x∗〉 + φ(u) – φ

(
x∗) ≥ 

for all b,u ∈ C, which shows that x∗ ∈ GMEP(F ,T ,φ). By using similar steps we have that
y∗ ∈ GMEP(G,S,ϕ).
Since A : H → H and B : H → H are bounded linear mappings and {un} and {vn}

converge weakly to x∗ and y∗, respectively, for arbitrary f ∈ H∗
 , we have

f (Aun) → f
(
Ax∗).

Similarly,

f (Bvn) → f
(
By∗).

Hence, we get

Aun – Bvn ⇀ Ax∗ – By∗,

which implies that

∥∥Ax∗ – By∗∥∥ ≤ lim inf
n→∞ ‖Aun – Bvn‖ = ,

so that Ax∗ = By∗. So, it follows that (x∗, y∗) ∈ SEGMEP(F ,G,T ,S,φ,ϕ). Therefore,
(x∗, y∗) ∈F .
Finally, we conclude that, for each (x∗, y∗) ∈ F , limn→∞(‖xn – x∗‖ + ‖yn – y∗‖) exists

and each weak cluster point of the sequence ‖(x∗, y∗)‖ belongs toF . Let H = H × H with
norm ‖(x, y)‖ = √‖x‖ + ‖y‖,W =F ,μn = (xn, yn), andμ = (x∗, y∗). FromLemmawe see
that there exists (x, y) ∈F such that xn ⇀ x and yn ⇀ y. Therefore, the sequence {(xn, yn)}
generated by the iterative algorithm (.) converges weakly to a solution of problem (.)
in F . This completes the proof.
(ii) Now, we prove the strong convergence of the sequence {(xn, yn)} generated by the

iterative algorithm (.) under the demicompact condition.
Since Pi, i = , , , , are demicompact, {xn} and {yn} are bounded sequences, and

limn→∞ ‖xn–Pxn‖ = , limn→∞ ‖xn–Pxn‖ = , limn→∞ ‖yn–Pyn‖ = , and limn→∞ ‖yn–
Pyn‖ = , there exist subsequences {xnk } of {xn} and {ynk } of {yn} such that {xnk } and {ynk }
converge strongly to some points u∗ and v∗, respectively. The weak convergence of {xnk }
and {ynk } to x∗ and y∗, respectively, implies that x∗ = u∗ and y∗ = v∗. It follows from the
demiclosedness of Pi that x∗ ∈ F(P)∩ F(P) and y∗ ∈ F(P)∩ F(P). Using similar steps to
the previous ones, we get that x∗ ∈ GMEP(F ,T ,φ) and y∗ ∈ GMEP(G,S,ϕ). Thus, we have

∥
∥Ax∗ – By∗∥∥ = lim

k→∞
‖Axnk – Bynk ‖ = ,

which implies that Ax∗ = By∗. Hence, (x∗, y∗) ∈ F . On the other hand, since ξn(x, y) =
‖xn – x‖ + ‖yn – y‖ for (x, y) ∈ F , we know that limk→∞ ξnk (x

∗, y∗) = . From conjecture
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(i) we see that limn→∞ ξn(x∗, y∗) exists; therefore, limn→∞ ξn(x∗, y∗) = . So, the iterative
scheme (.) converges strongly to a solution of problem (.). This completes the proof
of conjecture (ii). �

Taking F = G = T = S = φ = ϕ =  in Theorem , we get the following convergence theo-
rem for the split equality problem (.).

Corollary  Let H, H, H, P, P, P, P, A, and B satisfy conditions (B), (B), and (B).
For an arbitrary initial value (x, y) ∈ C × Q, define the sequence {(xn, yn)} in C × Q gen-
erated by

{
xn+ = ( – αn)P(xn – δnA∗(Axn – Byn)) + αnP(xn – δnA∗(Axn – Byn)),
yn+ = ( – αn)P(yn + δnB∗(Axn – Byn)) + αnP(yn + δnB∗(Axn – Byn)),

where n ≥ , and the sequences {δn} and {αn} satisfy conditions (C) and (C), respectively.
If F :=

⋂
i= F(Pi)∩ SEP �= ∅, then:

(i) The sequence {(xn, yn)} converges weakly to a solution of problem (.);
(ii) If Pi, i = , , , , are demicompact, then the sequence {(xn, yn)} converges strongly to

a solution of problem (.).

Taking B = I and H = H in Corollary , we obtain the following convergence theorem
for the split feasibility problem (.).

Corollary  Let H, H, P, P, P, P, and A satisfy conditions (B), (B), and (B) with
A : H → H. For an arbitrary initial value (x, y) ∈ C × Q, define the sequence {(xn, yn)} in
C × Q generated by

{
xn+ = ( – αn)P(xn – δnA∗(Axn – yn)) + αnP(xn – δnA∗(Axn – yn)),
yn+ = ( – αn)P(yn + δn(Axn – yn)) + αnP(yn + δn(Axn – yn)), n ≥ ,

where {δn} is a positive real sequence such that δn ∈ (ε, 
λA

– ε) for sufficiently small ε, where
λA denotes the spectral radius of A∗A, and {αn} satisfy condition (C). If F :=

⋂
i= F(Pi)∩

SFP �= ∅, then:
(i) The sequence {(xn, yn)} converges weakly to a solution of problem (.);

(ii) If Pi, i = , , , , are demicompact, then the sequence {(xn, yn)} converges strongly to
a solution of problem (.).

4 Applications
Let C be a nonempty closed convex subset of a real Hilbert space H , and ψ : C → C be a
convex and differentiable mapping. It is known that the convex differentiable minimiza-
tion problem is to find x∗ ∈ C such that

min
x∈C

ψ(x) = ψ
(
x∗). (.)

Also, it is well known that a point x∗ is a solution of problem (.) if and only if

〈∇ψ
(
x∗), y – x∗〉 ≥  (.)
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for all y ∈ C. Problem (.) is called the classical variational inequality problem. If we get
F(x∗, y) = 〈∇ψ(x∗), y–x∗〉, then the equilibriumproblem (.) and the variational inequality
problem (.) have the same solution.
In , Rahaman et al. [] introduced the split equality mixed convex differentiable

optimization problem of finding x∗ ∈ C and y∗ ∈ Q such that

〈∇ψ
(
x∗),x – x∗〉 +

〈
T

(
x∗),x – x∗〉 + φ(x) – φ

(
x∗) ≥ , ∀x ∈ C,

〈∇σ
(
y∗), y – y∗〉 +

〈
S
(
y∗), y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥ , ∀y ∈ Q, and (.)

Ax∗ = By∗,

where ψ : C → H and σ : Q → H are convex differentiable mappings. The set of solu-
tions of the split equality mixed convex differentiable optimization problem (.) is de-
noted by SEMCDOP(ψ ,σ ,T ,S,φ,ϕ). If T = , then this problem is reduced to the split
equality mixed variational inequality problem introduced by Ma et al. [] in . Also, if
B = I and H = H, then problem (.) is reduced to the split mixed convex differentiable
optimization problem of finding x∗ ∈ C such that

〈∇ψ
(
x∗),x – x∗〉 +

〈
T

(
x∗),x – x∗〉 + φ(x) – φ

(
x∗) ≥ , ∀x ∈ C,

and such that Ax∗ = y∗ ∈ Q solves

〈∇σ
(
y∗), y – y∗〉 +

〈
S
(
y∗), y – y∗〉 + ϕ(y) – ϕ

(
y∗) ≥ , ∀y ∈ Q. (.)

The solution set of this problem is denoted by SMCDOP(ψ ,σ ,T ,S,φ,ϕ).
Since the gradients ∇ψ and ∇σ are monotone mappings, if F(x∗, y) = 〈∇ψ(x∗),x – x∗〉,

G(x, y∗) = 〈∇σ (y∗), y – y∗〉, and λ = λ = , then F and G satisfy condition (B). So, we can
give the following result.

Theorem  Let H, H, H, T , S, φ, ϕ, P, P, P, P, A, and B satisfy conditions (B)-
(B) except (B). Suppose that the mappings ψ : C → H and σ : Q → H are convex and
differentiable mappings. For an arbitrary initial value (x, y) ∈ C × Q, define the sequence
{(xn, yn)} in C × Q generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈∇ψ(un),u – un〉 + φ(u) – φ(un) + 〈Tun,u – un〉 + 
rn

〈u – un,un – xn〉 ≥ ,
〈∇σ (vn), v – vn〉 + ϕ(v) – ϕ(vn) + 〈Svn, v – vn〉 + 

rn
〈v – vn, vn – yn〉 ≥ ,

xn+ = ( – αn)P(un – δnA∗(Aun – Bvn)) + αnP(un – δnA∗(Aun – Bvn)),
yn+ = ( – αn)P(vn + δnB∗(Aun – Bvn)) + αnP(vn + δnB∗(Aun – Bvn))

for all u ∈ C and v ∈ Q,where n ≥ , and the sequences {δn}, {αn}, and {rn} satisfy conditions
(C)-(C), respectively. If F :=

⋂
i= F(Pi)∩ SEMCDOP(ψ ,σ ,T ,S,φ,ϕ) �= ∅, then:

(i) The sequence {(xn, yn)} converges weakly to a solution of problem (.);
(ii) If Pi, i = , , , , are demicompact, then the sequence {(xn, yn)} converges strongly to

a solution of problem (.).

In Theorem , if we take B = I and H = H, then we get the following result.
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Corollary  Let H, H, T , S, φ, ϕ, P, P, P, P, and A satisfy conditions (B)-(B) except
(B) with A : H → H. Suppose that the mappings ψ : C → H and σ : Q → H are con-
vex and differentiable mappings. For an arbitrary initial value (x, y) ∈ C × Q, define the
sequence {(xn, yn)} in C × Q generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈∇ψ(un),u – un〉 + φ(u) – φ(un) + 〈Tun,u – un〉 + 
rn

〈u – un,un – xn〉 ≥ ,
〈∇σ (vn), v – vn〉 + ϕ(v) – ϕ(vn) + 〈Svn, v – vn〉 + 

rn
〈v – vn, vn – yn〉 ≥ ,

xn+ = ( – αn)P(un – δnA∗(Aun – vn)) + αnP(un – δnA∗(Aun – vn)),
yn+ = ( – αn)P(vn + δn(Aun – vn)) + αnP(vn + δn(Aun – vn))

for all u ∈ C and v ∈ Q, where n ≥ , {δn} is a positive real sequences such that δn ∈
(ε, 

λA
– ε) for sufficiently small ε, where λA denotes the spectral radius of A∗A, and the

sequences {αn} and {rn} satisfy conditions (C) and (C), respectively. If F :=
⋂

i= F(Pi) ∩
SMCDOP(ψ ,σ ,T ,S,φ,ϕ) �= ∅, then:

(i) The sequence {(xn, yn)} converges weakly to a solution of problem (.);
(ii) If Pi, i = , , , , are demicompact, then the sequence {(xn, yn)} converges strongly to

a solution of problem (.).

In Theorem , if we take F = G = T = S = , then we have the following result for the split
equality convex minimization problem (.).

Theorem  Let H, H, H, φ, ϕ, P, P, P, P, A, and B satisfy conditions (B), (B), (B),
and (B). For an arbitrary initial value (x, y) ∈ C × Q, define the sequence {(xn, yn)} in
C × Q generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(u) – φ(un) + 
rn

〈u – un,un – xn〉 ≥ ,
ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ ,

xn+ = ( – αn)P(un – δnA∗(Aun – Bvn)) + αnP(un – δnA∗(Aun – Bvn)),
yn+ = ( – αn)P(vn + δnB∗(Aun – Bvn)) + αnP(vn + δnB∗(Aun – Bvn))

for all u ∈ C and v ∈ Q,where n ≥ , and the sequences {δn}, {αn}, and {rn} satisfy conditions
(C)-(C), respectively. If F :=

⋂
i= F(Pi)∩ SECMP(φ,ϕ) �= ∅, then:

(i) The sequence {(xn, yn)} converges weakly to a solution of problem (.);
(ii) If Pi, i = , , , , are demicompact, then the sequence {(xn, yn)} converges strongly to

a solution of problem (.).

If we take B = I and H = H in Theorem , then we get the following result for the split
convex minimization problem (.).

Corollary  Let H, H, P, P, P, P, φ, ϕ, and A satisfy conditions (B), (B), (B), and
(B) with A : H → H. For an arbitrary initial value (x, y) ∈ C × Q, define the sequence
{(xn, yn)} in C × Q generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(u) – φ(un) + 
rn

〈u – un,un – xn〉 ≥ ,
ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ ,

xn+ = ( – αn)P(un – δnA∗(Aun – vn)) + αnP(un – δnA∗(Aun – vn)),
yn+ = ( – αn)P(vn + δn(Aun – vn)) + αnP(vn + δn(Aun – vn))
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for all u ∈ C and v ∈ Q,where n ≥ , {δn} is a positive real sequences such that δn ∈ (ε, 
λA

–ε)
for sufficiently small ε, where λA denotes the spectral radius of A∗A, and the sequences {αn}
and {rn} satisfy conditions (C) and (C), respectively. If F :=

⋂
i= F(Pi)∩SCMP(φ,ϕ) �= ∅,

then:
(i) The sequence {(xn, yn)} converges weakly to a solution of problem (.);

(ii) If Pi, i = , , , , are demicompact, then the sequence {(xn, yn)} converges strongly to
a solution of problem (.).

In Theorem , if we take T = S =  and λ = λ = , then we have the following conver-
gence result for the split equality mixed equilibrium problem (.).

Theorem  Let H, H, H, F , G, φ, ϕ, P, P, P, P, A, and B satisfy conditions (B)-(B)
except (B). For an arbitrary initial value (x, y) ∈ C × Q, define the sequence {(xn, yn)} in
C × Q generated by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(un,u) + φ(u) – φ(un) + 
rn

〈u – un,un – xn〉 ≥ ,
G(vn, v) + ϕ(v) – ϕ(vn) + 

rn
〈v – vn, vn – yn〉 ≥ ,

xn+ = ( – αn)P(un – δnA∗(Aun – Bvn)) + αnP(un – δnA∗(Aun – Bvn)),
yn+ = ( – αn)P(vn + δnB∗(Aun – Bvn)) + αnP(vn + δnB∗(Aun – Bvn))

for all u ∈ C and v ∈ Q,where n ≥ , and the sequences {δn}, {αn}, and {rn} satisfy conditions
(C)-(C), respectively. If F :=

⋂
i= F(Pi)∩ SEMEP(F ,G,φ,ϕ) �= ∅, then:

(i) The sequence {(xn, yn)} converges weakly to a solution of problem (.);
(ii) If Pi, i = , , , , are demicompact, then the sequence {(xn, yn)} converges strongly to

a solution of problem (.).

Competing interests
The author has no competing interests.

Received: 24 February 2016 Accepted: 25 November 2016

References
1. Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123-145

(1994)
2. Ahmad, R, Rahaman, M: Generalized strongly vector equilibrium problem for set-valued mappings. Filomat 28(9),

1783-1790 (2014)
3. Rahaman, M, Liou, YC, Ahmad, R, Ahmad, I: Convergence theorems for split equality generalized mixed equilibrium

problems for demi-contractive mappings. J. Inequal. Appl. 2015, 418 (2015)
4. Ma, Z, Wang, L, Chang, SS, Duan, W: Convergence theorems for split equality mixed equilibrium problems with

applications. Fixed Point Theory Appl. 2015, 31 (2015). doi:10.1186/s13663-015-0281-x
5. He, Z: The split equilibrium problem and its convergence algorithms. J. Inequal. Appl. 2012, 162 (2012).

doi:10.1186/1029-242X-2012-162
6. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms

8(2), 221-239 (1994)
7. Censor, Y, Bortfeld, T, Martin, B, Trofimov, A: A unified approach for inverse problem in intensity-modulated radiation

therapy. Phys. Med. Biol. 51, 2352-2365 (2006)
8. Censor, Y, Elfving, T, Kopf, N, Bortfeld, T: The multiple-sets split feasibility problem and its applications. Inverse Probl.

21, 2071-2084 (2005)
9. Censor, Y, Motova, A, Segal, A: Perturbed projections and subgradient projections for the multiple-sets split feasibility

problem. J. Math. Anal. Appl. 327, 1244-1256 (2007)
10. Chang, SS, Lee, HWJ, Chan, CK: A new method for solving equilibrium problem fixed point problem and variational

inequality problem with application to optimization. Nonlinear Anal. 70, 3307-3319 (2009)
11. Qin, X, Chang, SS, Cho, YJ: Iterative methods for generalized equilibrium problems and fixed point problems with

applications. Nonlinear Anal. 11, 2963-2972 (2010)
12. Qin, X, Shang, M, Su, Y: A general iterative method for equilibrium problem and fixed point problem in Hilbert spaces.

Nonlinear Anal. 69, 3897-3909 (2008)
13. Noor, M, Oettli, W: On general nonlinear complementarity problems and quasi-equilibria. Matematiche 49, 313-346

(1994)

http://dx.doi.org/10.1186/s13663-015-0281-x
http://dx.doi.org/10.1186/1029-242X-2012-162


Karahan Fixed Point Theory and Applications  (2016) 2016:101 Page 19 of 19

14. Chang, SS, Agarwal, R: Strong convergence theorems of general split equality problems for quasi-nonexpansive
mappings. J. Inequal. Appl. 2014, 367 (2014)

15. Goebel, K, Reich, S: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York (1984)
16. Goebel, K, Kirk, WA: Topics on Metric Fixed-Point Theory. Cambridge University Press, Cambridge (1990)
17. Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am.

Math. Soc. 73, 591-597 (1967)
18. Marino, G, Xu, HK: Weak and strong convergence theorems for strict pseudocontractions in Hilbert space. J. Math.

Anal. Appl. 329, 336-346 (2007)


