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1 Introduction and mathematical preliminaries

Recently, Wardowski [1] established a new contraction, the so-called F-contraction, and
obtained a fixed point result as a generalization of the Banach contraction principle. After
that Altun et al. [2] introduced the new concept of multivalued F-contraction mappings
and gave some fixed point results. Wardowski and Dung [3] further generalized the con-
cept of an F-contraction to an F-weak contraction and also obtained certain fixed point
results. Dung and Hang [4] studied the notion of a generalized F-contraction and extended
a fixed point theorem for such mappings. Recently Piri and Kumam [5] described a large
class of functions by replacing condition (F3’) instead of the condition (F3) in the defini-
tion of F-contraction.

Following this direction of research, in this paper, we extend the fixed point results of
Wardowski [1], Wardowski and Dung [3], Dung and Hang [4], and Piri and Kumam [5] by
introducing a generalized F-Suzuki-contraction in b-metric spaces. We begin with some
basic well-known definitions and results which will be used in the rest of this paper.

Throughout this paper, Ny, N, R,, R denote the set of nonnegative integer numbers,
the set of natural numbers, the set of positive real numbers, and the set of real numbers,

respectively.

Definition 1.1 Let F be the family of all functions F : R, — R such that:

(F1) F is strictly increasing, i.e. for all v,y € R, such that x < y, F(x) < F(y);

(F2) for each sequence {a,}5; of positive numbers, lim, o, = 0 if and only if
lim,,_, o F(o,) = —00;

(F3) there exists k € (0,1) such that lim,_, o+ «*F(x) = 0.
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Definition 1.2 [1] Let (X,d) be a metric space. A mapping T : X — X is said to be an
F-contraction on (X, d) if there exist F € F and t > 0 such that, for all x,y € X,

d(Ix, Ty) >0 = 71+ F(d(Tx, Ty)) < F(d(x,y)). (1)

A new generalization of Banach contraction principle has been given by Wardowski [1]
as follows.

Theorem 1.3 [1] Let (X, d) be a complete metric space and let T : X — X be an F-contrac-
tion. Then T has a unique fixed point x* € X and for every x € X the sequence {T"x}}°,
converges to x*.

In 2014, Wardowski and Dung [3] introduced the notion of an F-weak contraction and
proved a related fixed point theorem as follows.

Definition 1.4 [3] Let (X,d) be a metric space. A mapping T : X — X is said to be an
F-weak contraction on (X, d) if there exist F € F and t > 0 such that, for all x,y € X,

d(Tr, T9) >0 = 1 +F(d(Tx, Ty)) < F(M(x,)), 2)
in which

M(x,y) = max{d(x»y), d(x, Tx), d(y, Ty), (s, Iy) +d(y, Tx) }

2

Theorem 1.5 [3] Let (X,d) be a complete metric space and let T : X — X be an F-weak
contraction. If T or F is continuous, then T has a unique fixed point x* € X and for every
x € X the sequence {T"x}.°, converges to x*.

Recall that a contraction conditions for a self-mapping T on a metric space (X, d), usu-
ally contained at most five values d(x,y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx) (for example
see [6, 7]). Recently, by adding four new values d(T2x, x), d(T?x, Tx), d(T*x,y), d(T?*x, Ty)
to a contraction condition, Kumam et al. [8] stated a new generalization of the Ciri¢ fixed
point theorem in [9]. Motivated and inspired by the idea of Kumam e¢ al. [8], Dung and
Hang [4] generalized the notion of a generalized F-contraction and proved some fixed
point theorems for such maps. They gave examples to show that their result is a real gen-

eralization of Theorem 1.5 and some others in the literature.

Definition 1.6 [4] Let (X,d) be a metric space. A mapping T : X — X is said to be a
generalized F-contraction on (X, d) if there exist F € F and t > 0 such that, for all x,y € X,

d(Tx, Ty) >0 = 71+ F(d(Tx, Ty)) < F(N(x,y)),
in which
N(x,y) = max{d(x,y),d(x, Tx),d(y, Ty),

dx, Ty) + d(y, Tx) d(T*x,x) + d(T?*x, Ty)
2 ’ 2

’

d(sz, Tx),d(sz,y), d(sz, Ty) } (3)
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Theorem 1.7 [4] Let (X,d) be a complete metric space and let T : X — X be a generalized
F-contraction mapping. If T or F is continuous, then T has a unique fixed point x* € X and
for every x € X the sequence {T"x};°, converges to x*.

In 2014, Piri and Kumam [5] described a large class of functions by replacing the con-
dition (F3) in the definition of an F-contraction introduced by Wardowski [1] with the
following one:

(F3') F is continuous on (0, 00).

They denote by § the family of all functions F : R, — R which satisfy conditions (F1), (F2),
and (F3'). Under this new set-up, Piri and Kumam proved some Wardowski and Suzuki
type fixed point results in metric spaces as follows.

Theorem 1.8 [5] Let T be a self-mapping of a complete metric space X into itself. Suppose
that there exist F € § and t > 0 such that, for all x,y € X,

d(Tr, Ty) >0 = 1 +F(d(Tx, Ty)) < F(d(x,9)).
Then T has a unique fixed point x* € X and for every x € X the sequence {T"x}°, converges
to x*.

Theorem 1.9 [5] Let T be a self-mapping of a complete metric space X into itself. Suppose
that there exist F € § and t > 0 such that

Vx,y € X, %d(x, Ix) <dx,y) = T+ F(d(Tx, Ty)) < F(d(x,y)).

Then T has a unique fixed point x* € X and for every xo € X the sequence {T"xy}5, con-
verges to x*.

Definition 1.10 [10] Let X be a nonempty setand s > 1 be a given real number. A mapping
d:X x X — R" is said to be a b-metric if for all x,y,z € X the following conditions are
satisfied:

(bm;) d(x,y) =0 ifand only if x = y;

(bmy) d(x,y) = d(y,x);
(bms) d(x,2) <s[d(x,y) +d(y,2)].

In this case, the pair (X, d) is called a b-metric space (with constant s).

Definition 1.11 [11] Let (X,d) be a b-metric space. A sequence {x,}5; in X is called:
(A) Convergent if and only if there exists ¥ € X such that lim,,_, oo d(x,, %) = 0. In this
case, we write lim,,_, x,, = x.

(B) Cauchy if and only if limy, ;;,—, 00 d(%y, %,) = 0.

Remark 1.12 [11] Notice that in a b-metric space (X, d) the following assertions hold:
(A) a convergent sequence has a unique limit;
(B) each convergent sequence is Cauchy;
(C) in general, a b-metric is not continuous;
(D) in general, a b-metric does not induce a topology on X.
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Definition 1.13 [11] The b-metric space (X, d) is complete if every Cauchy sequence in X

converges in X.

Definition 1.14 [12] Let (X,dx) and (Y, dy) be b-metric spaces; a mapping f : X — Y is
called:
(A) continuous at a point x € X, if for every sequence {x,}°, in X such that
lim,_, x, = x, then lim,,, f(x,) =f(x);
(B) continuous on X, if it is continuous at each point x € X.

2 Main results

We use §g to denote the set of all functions F : R, — R which satisfy conditions (F1) and
(F3’) and W to denote the set of all functions ¥ : [0, 00) — [0, 00) such that ¥ is continuous
and ¥ (¢) = 0 ifand only £ = 0.

Definition 2.1 Let (X,d) be a b-metric space. A self-mapping T : X — X is said to be a
generalized F-Suzuki-contraction if there exists F € §¢ such that, forallx,y € X withx #y,

%d(x, T <d(xy) = F(Sd(Tx D)) < F(Mrxy) - (Mr(x,)),

in which ¥ € ¥ and

d(Tx,y) + d(x, T)
Mr(x,y) = max{d(x,y)’d(sz,y)’ w

’

d(T?x,x) + d(T?x, Ty)

P , d(sz, Ty) + d(sz, Tx),

d(T%x, Ty) + d(Tx, x),d(Tx,y) + d(y, Ty) . (4)

Theorem 2.2 Let (X,d) be a complete b-metric space and T : X — X be a generalized
F-Suzuki-contraction. Then T has a unique fixed point x* € X and for every x € X the
sequence {T"x};°, converges to x*.

Proof Take xy = x € X. Let x, = Tx,; for all n € N. If there exists n € N such that

d(xy, Tx,) = 0 then x = x,, becomes a fixed point of 7, which completes the proof. So, in

the rest of the proof, we assume that
0 <d(x,, Tx,), VYneN. (5)
Hence, we have
1
Z_d(xm Txn) < d(xm Txn) = d(xn:xrnl); VneN. (6)
S
So by the assumption of the theorem, we have

F(d(Txm Txn+1)) =< F(MT(xn:an)) - I/I(MT(xn:an))'
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Since

max{d(xm xn+1); d(szn; xn+l) }
< Mr (% Xpi1)

(% Xns2) AX2, %)
2s ’ 2s

’

d
= max { d(xru xn+1)¢ d(xn+2’ xn+1)x

d(xn+2: xn+1): d(xn+17 xn+2); d(xnr xn+1) }

A Xy X A1 X
Smax{d(x"’x”‘rl)’d(xmz,xnﬂ), sld(xy, %p41) ;S (Xps1,% 2)],

S[A (% Xna1) + AXni1, X42)]
2s

’ d(xn+2; xn+1): d(xrﬁl’ xn+2)v d(xnr xn+1) }
=< max{d(xm xn+1)v d(xn+2’xn+1) })
we get

F(d(xn+1’xn+2)) = F(max{d(xnrxnﬂ)’ d(xn+1:xn+2)})
- W(max{d(xmxnﬂ): d(xn+l,xn+2)})- (7)

If d(%41,%p42) > A% Xp041), then
max{d(x, Xni1), dFni1s Xni2) | = Ana1, X12)s
so (7) becomes
F(d(na1, %n42)) < F(A(ni1, ¥ns2)) = ¥ (A1, ¥ns2)),

which is a contradiction (from (5) and the property of ¢, we have ¥ (d(x,:1,%,:2)) > 0).
Thus, we conclude that

F(d(xn+1’xn+2)) =< F(d(xn:xn+l)) - 1p(d(xmxnﬂ))
< F(d(@n,%n41)).- 8)

It follows from (8) and (F1) that
A% K1) < dXpo1,%,), YmeN. %)

Therefore {d(x,11,%4)}uen is @ nonnegative decreasing sequence of real numbers. Thus,

there exists y > 0 such that lim,,_, oo d(%,,11,%,) = y. Letting n — 0o in (8), we have
F(y) <F(y)-v(y).
This implies that ¥(y) = 0 and thus y = 0. Consequently, we have

lim d(x,, Tx,) = lim d(x,,x,,1) = 0. (10)

n—00 n— 00
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Now, we claim that {x,}°, is a Cauchy sequence. Arguing by contradiction, we assume
that there exist € > 0, and the sequences {p(n)}2; and {g(n)}°; of natural numbers such
that, foralln e N,

pn) >qn)>n,  dXp),Xqmn) = € AXp(n)-1, Xq(n)) < €. (11)

Observe that

€= d(xp(n): xq(n)) = S[d(xp(n): xp(n)—l) + d(xp(n)—ly xq(n))]

< 8A(Xp(n)s Xp(n)-1) + SE.
So from (10), we get

€ < limsup d(Xp(n), %4(n)) < S€. 12)

n—00

From the triangle inequality, we have

€ < dXpys Xgm) < S[AEpin)r Fgtny1) + A qnyi1,%q0m)) ] (13)

and

d(xp(n)vxq(n)ﬂ) =< S[d(xp(n); xq(n)) + d(xq(n)vxq(n)ﬂ)]' (14')
It follows from (10), (12), (13), and (14) that

€ .
5 < lim sup d(®p(u, Xg(ny41) < 5°€. (15)

n—00

Again, using above process, we get

€ .
; <lim sup d(xp(n)+1; xq(n)) =< 526- (16)

n—00

From (15) and the inequality

d(xp(n)vxq(n)ﬂ) = S[d(xp(n)r xp(n)+l) + d(xp(n)+l: xq(n)+1)]r

we have

€ .
S_Z <lim sup d(xp(n)+1: xq(n)+1)' (17)

n—00

From (12) and the inequality

d(xp(n)+1: xq(n)+1) < S[d(xp(n)H; xq(n)) + d(xq(n): xq(n)+1)]

=< 52 [d(xp(n)ﬂr xp(n)) + d(xp(n)rxq(n))] + Sd(xq(n),xq(n)ﬂ);
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we have

lim sup d(Xp(n)+1, %g(n)+1) < S°€. (18)
n—0o0

It follows from (17) and (18) that

€ .
s 1im sup d(Xp(m)+1, %gn)+1) < S°€. 19)

n—00
From (10) and (11), we can choose a positive integer n; € N such that
1 1
2—Sd(xp(y,), Txpn) < ge < dXpnys Xqmy)y Y= m1.
Therefore by assumption of theorem for every n > n;, we have
F(d(xp(n)ﬂ,xq(n)ﬂ)) = F(MT(xp(n)’xq(n))) - 1p(]VIT(xp(n),7Cq(r1)))~ (20)
Since

AXp(n)> Xg(n))
< M1 (Xp(u)s Xgn))

d(xp(n)+1: xq(n)) + d(xp(n): xq(n)+l)

= max { AXp(n)s Xg(n))s AXp(m) 25 Xg(n))s 5 )

d(xp(n)JrZ; xp(n)) + d(xp(n)+2’ xq(}’l)+1)
2s

f d(xp(n)+2: xq(n)+1) + d(xp(n)ﬂ, xp(n)ﬂ),
d(xp(n)+2: xq(n)+1) + d(xp(n)+1¢ xp(n))r d(xp(n)+lr xq(n)) + d(xq(n)) xq(n)+1) }

< max { A p(n)s % g(n))> S[AEpin 120 %p(m)41) + AXp(my+1%q(m) ]

d(xp(n)Jrh xq(n)) + d(xp(n), xq(n)+1)
2s
S[d(xp(r!)+2’ xp(n)+1) + d(xp(n)ﬂr xp(n))] + S[d(xp(n)+27 xp(n)+l) + d(xp(n)+17 xq(n)+1)]
2s

)

’

S[d(xp(n)+2r xp(n)+1) + d(xp(n)ﬂ: xq(n)+l)] + d(xp(n)+2: xp(n)+1):

S[A@pnyi2: Xp(my+1) + AXp(ny+1 Xg(m+1) | + AXpiny41 %p(m))»
d(xp(n)ﬂ’ xq(n)) + d(xq(n)r xq(n)+1)},

taking the limit supremum as # — oo on each side of the above inequality and using (12),
(15), (16), and (19) we have

€ < limsup M7 (Xp(n), Xg(n) < sPe. (21)

n—00

Also, we can show that

€ < liminf M7 (Xp(), %g0n)) < S°€. (22)

n—00
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Taking the limit supremum as # — oo in (20) and using (21) and (22), we get

€ .
F(s¢) =F (55 s_2> <F <l1m sup d(Xp(ny+1, xq(n)+1))

n—00

< F(lim sup M7 (Xp(n), xq(,,))> - (lim sup Mr(xp(n) xq(,,)))
n— 00 n—00

=< F(S?’E) - 1//(6)’

which is a contradiction with € > 0, and it follows that {x,} is a Cauchy sequence in X. By
completeness of (X,d), {x,}52, converges to some point x* in X. Therefore,

lim d(x,,x") =0. (23)

n—00

We claim that, for every n € N,
1 * 1 2 *
Z—d(x,,, Tx,) < d(xn,x ) or Z—d(Txn, T?x,) < d(Tx,,,x ). (24)
s s
Suppose, on the contrary, that there exists m € N such that

%d(xm, Tx,,) > d(xm,x*) and %d(Txm, szm) > d(Txm,x*). (25)

Therefore,

25 (%, &%) < Ay Ton) < s[d (%, ™) + d(x", Totm) ],
which implies that

A (%, x*) < d(x*, Ta). (26)
From (9) and (26), we have

d(Txm, T2xm) <d Xy, Tx) < sd(xm,x*) + sd(x*, Txm)

< 2sd(x", Txm). (27)

It follows from (25) and (27) that d(Tx,,, T?%,,) < d(T%,,, T*x,,). This is a contradiction.
Hence, (24) holds. If part (I) of (24) is true, then we have

F(d (%401, Tx")) = F(d(Tx,, Tx"))

< F(Mr(x0,x")) = ¥ (M7 (%, 5%)). (28)
Since

d(x*, Tx*) < My (%, ")

d(xn+1’ x*) + d(xn; Tx*)
2s

’

= max{d(x,,,x*), d(xmz,x*),
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d(xn+27xn) + d(xn+2’ Tx*)
2s

’ d(xn+21 Tx*) +dXns2, Xn41)s

d(xn+2r Tx*) + d(xn+1r xn): d(xn+1r x*) + d(x*¢ Tx*) }

Axn11,%7) + d(x,, Tx*
5maX{d(xn,x*),d(xmz,x*), (1, 27) + Aot T ),
2s
S[d(xn+2rxn+1) + d(anrl) xn)] + d(xn+2; Tx*)
2s ’

d(xn+Zr Tx*) + d(xn+27 xn+1):

d(xn+27 Tx*) + d(xn+lrxn): d(xnﬂrx*) + d(x*; Tx*) }’

letting n — oo and using (23), we get

lim My (x,,x%) = d(x*, Tx").

n—00

It follows from (28), (F3’), and the continuity of ¢ that
F(d(x*, Tx*)) < F(d(x*, Tx*)) - 1//(d(x*, Tx*))

This yields x* = Tx*. If part (II) of (24) is true, using a similar method to the above, we
get x* = Tx*. Hence, x* is a fixed point of 7. Now we show that T has at most one fixed
point. Indeed, if x*,y* € X are two fixed points of T, such that x* # y*, then we have 0 =
%d(x*, Tx*) < d(x*,y*) and from the assumption of the theorem, we obtain
F(d(x",y")) = F(d(Tx", Ty"))
< F(Mr(x",5")) = ¥ (Mr(x",5"))
=F(d(y",x")) - ¥ (d(y",27)).

This gives ¥ (d(y*,x*)) < 0. Hence y* = x*. This completes the proof. d

The following two theorems can be obtained easily by repeating the steps in the proof
of Theorem 2.2.

Theorem 2.3 Let (X,d) be a complete b-metric space and T : X — X be a self-mapping
such that, for every x,y € X,

%d(x, Tx) <d(x,y) = F(d(Tx, Ty)) < F(Mr(x,p)) - ¥ (N(x,)),

where N(x,y) is defined by (3) and  is defined as in Theorem 2.2. Then T has a unique

fixed point x* € X and for every x € X the sequence {T"x};°, converges to x*.

Theorem 2.4 Let (X,d) be a complete b-metric space and T : X — X be a self-mapping
such that, for every x,y € X,

%Sd(x, Tx) <d(x,y) = F(d(Tx, Ty)) < F(Mr(x,p)) — ¥ (d(x,)),
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where M1 (x,y) is defined by (4) and  is defined as in Theorem 2.2. Then T has a unique

fixed point x* € X and for every x € X the sequence {T"x}.°, converges to x*.

Since a b-metric space is a metric space when s = 1, so we obtain the following theo-

rems.

Theorem 2.5 Let (X,d) be a complete metric space and T : X — X be a generalized F-

Suzuki-contraction. Then T has a unique fixed point x* € X and for every x € X the se-

n o0 k
quence {T"x},2, converges to x*.

Theorem 2.6 Let (X, d) be a complete metric space and T : X — X be a self-mapping such
that, for every x,y € X,

%d(x, Tx) <d(x,y) = F(d(Tx, Ty)) < F(Mr(x,p)) — ¥ (d(x,)),

where M (x,y) is defined by (4) and  is defined as in Theorem 2.2. Then T has a unique

fixed point x* € X and for every x € X the sequence {T"x}.°, converges to x*.

Theorem 2.7 [4] Let (X,d) be a complete metric space and let T : X — X be a generalized
F-contraction. IfF is continuous, then T has a unique fixed point x* € X and for everyx € X

the sequence {T"x}52, converges to x*.

Proof Since N(x,y) < Mr(x,y), so from (F1) and by taking ¥ = t in Theorem 2.5 the proof
is complete. 0

Theorem 2.8 [5] Let T be a self-mapping of a complete metric space X into itself. Suppose
that there exist F € § and t > 0 such that

Vx,y € X, %d(x, Tx) <d(x,y) = T+ F(d(Tx, Ty)) < F(d(x,y)).

Then T has a unique fixed point x* € X and for every x € X the sequence {T"x}°2, converges

to x*.

Proof Since d(x,y) < Mr(x,y), from (F1) and by taking ¥ = v and s =1 in Theorem 2.2 the

proof is complete. d
Example 2.9 Let X ={-2,-1,0,1,2} and define a metric d on X by
0, ifx=y,
d(x’y) =12, if (xry) € {(1: _1): (_1: 1)}7

1, otherwise.

Then (X, d) is a b-metric space with coefficient s = 2. But it is not a metric space since the
triangle inequality is not satisfied. Let 7': X — X be defined by

T(-2)=T0)=TQ@)=0, T(-1)=1,  T(1)=-2.
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First observe that

d(Tx, Ty) > 0

& [(re(-2,0,20Ay=1)Vv (x€{-2,0,2} Ay=-1) V(x=1Ay=-1)]

Now we consider the following cases:
Casel.Letx € {-2,0,2} Ay =1, then

d(Tx, Ty) =d(0,-2) =1, dlx,y)=d(x,1) =1, dx, Tx) = d(x,0) =0 Vv 1,

dx, Ty) + d(Tx,y) d(x,-2)+d(0,1) 1 vl
2 - 2 T2

d(T%x,x) +d(T°x, Ty) _d(0,x) +d(0,-2) 1

-Vl
2 2 2

dix, Ty) =d(x,-2) =0V 1, d(Tx,y) =d(0,-2) =1,

d(y, Ty) = d(1,-2) = 1,

d(T%x, Tx) =d(0,0) =0,  d(T?x,y) =d(0,1) =1,
d(sz, Ty) +d(x, Tx) = d(0,-2) + d(x,0) =1V 2,
d(Tx,y) + d(y, Ty) =d(0,1) + d(1,-2) = 2.

Case2.Letx € {-2,0,2} Ay=-1, then

d(Tx, Ty) =d(2,1) =1, dx,y) =d(x,-1) =1, d(x, Tx) =d(x,0) =0 Vv 1,
dx, Ty) + d(Tx,y) d(x,1) +d(0,-1) 1

d(y, Ty) = d(-1,1) = 4, - - - =SV
d(T%x,x) +d(T°x, Ty) _d(0,x) +d(0,1) 1 v1
2 - 2 T2

dx, Ty) =d(x,1) =1, d(Tx,y) =d(0,-1) =1,
d(T%x, Tx) =d(0,0) =0,  d(T?x,y) =d(0,-1) =1,
d(T°x, Ty) + d(x, Tx) = d(0,1) + d(x,0) =1 v 2

d(Tx,y) + d(y, Ty) = d(0,-1) + d(-1,1) = 5.
Case 3. Let x =1 Ay = -1, then

d(Tx, Ty) =d(-2,1) = 1, dx,y) =d(1,-1) =4, dx, Tx) =d(1,-2) =1,

Ay, Ty) = d(-1,1) = 4, d(x, Ty) er d(Tx,y) _ d(1,1) +;i(—2, -1) _ %’

d(T%x,x) +d(T°x, Ty) d(0,1)+d(0,1) 1
2 - 2 -

dx, Ty) =d1,1) =0,  d(Tx,y) =d(-2,-1) =1,

)

d(T%x, Tx) =d(0,-2) =1,  d(T%x,y9) =d(0,-1) =1,
d(TZx, Ty) +d(x, Tx) = d(0,1) + d(1,-2) = 2,

d(Tx,y) + d(y, Ty) = d(-2,-1) + d(-1,1) = 5.
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In Case 1, we have

d(Tx, Ty) = max{d(x, y),d(x, Tx), d(y, Ty), w}

{ d(T?x,x) + d(T?x, Ty)
= max 5

d(T%%, Tx), d(T?x,9),d(T%, Ty)} _1

This proves that for all F € F, T is not an F-weak contraction, generalized F-contraction,
and F-contraction. Hence Theorem 1.3, Theorem 1.5, and Theorem 2.7 are not applicable
for this example. However, we see that, for all x,y € X,

1
id(x, Tx) < d(x, ), d(Tx, Ty) =1, and Mrg(x,y) >2.

Since

In(d(Tx, Ty)) < In(Mr(x,)) + ln(%)

68

<In(Mr(x,y)) - 100"

So by taking F(¢) = In(¢) and ¢(¢) = %t, we have
F(d(Tx, Ty)) < F(Mr(x,9)) — o(Mz(x,)).

Hence T satisfies the assumption of Theorem 2.2.
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