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nD real space, which has contributed to the study of some areas of computer sciences

such as computer graphics, image processing, approximation theory, mathematical mor-

phology, optimization theory, and so forth [� …�� ]. To study digital spaces (see De“ni-

tion � ), “rst of all, we have often followed the method established by Rosenfeld [�� ], the so-

called graph theoretical approach (i.e., the Rosenfeld model) [� , �� …�� ], which is proceeded

in many works. Second, one of the well-studied areas is aK-topological space [�	 …�� ].

A number of properties of the KhalimskynD space have been also used to study digital

spaces [�� , �	 , �� ]. Finally, we have used Marcus-Wyse (M- for short) topology [�
 …�� ] to

study only �D digital images.

The present paper develops aK-topological version of the conjecture (�.� ) and some

related works posed by Borsuk. At this moment, we need to recall the following di�er-

ences between metric-based “xed point theory andK-topology-based “xed point theory.

A K-topological space is not a metric space (see Remark�.� ), contrary to the assumption

required by Borsuk. Furthermore, unlike the di�erence betweencontractibility and local

contractibility in classical mathematics, the present paper proves that their digital versions

have their own features (see Theorem�.	 ).

In digital topology, there are several types of contractibilities associated with the corre-

sponding digital homotopies [� , �� , �� , �� , �� ]. After developing aK-homotopy, we prove

that whereas inK-topologycontractibility implies local contractibility, the converse does

not hold. Similarly, we prove that whereask-contractibility of a digital image (X,k) implies

local k-contractibility, the converse does not hold.

Rosenfeld (see Theorems �.� and �.� of [�� ]) “rst proved that (for more details, see

[�� …�	 ])

a digital image (X,k) with |X| � � does not have theFPP. (�.�)

This means that only a singleton has theFPPin digital topology in a graph-theoretical ap-

proach. Nevertheless, Ege and Karaca [�� ] recently studied the property (�.� ) in a graph-

theoretical approach (see Theorem �.� of [�� ]). However, the result is proved invalid [�� ,

�	 , �� ] (see Remark�.� ). Furthermore, to formulate a digital version of the ordinary Lef-

schetz “xed point theorem in [�� ], the authors of [�� ] used digital homology groups of

digital images in [�� ]. However, it turns out that almost of the assertions in [�� ] are in-

correct [�� , �	 ] because the digital version of the Lefschetz number in [�� ] is not a digital

homotopy invariant [�	 ]. Besides, Han [�� , �	 , �� ] recently gave counterexamples to re-

fute this assertion (see Remark�.� ).

Hence, in this paper, we will mainly focus ourselves on studying theFPPof K-topological

spaces instead of digital images (X,k). Besides, we deal only with “niteK-topological

spaces (or compact spaces), and we can propose a digital version of (�.� ) as a conjecture

because contractibility implies local contractibility in digital topology (see Theorem�.	 )

as follows: letX be aK-topological space withK-contractibility.

Then it has theFPPfor K-continuous mappings. (�.�)

To address the conjecture (�.� ), the present paper proves thatK-contractibility of a “nite

K-topological space need not imply the existence of “xed points ofK-continuous maps

(see Theorems�.� and �.� ).



Han Fixed Point Theory and Applications  (2016) 2016:75 Page 3 of 20

The rest of the paper is organized as follows. Section� provides basic notions and ter-
minology from digital topology. Section� develops a new digital homotopy named by a
K-homotopy to studyK-contractibility. Section� investigates various properties of con-
tractibilities in digital topology and compares them. Besides, we develop a digital version
of local contractibility and prove that whereascontractibility implies local contractibil-
ity, the converse does not hold. Section� proves that not everyK-topological space with
K-contractibility has theFPP, which is negative to the conjecture (�.� ). But a simpleK-path
has theFPPsatisfying the property (�.� ). Section	 concludes the paper with summary and
further works.

2 Preliminaries
Let Z, N, and Zn represent the sets of integers, natural numbers, and points in the Eu-
clideannD space with integer coordinates, respectively. Herman [�� ] gave the following:

Definition  [�� ] A digital spaceis a pair (X,π), whereX is a nonempty set, andπ is a
binary symmetric relation onX such thatX is π -connected.

In De“nition � , we say thatX is π -connectedif for any two elementsx andy of X, there
is a “nite sequence (xi )i� [
, l]Z of elements inX such thatx = x
 , y = xl , and (xj,xj+� ) � π for
j � [
, l … �]Z.

Remark . In De“nition � , we can consider the relationπ according to the situation such
as the digitalk-adjacency relation of (�.� ) below and theK-adjacency relation of De“ni-
tion � , which are both symmetric relations.

As referred in (�.� ), owing to the property (�.� ), the present paper mainly studies the
FPPfrom the viewpoint of K-topology. First, to study the property (�.� ), let us recall basic
notions and terminology from digital topology such ask-adjacency relations ofnD integer
grids, a digitalk-neighborhood, digital continuity, and so forth [�� …�� ]. As a generalization
of digital k-connectivity of Zn, n � { �, �, � } [�� , �� ], we will say that two distinct points
p,q � Zn are k-adjacent (ork(m,n)-adjacent) if they satisfy the following property [�� ]
(see also [�
 , �
 ]):

For a natural numberm, � � m � n, two distinct points

p = (p� ,p� , . . . ,pn) and q = (q� ,q� , . . . ,qn) � Zn,

arek(m,n)-adjacent (k-adjacent for brevity) if

at mostm of their coordinates di�er by ± �, and the other coincide. (�.�)

Concretely, thesek(m,n)-adjacency relations ofZn are determined according to the num-
ber m � N [�� ] (see also [�
 ]).

In terms of the operator (�.� ), thek-adjacency relations ofZn are obtained [�� ] (see also
[�� , �
 ]) as follows:

k := k(m,n) =
n…�∑

i=n…m

� n…iCn
i , (�.�)

whereCn
i = n!

(n…i)!i! .
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For ak-adjacency relation ofZn, a simplek-path with l + � elements in Zn is assumed

to be an injective sequence (xi )i� [
, l]Z � Zn such thatxi andxj arek-adjacent if and only if

|i …j| = � [ �� ]. If x
 = x andxl = y, then the length of the simplek-path, denoted bylk(x,y),

is the numberl. We say that a digital image (X,k) is k-connectedif for any two points in X,

there is ak-path in X connecting these two points. A simple closedk-curve with l elements

in Zn, denoted bySCn,l
k [�� , �� ] (see Figure� (a)), is the simplek-path (xi )i� [
, l…�]Z , wherexi

andxj arek-adjacent if and only if|i …j| = � ( mod l) [�� ] (see Figure� ).

Rosenfeld [�� ] called a setX � Zn with a k-adjacency a digital image and denoted it by

(X,k). By using thek-adjacency relations ofZn of (�.� ) we say that a digitalk-neighborhood

of p in Zn is the set [�� ] Nk(p) := {q | p is k-adjacent toq}. Furthermore, we often use the

notation [�� ]

N�
k (p) := Nk(p) � { p}.

For a digital image (X,k), as a generalization ofN�
k (p) [�� ], the digital k-neighborhood

of x
 � X with radius ε is de“ned in X to be the following subset [�� ] of X:

Nk(x
 ,ε) :=
{
x � X | lk(x
 ,x) � ε

}
� { x
 }, (�.�)

where lk(x
 ,x) is the length of the shortest simplek-path in X from x
 to x, and ε � N.

Concretely, forX � Zn, we obtain [�� ]

Nk(x, �) = N�
k (x) � X. (�.�)

Second, let us now brie”y recall some basic facts and terms related toK-topology. Mo-

tivated by the Alexandro� space [�� ], the Khalimsky line topologyon Z is induced by the

set {[� n … �, �n + �] Z : n � Z} as a subbase [�� ], where for two distinct points a and b in

Z, [a,b]Z = {n � Z | a � n � b} [� , �� ]. Furthermore, the product topology onZn induced

by (Z,κ) is called theKhalimsky product topologyon Zn (or Khalimsky nD space), which

is denoted by (Zn,κn). A point x = (x� ,x� , . . . ,xn) � Zn is pure openif all coordinates are

odd; and it ispure closedif each of the coordinates is even [�	 ]. The other points in Zn are

calledmixed [�	 ].

For a point p := (p� ,p� ) in (Z� ,κ � ), its smallest open neighborhoodSNK(p) is obtained

[�	 ]:

SNK(p) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{p} if p is pure open,

{(p� … �,p� ),p, (p� + �, p� )} if p is closed-open,

{(p� ,p� … �),p, (p� ,p� + �) } if p is open-closed,

N�
� (p) if p is pure closed,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(�.�)

where the point p := (p� ,p� ) is calledclosed-open(resp.open-closed) if p� is even (resp.

odd) andp� is odd (resp. even).

In this paper, each spaceX � Zn related toK-topology is considered to be a subspace

(X,κn
X) induced by (Zn,κn) [�	 , �
 ].

Let us now recall the structure of (Zn,κn). In each of the spaces of Figures� -� , a black

jumbo dot means a pure open point, and further, the symbols� and€ mean a pure closed
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Figure 1 Simple closed curves. (a) SC2,44 [27], SC2,48 [9], and SC2,84 [11]; (b) SC2,4K and SC2,8K [30].

point and a mixed point, respectively. In relation to the further statement of a pure point

and a mixed point, we can say that a pointx is open ifSNK(x) = {x}, whereSNK(x) means

the smallest neighborhood ofx � Zn. Many studies have examined various properties of a

K-continuous map, connectedness,K-adjacency, aK-homeomorphism [�	 , �� , �
 ].

Let us recall the following notions for studyingK-topological spaces.

Definition  [�
 ] Let (X,κn
X) := X be a K-topological space. We say that two distinct

points x,y � X areK-adjacent ifx � SNK(y) or y � SNK(x). Then we de“ne the following:

We say that aK-path from x to y in X is a sequence (x)i� [
, l]Z , l � �, in X such thatx
 = x,

xl = y and each pointxi is K-adjacent toxi+� and i � [
, l ]Z. The number l is called the

lengthof this path. A simple K-path in X is the injective sequence (xi )i� [
, l]Z such thatxi

andxj areK-adjacent if and only if|i …j| = �.

Furthermore, we say that a simple closedK-curve with l elements inZn, denoted by

SCn,l
K , l � �, is a simple K-path (xi )i� [
, l…�]Z , wherexi and xj are K-adjacent if and only if

|i …j| = � ( mod l).

Example . In Figure � (a), SC�,�
� , SC�,�

� , and SC�,�
� are shown. In Figure� (b), we have

SC�,�
K andSC�,�

K .

Remark . Each K-topological space is not a metric space because it is neither a

T� -space nor a regular space although it has a countable basis (see the property (�.� )).

Besides, in case we follow a graph-theoretical approach for studying digital spaces (or

digital images), a mapping between digital spaces is a graph homomorphism instead of a

topological (compact) mapping.

3 Development of a Khalimsky homotopy and its properties
This section “rstly develops the notion of aK-homotopy and investigates various prop-

erties of aK-homotopy, which will be used to study both contractibility and local con-

tractibility from the viewpoint of digital topology in Sections � and � . Let us now

recall some properties of digital spaces in a graph-theoretical approach. To map every

k
 -connected subset of (X,k
 ) into a k� -connected subset of (Y,k� ), the paper [�� ] estab-

lished the notion of digital continuity of maps between digital images. Motivated by this
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approach, the digital continuity of maps between digital images was represented as fol-

lows.

Proposition . [�� , �� ] Let (Xi ,ki ) be digital images inZni with the ki -adjacency rela-

tions of(�.� ), i � { 
, � }. A function f : (X
 ,k
 ) 	 (X� ,k� ) is (k
 ,k� )-continuous if and only if

f (Nk
 (x, �)) � Nk� (f (x), �) for every x� X
 .

In Proposition �.� , in casek� = k� , the mapf is called ak� -continuous map. By using this

concept we establish a digital topological category, denoted byDTC, consisting of two sets

[�� ] (see also [�
 ]):

€ for any set X � Zn, the set of (X,k) in Zn as objects of DTC;
€ for every ordered pair of objects (Xi ,ki ), i � { �, � }, the set of all (k
 ,k� )-continuous maps

as morphisms of DTC.

In DTC, in casek
 = k� := k, we will particularly use the notationDTC(k) [�� ].

Based on the pointed digital homotopy in [� , �	 ], the following notion of ak-homotopy

relative to a subsetA � X is often used to study ak-homotopic thinning and to classify

digital images (X,k) in Zn [�� , �
 ].

Definition  [�� ] (see also [�� ]) Let ((X,A),k
 ) and (Y,k� ) be a digital image pair and a

digital image, respectively. Letf ,g : X 	 Y be (k
 ,k� )-continuous functions. Suppose that

there existm � N and a functionF : X × [
, m]Z 	 Y such that

(€) for all x � X, F(x, 
) = f (x) and F(x,m) = g(x);
(€) for all x � X, the induced function Fx : [
, m]Z 	 Y given by Fx(t) = F(x,t) for all

t � [
, m]Z is (�, k� )-continuous;
(€) for all t � [
, m]Z, the induced function Ft : X 	 Y given by Ft(x) = F(x,t) for all x � X

is (k
 ,k� )-continuous.

Then we say thatF is a (k
 ,k� )-homotopy betweenf andg [� ], denoted byf 
 (k
 ,k� ) g.

(€) Furthermore, for all t � [
, m]Z, Ft(x) = f (x) = g(x) for all x � A.

Then we callF a (k
 ,k� )-homotopy relative toA betweenf and g and we say thatf and g

are (k
 ,k� )-homotopic relative toA in Y, denotedf 
 (k
 ,k� ) rel A g.

In De“nition � , if A = {x
 } � X, then we say thatF is a pointed (k
 ,k� )-homotopy at{x
 }

[� ]. In addition, if k
 = k� andn
 = n� , then we say thatf andg are pointedk
 -homotopic

in Y. If, for somex
 � X, � X is k-homotopic to the constant map in the space{x
 } relative

to {x
 }, then we say that (X,x
 ) is pointedk-contractible [� , �� ].

Remark . As for the functionF : X× [
, m]Z 	 Y of De“nition � , the Cartesian product

X × [
, m]Z is just a set without any consideration of a digital adjacency for a Cartesian

product. In other words, the setX × [
, m]Z is assumed to be a disjoint unionX × { i},

i � [
, m]Z.

The following notion of a digital homotopy equivalence was “rstly introduced in [�
 , �� ]

to classify digital images inDTC.
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Definition  [�
 , �� ] In DTC, for two digital images (X,k
 ) and (Y,k� ), if there are a

(k
 ,k� )-continuous maph : X 	 Y and a (k� ,k
 )-continuous mapl : Y 	 X such thatl � h

is k
 -homotopic to � X and h � l is k� -homotopic to � Y, then the maph : X 	 Y is called

a (k
 ,k� )-homotopy equivalence. In this case, we use the notationX 
 (k
 ,k� )·h·e Y. Further-

more, if k
 = k� and n
 = n� , then we callh a k
 -homotopy equivalence, and we use the

notation X 
 k
 ·h·e Y.

We say that a digital image (X,k) is k-contractibleif X 
 k·h·e {x
 } for some pointx
 � X.

Motivated by both the k-homotopy in De“nition � and the k-homotopy equivalence

in De“nition � , their K-topological versions are obtained (see De“nitions	 and � ) in

K-topology. Let us now recall theK-continuity of maps betweenK-topological spaces.

As usual, for twoK-topological spaces (X,κn

X ) := X and (Y,κn�

Y ) := Y, a mapf : X 	 Y is

called continuous at a pointx � X if for any open setOf (x) � Y containing the point f (x),

there is an open setOx � X containing the pointx such thatf (Ox) � Of (x). Namely, we can

represent it as

f
(
SNK(x)

)
� SNK

(
f (x)

)

because each pointx in a K-topological spaceX always hasSNK(x) � X.

By using spaces (X,κn
X) := X and K-continuous maps, we have a topological category,

denoted byKTC, consisting of the following two sets [�
 ]:

() for any set X � Zn, the set of spaces (X,κn
X) as objects of KTC denoted by Ob(KTC);

() for all pairs of elements in Ob(KTC), the set of all K-continuous maps between
them as morphisms.

To studyK-topological spaces inZn, we need to recall aK-homeomorphism as follows:

Definition  [�	 , �
 ] For two spaces (X,κn

X ) := X and (Y,κn�

Y ) := Y, a map h : X 	

Y is called aK-homeomorphism if h is a K-continuous bijection andh…� : Y 	 X is

K-continuous.

In (Zn,T n), we say that a simple closedK-curve with l elements in Zn is a path

(xi )i� [
, l…�]Z � Zn, l � �, that is K-homeomorphic to a quotient space of a Khalimsky line

interval [a,b]Z in terms of the identi“cation of the only two end pointsa andb [�
 ], where

both of the numbersa andb in [a,b]Z are even or odd.

Since the KhalimskynD topological space is a box product of the Khalimsky line space

(Z,κ), we obviously obtain the following:

Lemma .
() Put Zn × { i} := Zn

i , i � Z. Assume Zn
i to be the topological space (Zn

i ,κn+�
Zn

i
). Then for

any i, j � � Z or {� n + � | n � Z}, we see that (Zn
i ,κn+�

Zn
i

) is K-homeomorphic to
(Zn

j ,κn+�
Zn

j
).

() (Zn,κn) is assumed to be a proper subspace of (Zn+� ,κn+� ) with the relative topology
on Zn induced by (Zn+� ,κn+� ), n � N.

Proof (�) Consider the maph : (Zn
i ,κn+�

Zn
i

) 	 (Zn
j ,κn+�

Zn
j

) given byh(x,i) = (x, j), wherex �

(Zn
i ,κn+�

Zn
i

). Then h is obviously aK-homeomorphism.
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(�) Considering Zn to be Zn × { 
 } � Zn+� , (Zn,κn) is assumed to be a proper subspace
of (Zn+� ,κn+� ) with the relative topology onZn induced by (Zn+� ,κn+� ), n � N. �

By Lemma�.� , we obtain the following:

Proposition .
() Any K-interval ([a,b]Z,κ[a,b]Z ) can be embedded into a simple K-path in (Zn,κn).
() (X,κn

X) is equivalent to the subspace X × { 
 } of (Zn+� ,κn+� ) up to K-homeomorphism.
() SCn,l

K is equivalent to the subspace SCn,l
K × { 
 } of (Zn+� ,κn+� ) up to

K-homeomorphism.
() SCn� ,l

K is K-homeomorphic to SCn� ,l
K even if n� �= n� .

() Let X and Y be simple K-paths with the same elements. Then (X,κX) need not be
K-homeomorphic to (Y,κY).

Proof (�) It suces to prove that any K-interval ([a,b]Z,κ[a,b]Z ) is K-homeomorphic to a
certain simpleK-path, denoted by (xi )i� [
, l]Z , in (Zn,κn) such that|b…a| = l. Indeed, we can
take a subspace (xi )i� [
, l]Z � (Zn,κn) that is K-homeomorphic to ([a,b]Z,κ[a,b]Z ) in terms
of the mapping off : ([a,b]Z,κ[a,b]Z ) 	 (xi )i� [
, l]Z � (Zn,κn) given by

f (a) = x
 , f (a + i) = xi , i � [�, l … �]Z, f (b) = xl

such that for i, j � [
, l ]Z (see Figure� (a)),

xi � SNK(xj) or xj � SNK(xi ) in
(
Zn,κn) if and only if |i …j| = �,

xi ,xj � (xi )i� [
, l]Z := [a,b]Z.
(�) By Lemma �.� the proof is completed (see Figures� (b-�), � (b-�), and � (c)). For

instance, consider the space (X,κ �
X) in Figure � (c-�). Furthermore, consider the space

(X × { 
 } := X
 ,κ �
X


) in Figure � (c-�). Then we see that (X,κ �
X) is K-homeomorphic to

(X
 ,κ �
X


).
(�) By Proposition �.� (�) the proof is completed.
(�) Owing to the property of SCn,l

K , there is an embeddingi : SCn,l
K 	 SCn,l

K × { 
 } � Zn+� .
More precisely, take any twoK-adjacent pointsx,y � SCn,l

K . If SNK(x)  y, then we see that
SNK(y) = {y} and, further,�(SNK(x)) = �. Since the cardinalities ofSCn� ,l

K := (xi )i� [
, l]Z and
SCn� ,l

K := (yi )i� [
, l]Z are equal to each other, owing to the properties ofSCni ,l
K , i � { �, � }, we

obtain

{
�{xi � SCn� ,l

K |�SNK(xi ) = � } = �{yi � SCn� ,l
K |�SNK(yi ) = � },

�{xj � SCn� ,l
K |�SNK(xj) = � } = �{yj � SCn� ,l

K |�SNK(yj) = � },

}
(�.�)

where the symbol� means the cardinality of a given set. Then we establish aK-homeo-
morphism betweenSCni ,l

K , i � { �, � }, as follows: for the pointsxi , xj , yi , andyj in (�.� ), con-
sider the mapping

xi 	 yi and xj 	 yj , (�.�)

where xj � SNK(xi ) and yj � SNK(yi ) if and only if |i …j| = � and i, j � [
, l ]Z. Then it is
obvious that the mapping of (�.� ) is aK-homeomorphism.
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Figure 2 Explanation of a K-homotopy. (a) Explanation of embedding a K-interval into (Znκn);
(b)-(c) a process of a K-homotopy; (d) comparison between two simple K-paths.

(�) Consider two simple K-paths (X = [
, �] Z,κX) and (Y = [�, �] Z,κY) (see Figure� (d)).

Whereas (X = [
, �] Z,κX) has only one singleton as a smallest open set, (Y = [�, �] Z,κY) has

two singletons as smallest open sets, which cannot beK-homeomorphic to each other.

�

To develop the notion of aK-homotopy in KTC (see De“nition	 ), consider twoK-topo-

logical spacesX := (X,κn
X) and a Khalimsky interval (K-interval for short) ([a,b]Z,κ[a,b]Z ).

Then, depending on the given spaceX, we may consider the product space (X ×

[
, m]Z := X�,κn+�
X� ) or (X × [�, m + �] Z := X�,κn+�

X� ), that is, [a,b]Z � { [
, m]Z, [�, m + �] Z}

(see Lemma�.� ).

Let us now establish the notion of aK-homotopy. Furthermore, consider any (X,κn
X)

and ([a,b]Z,κ[a,b]Z ), where [a,b]Z � { [
, m]Z, [�, m + �] Z}. Then, by Lemma�.� and Propo-

sition �.� (�) we see that (X,κn
X) is equivalent to (X × { 
 } := X
 ,κn+�

X

) or (X × { � } := X� ,κn+�

X�
)

up to K-homeomorphism (see Figure� (c)) or Figure� (c-�)). Thus, we can now establish

the notion of aK-homotopy.

Definition  In KTC, for two spacesX := (X,κn

X ) andY := (Y,κn�

Y ), let f ,g : X 	 Y beK-

continuous functions. Suppose that there exist aK-interval ([a,b]Z,κ[a,b]Z ) and a function

F : X × [a,b]Z 	 Y such that

(� ) for all x � X, F(x,a) = f (x) and F(x,b) = g(x);
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(� ) for all x � X, the induced function Fx : ([a,b]Z,κ[a,b]Z ) 	 Y defined by Fx(t) = F(x,t)
for all t � ([a,b]Z,κ[a,b]Z ) is K-continuous;

(� ) for all t � [a,b]Z, the induced function Ft : X 	 Y defined by Ft(x) = F(x,t) for all
x � X is K-continuous.

Then we say thatF is aK-homotopy betweenf andg, andf andg areK-homotopic in
Y, denotedf 
 K g.

In KTC, we say that aK-topological spaceX is K-contractibleif the identity map �X is
K-homotopic in X to a constant map with the space consisting of some pointx
 � X.

Remark . (Comparison between ak-homotopy in DTC and aK-homotopy in KTC)
(�) Comparing the K-homotopy in De“nition 	 with the k-homotopy in DTC (see Def-

inition � ), we “nd some di�erences between them (see Remark�.� ).
Owing to the K-topological structure ofX := (X,κn


X ), “rst of all, the setX × [
, m]Z of
De“nition � and that of De“nition 	 are di�erent from each other because the latter has
the K-topological structure. Second, depending on the situation ofX in De“nition 	 , we
need to take the numberm of ([
, m]Z,κ[
, m]Z ) even or odd, so that we do the required
process under aK-homotopy as in De“nition 	 .

For instance, let us assume (X,κn

X ) of De“nition 	 to be either ([
, �] Z,κ[
,�] Z ) or

([�, �] Z,κ[�,�] Z ). In case (X,κn

X ) := ([
, �] Z,κ[
,�] Z ), we see that the space [
, �]Z × { 
 } := X


(see Figure� (b-�)) as a subspace of (Z� ,κ � ) is K-homeomorphic to ([
, �] Z,κ[
,�] Z ) (see
Figure � (b-�)). Besides, we see that (X
 ,κ �

X

) is K-homeomorphic to (X� ,κ �

X�
) (see Fig-

ure � (b-�)).
In case (X,κn


X ) := ([�, �] Z,κ[�,�] Z ), we see that the space [�, �]Z × { 
 } := Y
 (see Fig-
ure � (b-�)) as a subspace of (Z� ,κ � ) is K-homeomorphic to ([�, �] Z,κ[�,�] Z ) (see Fig-
ure � (b-�)). Besides, we see that (Y
 ,κ �

Y

) is K-homeomorphic to (Y� ,κ �

Y�
) (see Fig-

ure � (b-�)).
(�) Consider the space (X,κ �

X) in Figure � (c-�). Then, for X × { i} := Xi , i � [
, �] Z, it is
clear that each of the subspaces (Xi ,κ �

Xi
) isK-homeomorphic to (X,κ �

X) (see Figure� (c-�)).
Furthermore, owing to the current version of aK-homotopy, the K-continuity of the

mapFx(t) = F(x,t) of the property (� �) holds.
(�) Consider the space (X,κ �

X) in Figure � (c), whereX := {(
, 
), (�, �), (�, �), (�, �) }. Then
consider the transformation from (X,κ �

X) to (Y,κ �
Y) as shown in Figure� (c), whereY :=

{(�, �), (�, �), (�, �), (�, �) }. Whereas the mapping cannot be aK-homotopy that transforms
(X,κ �

X) onto (Y,κ �
Y), it can be an �-homotopy without the K-topological structure.

To classifyK-topological spaces in terms of a certain homotopy equivalence inKTC, we
use the following:

Definition  In KTC, for two spaces (X,κn

X ) := X and (Y,κn�

Y ) := Y, if there areK-con-
tinuous mapsh : X 	 Y and l : Y 	 X such that l � h is K-homotopic to � X and h � l is
K-homotopic to � Y, then the maph : X 	 Y is called aK-homotopy equivalence, denoted
X 
 K·h·e Y.

We say that a digital space (X,κn
X) isK-contractibleif X 
 K·h·e {x
 } for some pointx
 � X.

Up to now, we have studied the notions of aK-homotopy and aK-homotopy equivalence
and their properties.
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Figure 3 Explanation of both 4- and K-homotopies in digital topology. (a) A 4-homotopy in DTC;
(b) a K-homotopy in KTC; (c) comparison between an 8-homotopy in DTCand a K-homotopy in KTC.

Proposition . The k-homotopy equivalence in DTC and the K-homotopy equivalence

in KTC have their own features, where the k-adjacency relation is taken from(�.� ).

Proof Let us compare among two homotopies in terms of the pictures in Figure� . We can

see some intrinsic processes depending on the corresponding homotopies.

(�) In Figure � (a), consider the digital image (X, �). By using the �-homotopy, we see that

(X, �) is �-homotopy equivalent to SC�,�
� .

(�) In Figure � (b), consider theK-topological space (Y,κ �
Y). By using theK-homotopy

we see that (Y,κ �
Y) is K-homotopy equivalent toSC�,�

K . �

4 A relation between digital contractibilities and local contractibilities
The notions of contractibility and locally contractibility play an important role in many

areas of mathematics [� , � , � , �� ]. We say that acontractible spaceis precisely one with

the same homotopy type of a singleton [�� ]. Furthermore, its digital versions have been

developed in De“nitions� and� in DTC andKTC, respectively. In relation to the study of

the conjecture (�.� ), we need the following:

Definition  [� ] A topological spaceX is said to belocally contractibleif it satis“es the

following equivalent conditions:

() It has a basis of open subsets each of which is a contractible space under the
subspace topology.

() For every x � X and every open subset V ( x) of X, there exists an open subset U

( x) of X such that U � V and U is a contractible space in the subspace topology
derived from V .

In classical mathematics, it is well known that contractible spaces are not necessarily

locally contractible norvice versa[� ]. For instance, whereas anyCW-complex is locally
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contractible and any paracompact manifold is locally contractible [� ], they need not be

contractible,for example, thenD sphereSn, n � N. Although the comb space [�� ] is con-

tractible, it cannot be a locally contractible space. Besides, the cone on the Hawaiian ear-

ring space [�� ] is contractible, but it is not locally contractible.

To deal with the conjecture (�.� ), we need to establish digital versions of local con-

tractibilities in DTC and KTC. Motivated by the notion of local contractibility in De“-

nition � , let us establish their digital versions inDTC andKTC.

Definition 
() In DTC, a digital image (X,k) is said to be locally k-contractible if every point x � X

has an Nk(x, �) that is k-contractible.
() In KTC, a K-topological space (X,κn

X) is said to be locally K-contractible if it has a
basis of open subsets each of which is a K-contractible space under the subspace
K-topology.

Let us recall the digital contractibility from the viewpoint of digital topology in a graph-

theoretical approach. In [� , �� ], the k-contractibility of some simple closedk-curves (see

Figure� ) is proved. Namely, it turns out thatSC� n,�
� n is � n-contractible [�� ] and, further,

SCn,�
� n…� is (� n … �)-contractible (in casen = �, see [� , �� ], and in casen � �, see [�
 ]); see

Figure� .

Proposition . Every digital space in DTC or KTC is locally contractible.

Proof (�) In DTC, since each pointx of a digital image (X,k) hasNk(x, �) (see (�.� )) which

is alwaysk-contractible, the proof is completed.

(�) In KTC, each pointx of aK-topological space (X,κn
X) hasSNK(x) (see (�.� )) which is

K-contractible. To be speci“c, depending on the pointx � Zn, we have its smallest open

neighborhoodSNK(x) (see (�.� ) for the case of (Z� ,κ � )) that is K-contractible (see Fig-

ure � ). More precisely, based on Figure� , consider the maps onSNK(p) for the cases of

Figure 4 Explanation of digital k-contractibility. (1) 4-contractibility of SC2,44 [26]; (2) 8-contractibility of
SC2,48 [9, 11].
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Figure 5 Examples for explaining local contractibility of the given two K-topological spaces (1)
and (2).

(Z� ,κ � ):

F : SNK(x
 ) × [
, �] Z 	 SNK(x
 ) shown in Figure� (�) and

G : SNK(y
 ) × [
, �] Z 	 SNK(y
 ) shown in Figure� (�).

Then it is clear to see that the mapsF andG areK-homotopies onSNK(x
 ) andSNK(y
 ),

respectively. Furthermore, it is obvious that they make bothSNK(x
 ) andSNK(y
 ) K-con-

tractible.

By using the method similar to the case of (Z� ,κ � ) we can prove theK-contractibility of

SNK(p) in (Zn,κn). �

Let us investigate some properties ofK-contractibility in KTC.

Lemma . Any K-path in (Zn,κn) is K-contractible.

Proof We will proceed in two steps.

Step �. Let us consider aK-path in Zn, denoted byX := (xi )i� [
, l]Z , as a subspace induced

by (Zn,κn). Then it is obvious thatX contains a simpleK-path (x�
i )i� [
, l � ]Z := X� � X with

l � � l . If X \ X� is nonempty, then takexj � X \ X� such thatxj � SNK(xi ), wherexi � X�,

that is, xi andxj areK-adjacent to each other. Then consider the map

F :
(
X × [a,a + �] Z,κn+�

X× [a,a+�] Z

)
	

(
X,κn

X

)

given by

⎧
⎪⎨

⎪⎩

(�) F(x,a) = � X,x � X;

(�) F(x�,a + �) = � X� ,x� � X�, and

if xj � X \ X� andxj � SNK(xi ), thenxj 	 xi .

⎫
⎪⎬

⎪⎭
(�.�)

Then this mapF is aK-homotopy (see the process ofF(x, �) in Figure � ).
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Figure 6 Explanation of K-contractibility of a K-path.

Step �. SinceX� is a simpleK-path, by Proposition�.� we have aK-interval ([a,b]Z,
κ[a,b]Z ) that is K-homeomorphic toX� := (x�

i )i� [
, l]Z , where ([a,b]Z,κ[a,b]Z ) is K-homeomor-
phic to the subspace ([
,l ]Z,κ[
, l]Z ) or ([�, l + �] Z,κ[�, l+�] Z ) where the cardinality of [a,b]Z

is equal to that of [
, l ]Z or [�, l + �] Z, that is, b …a = l. It is obvious that theK-con-
tractibility of a simple K-path is equivalent to theK-contractibility of ([
, l ]Z,κ[
, l]Z ) or
([�, l + �] Z,κ[�, l+�] Z ). Hence, it suces to prove that the identity map �[
, l]Z on ([
, l ]Z,κ[
, l]Z )
is K-homotopic to the constant functionC{
 } given byC{
 }(x) = 
 for all x � [
, l ]Z because
the proof of theK-contractibility of ([�, l + �] Z,κ[�, l+�] Z ) is similar to that of ([
, l ]Z,κ[
, l]Z ).

Since the numberl is “nite, for some m � N and anys � [
, l ]Z, de“ne the map (see
Figures	 (a) and	 (b))

H :
(
[
, l ]Z × [
, m]Z,κ �

[
, l]Z× [
, m]Z

)
	

(
[
, l ]Z,κ[
, l]Z

)

given by

H(s,t) =

⎧
⎪⎨

⎪⎩

� [
, l]Z (s),t = 
;


, t � 
 and H(s,t … �) = 
;

H(s,t … �) … �,t � 
 and H(s,t … �)� 
.

⎫
⎪⎬

⎪⎭
(�.�)

It is clear that H is aK-homotopy between �[
, l]Z and the constant mapC{
 } , which is
the trivial identity map on the singleton{
 }.

For instance, let us consider theK-intervals ([
, �] Z,κ[
,�] Z ) and ([
, �] Z,κ[
,�] Z ) (see Fig-
ure 	 (a)). Then, in terms of the process from (�) to (�) shown in Figures	 (a) and	 (b), the
K-intervals ([
, �] Z,κ[
,�] Z ) and ([
, �] Z,κ[
,�] Z ) are proved to beK-contractible.

Concretely, combining Steps � and �, for somem � N, we obtain the map

G :
(
X × [
, m]Z,κn+�

X× [
, l]Z

)
	

(
X,κn

X

)



Han Fixed Point Theory and Applications  (2016) 2016:75 Page 15 of 20

Figure 7 Explanation of K-contractibility of a K-path.

Figure 8 Explanation of K-contractibility of SC2,4
K .

given by (see the process with combinedF(x, �) and H(x,i), i � [�, �] Z, in Figure� )

{
G(x,t) = F(x,t),t � { 
, � } and

G(x,t) 
 K H(x,t),t � [�, m]Z.

}

Then we see thatG is aK-homotopy between �(X,κn
X) andC{x
 } , which implies theK-con-

tractibility of a K-path. �

Lemma . SC�,�
K is K-contractible.

Proof The process presented in Figures� (a) and� (b) explains the followingK-contract-

ibility of SC�,�
K . Motivated by Proposition�.� (�), let us consider the map (see Figures� (a)
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and� (b)(�))

F : SC�,�
K × [
, �] Z 	 SC�,�

K

such that

⎧
⎪⎨

⎪⎩

for all x � SC�,�
K ,F(x, 
) = � SC�,�

K
;

F(x, �) = {c� },x � { c� ,c� ,c� },F(c
 , �) = {c
 }; and

F(x, �) = {c
 },x � SC�,�
K .

⎫
⎪⎬

⎪⎭
(�.�)

At this moment, in Figure � (b)(�), we see thatSC�,�
K × { 
 } 
 K SC�,�

K × { � } 
 K SC�,�
K ×

{� }. Then it is obvious that the mapF (see (�.� )) is a K-homotopy supporting the

K-homotopy equivalence betweenSC�,�
K and the singleton{c
 }, which implies thatSC�,�

K

is K-contractible. �

By using the method given by (�.� ) we obtain the following:

Corollary . A K-connected proper subset of SCn,l
K is K-contractible.

Proof By using the method similar to (�.� ), we see that aK-connected proper subset of

SCn,l
K is K-contractible. �

Motivated by non-k-contractibility of SCn,l
k , l � � [ �� ], we obtain the following:

Lemma . SCn,l
K is not K-contractible if l� �.

Proof Let us considerSC�, l
K , l � � (see the spacesW and Z in Figure � (b) as SC�,�

K ).

Then there is at least a part inside ofSC�, l
K consisting of two points, a pure point and a

mixed point, which areK-adjacent. Due to the part, there is noK-homotopy makingSC�, l
K

K-contractible.

By using the method similar to non-K-contractibility of SC�, l
K , l � �, we prove the non-

K-contractibility of SCn,l
K , l � �. �

Theorem . The digital contractibility implies the local contractibility.The converse does

not hold.

Proof Owing to Proposition�.� , since every digital space is locally contractible, it suces

to prove that the local contractibility does not imply contractibility inDTC andKTC.

Figure 9 Explanation of the nonexistence of the FPP of a K-topological space.
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(�) In DTC, considerSCn,l
k such asSC�,	

� that is not k-contractible. By Proposition�.� ,
whereas it is locallyk-contractible, it is not k-contractible.

(�) In KTC, considerSCn,l
K such asSC�,�

K (see Figure� (b)) that is not K-contractible. By
Proposition�.� , whereas it is locallyK-contractible, it is not K-contractible. �

5 Contractibility and fixed point property: the case of Khalimsky topological
spaces

To study the FPPof digital spaces, we need to recall again that a digital spaceX (resp.
digital image (X,k)) is connected (resp.k-connected) and|X| � �.

Rosenfeld [�� ] was the “rst to come up with a “xed point theorem of a digitally continu-
ous self-map of a digital image (X,k) in Zn with the familiar Euclidean and city block dis-
tances. Besides, it was proved in [�� ] that any digital line segment ([a,b]Z, �) does not have
the FPPfrom the viewpoint of digital topology in a graph-theoretical approach, where the
cardinality of [a,b]Z is greater than �, that is,|[a,b]Z| � �. This property can be proved
as follows. Take two distinct �-adjacent points such asxi and xj in ([a,b]Z, �). Then, for
convenience, we may assume thatxi is even andxj is odd. Consider the self-mapf of
([a,b]Z, �), as follows: for any even numbersx � [a,b]Z, f (x) = xj , and the other odd num-
bers in [a,b]Z are mapped by the mapf into the set {xi }. Namely, the imagef ([a,b]Z) has
the cardinality �. Then it is clear that the given mapf is a �-continuous map that has no
“xed points.

For the case of digital image (X, � n) in Zn with |X| � �, using the method similar to the
above approach, let us consider a �n-continuous self-mapf of a digital image (X, � n). Take
two distinct points xi and xj that are �n-adjacent inX. Let f (x) = xi , x �= xi , andf (xi ) = xj

[�� ]. Then we see that whereas the given mapf is a �n-continuous map, it cannot have
any “xed point. Similarly, Rosenfeld [�� ] proved that any digital image (X,k) with |X| � �
does not have theFPPeither (see Proposition�.� ) as follows: take twok-adjacent points
x,y � X in Zn and consider a self-mapf of (X,k) such that, for allx� � X such thatx� �= x,

f (x� ) = x and f (x) = y. (�.�)

Then, it is obvious that whereas the given mapf is a k-continuous map, it has no “xed
points (for more details, see [�� …�	 ]).

Proposition . [�� ] (see Theorems �.� and �.� of [ �� ]) A digital image(X,k) in Zn does
not have the FPP if X is k-connected and|X| � �.

Motivated by the Lefschetz “xed point theorem in [� ], Ege and Karaca [�� ] (Theorem �.�
of [�� ]) studied a “xed point theorem of ak-continuous map on ak-contractible digital
image inDTC as follows. Let (X,k) be a digital image, and letf : (X,k) 	 (X,k) be any
k-continuous map. If (X,k) is k-contractible, thenf has a “xed point. However, by Propo-
sition �.� it is clear that this assertion is incorrect [�� …�	 ]. Thus, by Proposition�.� we
conclude the following:

Remark . [�	 ] (see also [�� …�	 ]) The conjecture (�.� ) is invalid in DTC.

To make the paper self-contained and to guarantee Remark�.� , we have a very simple
example: consider a bijective self-map of ([
, �]Z, �) in DTC such thatf (
) = � and f (�) = 
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[�� , �	 ]; whereas ([
, �] Z, �) is �-contractible in terms of the property ( �.� ), from the view-

point of DTC and further, the mapf is a �-continuous map, which implies thatf cannot

have any “xed point [�� , �	 ].

Let us now move to the conjecture posed in (�.� ).

Question In KTC, is the conjecture (�.� ) valid?

We say that aK-topological space (X,κn
X) has theFPPif everyK-continuous self-mapf

of X has a pointx � X such thatf (x) = x.

Let us now study some properties ofK-topological spaces from the viewpoint of “xed

point theory.

In KTC, we say that aK-topological invariant is a property of aK-topological space that

is invariant underK-homeomorphisms.

Proposition . In KTC, the FPP is a K-topological invariant.

Proof Suppose that (X,κn

X ) has the FPP and there exists aK-homeomorphism h :

(X,κn

X ) 	 (Y,κn�

Y ). Then we prove that (Y,κn�
Y ) has theFPP. To this end, let g be any

K-continuous self-map of (Y,κn�
Y ). Then consider the compositionh � f � h…� := g :

(Y,κn�
Y ) 	 (Y,κn�

Y ), wheref is aK-continuous self-map of (X,κn

X ). Owing to the hypothe-

sis, assume thatx � X is a “xed point for aK-continuous self-mapf of (X,κn

X ). Sinceh is a

K-homeomorphism, there is a pointy � Y such thath(x) = y. Let us consider the mapping

f (x) = h…�� g � h(x) = h…�(g
(
h(x)

))
= h…�(g(y)

)
. (�.�)

Then, from (�.� ) we obtainh(f (x)) = g(y). Further, by the hypothesis of theFPPof (X,κn

X )

and theK-homeomorphism between (X,κn

X ) and (Y,κn�

Y ), we have

h
(
f (x)

)
= h(x) = y = g(y),

which implies that the pointh(x) is a “xed point of the mapg, which implies that (Y,κn�
Y )

has theFPP. �

Theorem . Let X be a simple K-path in the nD Khalimsky space. Then it has the FPP.

Proof In [ �� ], it is proved that any boundedK-interval ([a,b]Z,κ[a,b]Z ) has theFPP. Be-

sides, by Proposition�.� (�) it is obvious that any simpleK-path in the nD Khalimsky space

is K-homeomorphic to a certainK-interval ([a,b]Z,κ[a,b]Z ). By Proposition�.� we obtain

the assertion. �

Example . Consider theK-interval ([
, �] Z,κ[
,�] Z ) and anyK-continuous self-maps of

([
, �] Z,κ[
,�] Z ). Then there are only seven types ofK-continuous self-maps of ([
, �] Z,

κ[
,�] Z ) among nine self-mappings. It is obvious that each of them has at least one “xed

point.

Corollary . SCn,l
K does not have the FPP.
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Proof By the property ofSCn,l
K := (xi )i� [
, l…�]Z we obtain that any twoK-adjacent points

such asxi ,xi+� ( mod l), i � [
, l … �]Z, have the following property:

{
xi � SNK(xi+� ( mod l)) or

xi+� ( mod l) � SNK(xi ).

}
(�.�)

In (�.� ), in casexi � SNK(xi+� ( mod l)), it is obvious that the cardinality ofSNK(xi+� ( mod l))

is three, and in casexi+� ( mod l) � SNK(xi ), we see that the cardinality ofSNK(xi ) is three.

Thus, the numberl should be even and greater than or equal to � because these kinds of

alternative arrangement ofxi , xi+� ( mod l), i � [
, l … �]Z, are consecutive. Then consider the

self-mapf of SCn,l
K given byf (xi ) = xi+� ( mod l). Then it is clear thatf is aK-continuous map

without any “xed point. �

Example . Consider two types ofSC�,�
K in Figures� (b-�) and � (b-�). Take the space

SC�,�
K := Z in Figure � (b-�). Next, consider the self-mapf of SC�,�

K := Z given byf (zi ) =

zi+� ( mod �) . Whereas this mapf is obviously aK-continuous map, it has no “xed points

(seeSC�,�
K in Figures� (b-�) and � (b-�)).

Theorem . In KTC, the conjecture(�.� ) is not valid.

Proof It suces to propose a counterexample supporting this assertion. Let us con-

sider SCn,�
K , n � �, such as SC�,�

K (see Figure� (a)), Then we see thatSCn,�
K , n � �, is

K-homeomorphic toSC�,�
K . Then, by Lemma�.� it is obvious thatSCn,�

K is K-contractible.

Consider the self-mapf of SCn,�
K given by

f (c
 ) = c� , f (c� ) = c
 , f (c� ) = c� , f (c� ) = c� .

Whereas the mapf is obviouslyK-continuous map, it has no “xed points. �

6 Summary and further works
Developing the notion ofK-homotopy in the category of Khalimsky topological spaces,

we have developed the notions of contractibility and local contractibility induced by the

K-homotopy. Besides, proving that digital contractibilities imply local contractibilities for

aK-contractible spaceX, we wondered if the spaceX has theFPP. In this paper, we proved

that not everyK-topological space withK-contractibility has theFPP. More precisely, for

SCn,l
K , we proved thatSCn,l

K does not have theFPP. For instance, we proved that whereas

SCn,�
K is K-contractible, it cannot have theFPP. However, we proved that a simpleK-path

has theFPP. In addition, we proved that inKTC the FPPis aK-topological invariant.

As a further work, we need to study theFPPof the product of two simpleK-paths.

Besides, we need to study theFPPfor other digital topological spaces.
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