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Abstract
Boyd and Wong in their celebrated paper ‘On nonlinear contractions’ assumed the
comparison function to be upper semicontinuous from the right. Our requirement
presented in this paper is much more general and it extends also the well-known
Matkowski condition.
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1 Introduction
Boyd and Wong in [] considered the condition ρ(f (x), f (y)) ≤ ϕ(ρ(x, y)), where ϕ :
[,∞) → [,∞) is a mapping such that ϕ(α) < α, α > , and

lim sup
β→α+

ϕ(β) ≤ ϕ(α), α > , ()

holds (i.e. ϕ is upper semicontinuous from the right on (,∞)).
A part of [], Theorem . shows that () can be replaced by

lim sup
β→α+

ϕ(β) < α, α > . ()

In the present paper we apply the following condition:

for each α > , ϕ(·) ≤ α on some interval (α,α + ε). ()

Clearly, () is more general than (). In turn, Matkowski in [], Theorem . assumed ϕ

to be nondecreasing and limn→∞ ϕn(α) = , α > . It is well known that for every function ϕ

satisfying Matkowski’s condition we have ϕ(α) < α, α > . Let us show that () extends the
Matkowski condition for ϕ such that ϕ(α) < α, α > . Assume ϕ is nondecreasing, ϕ(β) < β ,
β > , and suppose ϕ(·) > α >  on an interval (α,α +ε). Then for any β ∈ (α,α +ε) we have
α < ϕ(β) < β < α + ε, and consequently, α < ϕn(β) < · · · < ϕ(β) < α + ε, i.e. limn→∞ ϕn(β) ≥
α > , a contradiction. Therefore ϕ must be equal to α on (α,α + ε).

It is clear that () is equivalent to the following condition:

for each α > , if lim sup
β→α+

ϕ(β) = α,

then ϕ(·) ≤ α on some interval (α,α + ε), ()

as lim supβ→α+ ϕ(β) < α yields ϕ(·) < α on some interval (α,α + ε).
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2 Definitions and auxiliary results
It is nice if for f : X → X the inequality

ρ
(
f n+(x), f n+(x)

) ≤ ϕ
(
ρ
(
f n+(x), f n(x)

))
, n ∈N,

yields limn→∞ ρ(f n+(x), f n(x)) = . Therefore, we are interested in mappings ϕ : [,∞) →
[,∞) such that for each sequence (an)n∈N the condition  < an+ ≤ ϕ(an), n ∈ N yields
limn→∞ an = . The family of all such mappings was denoted in [] by �P, while the family
of all mappings ϕ : [,∞) → [,∞) such that ϕ(α) < α, α >  was denoted by �.

Let us notice that the assumption ϕ ∈ � (or a stronger one) is present in all theorems
concerning conditions () or ().

Proposition . �P ⊂ �.

Proof Suppose α ≤ ϕ(α) for a ϕ ∈ �P and an α > . Then all an = α, n ∈ N satisfy  < an+ ≤
ϕ(an), and limn→∞ an = α > , a contradiction. �

Lemma . If a ϕ ∈ �P , then ϕ ∈ � and () is satisfied.

Proof Suppose a ϕ ∈ �P does not satisfy (), i.e. there exists a sequence (xn)n∈N decreasing
to an α > , and such that ϕ(xn) > α, n ∈N. Let us adopt a = x. There exists an a ∈ {x, . . .}
such that a ≤ ϕ(a) < a. If an is defined, then an+ ∈ {x, . . .} is such that an+ ≤ ϕ(an) < an.
Our sequence (an)n∈N satisfies  < α < an+ ≤ ϕ(an), n ∈N, and it does not converge to zero.
Therefore, ϕ /∈ �P , a contradiction. �

Lemma . If a ϕ ∈ � satisfies (), then ϕ ∈ �P .

Proof Let (an)n∈N be a sequence such that  < an+ ≤ ϕ(an), n ∈ N for a ϕ ∈ �. Then we
have

 < an+ ≤ ϕ(an) < an, n ∈N.

Therefore, (an)n∈N decreases, say to an α. Suppose α > . Then from () it follows that there
exists an interval (α,α +ε) on which ϕ(·) ≤ α. For large n all an belong to this interval. Now,
we have α < an+ ≤ ϕ(an) ≤ α, a contradiction. Consequently, α = , i.e. ϕ ∈ �P . �

Corollary . �P consists of all mappings ϕ ∈ � satisfying ().

Hitzler and Seda in [] introduced the following notion of dislocated metric space.
Let X be a nonempty set, and p : X × X → [,∞) a mapping satisfying

p(x, y) =  yields x = y, x, y ∈ X,

p(x, y) = p(y, x), x, y ∈ X,

p(x, z) ≤ p(x, y) + p(y, z), x, y, z ∈ X.

Then p is called a dislocated metric (briefly a d-metric), and (X, p) is called a dislocated
metric space (briefly a d-metric space).
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If (X, p) is a dislocated metric space then (see [], (.))

Ker p =
{

x ∈ X : p(x, x) = 
}

.

Let us recall that a d-metric space (X, p) is called -complete (see [], Definition .) if
the following condition is satisfied:

for every sequence (xn)n∈N in X such that lim
m,n→∞ p(xn, xm) = 

there exists an x ∈ X such that lim
n→∞ p(x, xn) = . ()

The first idea of cyclic mappings is due to Kirk, Srinivasan and Veeramani []. The subse-
quent definition refines [], Definition . in such a way that the case of X = X is included.

Definition . A mapping f : X → X is called cyclic on X, . . . , Xt (for a t ≥ ) if ∅ 	= X =
X ∪ · · · ∪ Xt , and f (Xj) ⊂ Xj++, j = , . . . , t, where j++ = j +  for j < t, and t++ = .

Our fixed point theorems concern mappings f : X → X satisfying

p
(
f (y), f (x)

) ≤ ϕ
(
p(y, x)

)
()

or

p
(
f (y), f (x)

) ≤ ϕ
(
mf (y, x)

)
()

for

mf (y, x) = max
{

p(y, x), p
(
f (y), y

)
, p

(
f (x), x

)}
,

where (X, p) is a d-metric space.

3 Theorems
The theorems of the present section look like some theorems from [], but condition ()
matters a lot. Our first theorem extends [], Theorem ..

Theorem . Let (X, p) be a -complete d-metric space, and let f : X → X be a mapping
satisfying condition () or (), for all x, y ∈ X and a ϕ ∈ � such that () holds. Then f has a
unique fixed point; if x = f (x), then limn→∞ p(x, f n(x)) = p(x, x) =  (i.e. x ∈ Ker p), x ∈ X.

Proof It is sufficient to prove that limm,n→∞ p(xn, xm) =  holds for xn = f n(x), n ∈ N (see
[], Lemma .). From the fact that ϕ ∈ �P (Lemma .) it follows that limn→∞ p(xn+, xn) =
 (see [], Lemma .). Suppose that there exists an infinite set K ⊂ N such that for each
k ∈ K there exists an n ∈ N for which p(xn++k , xk) > α >  holds. Let n = n(k) >  be the
smallest numbers satisfying this inequality for k ∈ K . For simplicity let us adopt x = f k(x)
(x– = f k–(x)), and xm = f m(x), m ∈N. From

p(xn+, x) ≤ ϕ
(
mf (xn, x–)

)
= ϕ

(
max

{
p(xn, x–), p(xn+, xn), p(x, x–)

})
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(see ()) we get p(xn+, x) ≤ ϕ(p(xn, x–)), for large k (or from () directly), as

α < p(xn+, x) ≤ p(xn+, xn) + p(xn, x–) + p(x–, x).

The inequality

p(xn, x–) ≤ p(xn, x) + p(x, x–) ≤ α + p(x, x–)

yields p(xn, x–) < α + ε, for large k. Consequently, from () and ϕ(β) < α, β ≤ α, we obtain

α < p(xn+, x) ≤ ϕ
(
p(xn, x–)

) ≤ α,

for large k, a contradiction, i.e. limm,n→∞ p(xn, xm) = . �

Now, Theorem ., and [], Lemma  yield the following extension of [], Theorem ..

Theorem . Let (X, p) be a -complete d-metric space, and let f : X → X be a mapping
satisfying condition () or (), for all x, y ∈ X with f replaced by f s for an s ∈N, and a ϕ ∈ �

having property (). Then f has a unique fixed point; if x = f (x), then limn→∞ p(x, f n(x)) =
p(x, x) = , x ∈ X.

A refinement of the proof of Theorem ., yields the following extension of [], Theo-
rem ..

Theorem . Let (X, p) be a -complete d-metric space, and let f : X → X be cyclic on
X, . . . , Xt . Assume that () or () is satisfied for all x ∈ Xj, y ∈ Xj++, j = , . . . , t and a ϕ ∈ �

having property (). Then f has a unique fixed point; if x = f (x), then limn→∞ p(x, f n(x)) =
p(x, x) = , x ∈ X.

Proof It is sufficient to prove that limm,n→∞ p(xn, xm) =  holds for xn = f n(x), n ∈ N (see
[], Lemma .). From the fact that ϕ ∈ �P (Lemma .) it follows that limn→∞ p(xn+, xn) =
 (see [], Lemma .). Suppose that there exists an infinite set K ⊂ N such that for each
k ∈ K there exists an n ∈ N for which p(x(n+)t+k+, xk) > α >  holds. Let n = n(k) >  be the
smallest numbers satisfying this inequality for k ∈ K . For simplicity let us adopt x = f k(x)
(x– = f k–(x)), and xm = f m(x), m ∈ N. Clearly, x ∈ Xj yields xnt+, x(n+)t+ ∈ Xj++. In view
of () we have

p(x(n+)t+, x) ≤ ϕ
(
mf (x(n+)t , x–)

)

= ϕ
(
max

{
p(x(n+)t , x–), p(x(n+)t+, x(n+)t), p(x, x–)

})
,

which, for large k (or from () directly) gives

p(x(n+)t+, x) ≤ ϕ
(
p(x(n+)t , x–)

)
,

as

α < p(x(n+)t+, x) ≤ p(x(n+)t+, x(n+)t) + p(x(n+)t , x–) + p(x–, x).
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Now,

p(x(n+)t , x–) ≤ p(x(n+)t , x(n+)t–) + · · · + p(xnt+, xnt+) + p(xnt+, x) + p(x, x–)

≤ p(x(n+)t , x(n+)t–) + · · · + p(xnt+, xnt+) + α + p(x, x–)

yields p(x(n+)t , x–) < α + ε, for large k. Consequently, from () and ϕ(β) < α, β ≤ α, we
obtain

α < p(x(n+)t+, x) ≤ ϕ
(
p(x(n+)t , x–)

) ≤ α,

for large k, a contradiction. Now, it is clear that limm,n→∞ p(xm+nt+, xm) = . One step more
is necessary for t > . We have

lim
m,n→∞ p(xm+nt+s, xm)

≤ lim
m,n→∞

[
p(xm+nt+s, xm+nt+s–) + · · · + p(xm+nt+, xm+nt+) + p(xm+nt+, xm)

]
= 

for any s ∈ {, . . . , t}, i.e. limm,n→∞ p(xn, xm) = . �

Clearly Theorem . is more general than Theorem .. The proof of Theorem . is
easier, it helps to understand the idea of the proof of Theorem ., and therefore, it is also
presented.

Now, Theorem ., and [], Lemma  yield the following.

Theorem . Let (X, p) be a -complete d-metric space, and let f : X → X be a mapping
such that f s is cyclic on X, . . . , Xt for an s ∈ N. Assume that () or () is satisfied for all
x ∈ Xj, y ∈ Xj++, j = , . . . , t with f replaced by f s, and a ϕ ∈ � having property (). Then f
has a unique fixed point; if x = f (x), then limn→∞ p(x, f n(x)) = p(x, x) = , x ∈ X.

Remark . Let us note that [], Lemmas ., . stay valid if we assume that (X, p) is
-complete for orbits of f , i.e. () holds for xn = f n(x), xm = f m(x), m, n ∈ N, x ∈ X.
Consequently, theorems of Section  stay valid if the assumption that (X, p) is -complete
is replaced by the requirement that (X, p) is -complete for orbits of f .
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