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1 Introduction and preliminaries
Let H be a real Hilbert space with norm ‖ ·‖H and inner product (·, ·). Let C be a nonempty
closed and convex subset of H . Let T be a nonlinear mapping of H into itself. Let I denote
the identity mapping on H . Denote by F(T) the set of fixed points of T .

Moreover, the symbols ⇀ and → stand for weak and strong convergence, respectively.
We say that T is generalized Lipschitzian iff there exists a nonnegative real valued func-

tion r(x, y) satisfying supx,y∈H{r(x, y)} = λ < ∞ such that

‖Tx – Ty‖H ≤ r(x, y)‖x – y‖H , ∀x, y ∈ H . (.)

Recently, this class of mappings has been studied by Saddeek and Ahmed [], and Saddeek
[].

For r(x, y) = λ ∈ (, ) (resp., r(x, y) = ) such mappings are said to be λ-contractive (resp.,
nonexpansive) mappings.

If r(x, y) = λ > , then the class of generalized Lipschitzian mappings coincide with the
class of λ-Lipschitzian mappings.
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We say that T is generalized strictly pseudocontractive iff for each pair of points x, y in
H there exist nonnegative real valued functions ri(x, y), i = , , satisfying

sup
x,y∈H

{ ∑
i=

ri(x, y)

}
= λ′ < ∞

such that

‖Tx – Ty‖
H ≤ r(x, y)‖x – y‖

H + r(x, y)
∥∥(I – T)(x) – (I – T)(y)

∥∥
H . (.)

By letting r(x, y) =  and r(x, y) = λ ∈ [, ) (resp., ri(x, y) = , i = , ) in (.), we may derive
the class of λ-strictly pseudocontractive (resp., pseudocontractive) mappings, which is due
to Browder and Petryshyn [].

The class of λ-strictly pseudocontractive mappings has been studied recently by various
authors (see, for example, [–]).

It worth noting that the class of generalized strictly pseudocontractive mappings in-
cludes generalized Lipschizian mappings, λ-strictly pseudocontractive mappings, λ-Lip-
schitzian mappings, pseudocontractive mappings, nonexpansive (or -strictly pseudocon-
tractive) mappings.

These mappings appear in nonlinear analysis and its applications.

Definition . For any x, y, z ∈ H the mapping T is said to be
(i) demiclosed at  (see, for example, []) if Tx =  whenever {xn} ⊂ H with xn ⇀ x

and Txn → , as n → ∞;
(ii) pseudomonotone (see, for example, []) if it is bounded and xn ⇀ x ∈ H and

lim sup
n→∞

(Txn, xn – x) ≤  
⇒ lim inf
n→∞ (Txn, xn – y) ≥ (Tx, x – y);

(iii) coercive (see, for example, []) if

(Tx, x) ≥ ρ
(‖x‖H

)‖x‖H , lim
ξ→+∞ρ(ξ ) = +∞;

(iv) potential (see, for example, []) if

∫ 



((
T

(
t(x + y), x + y

))
–

(
T(tx), x

))
dt =

∫ 



(
T(x + ty), y

)
dt;

(v) hemicontinuous (see, for example, []) if

lim
t→

(
T(x + ty), z

)
= (Tx, z);

(vi) demicontinuous (see, for example, []) if

lim‖xn–x‖H→
(Txn, y) = (Tx, y);

(vii) uniformly monotone (see, for example, []) if there exist p ≥ , α >  such that

(Tx – Ty, x – y) ≥ α‖x – y‖p
H ;
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(viii) bounded Lipschitz continuous (see, for example, []) if there exist p ≥ , M > 
such that

‖Tx – Ty‖H ≤ M
(‖x‖H + ‖y‖H

)p–‖x – y‖H .

It should be noted that any demicontinuous mapping is hemicontinuous and every uni-
formly monotone is monotone (i.e., (Tx – Ty, x – y) ≥ , ∀x, y ∈ H) and every monotone
hemicontinuous is pseudomonotone.

If T is uniformly monotone (resp. bounded Lipschitz continuous) with p = , then T is
called strongly monotone (resp. M-Lipschitzian).

For x ∈ C the Krasnoselskii iterative process (see, for example, []) starting at x is
defined by

xn+ = ( – τ )xn + τTxn, n ≥ , (.)

where τ ∈ (, ).
Recently, in a real Hilbert space setting, Saddeek and Ahmed [] proved that the Kras-

noselskii iterative sequence given by (.) converges weakly to a fixed point of T under
the basic assumptions that I – T is generalized Lipschitzian, demiclosed at , coercive,
bounded, and potential. Moreover, they also applied their result to the stationary filtra-
tion problem with a discontinuous law.

However, the convergence in [] is in general not strong. Very recently, motivated and
inspired by the work in He and Zhu [], Saddeek [] introduced the following modified
Krasnoselskii iterative algorithm by the boundary method:

xn+ =
(
 – τh(xn)

)
xn + τTτ xn, n ≥ , (.)

where x = x ∈ C, τ ∈ (, ), Tτ = ( – τ )I + τT and h :→ [, ] is a function defined by

h(x) = inf
{
α ∈ [, ] : αx ∈ C

}
, ∀x ∈ C.

By replacing Tτ by T and taking h(xn) = , ∀n ≥  in (.), we can obtain (.).
Saddeek [] obtained some strong convergence theorems of the iterative algorithm (.)

for finding the minimum norm solutions of certain nonlinear operator equations.
The class of uniformly convex Banach spaces play an important role in both the geome-

try of Banach spaces and relative topics in nonlinear functional analysis (see, for example,
[, ]).

Let X be a real Banach space with its dual X∗. Denote by 〈·, ·〉 the duality pairing between
X∗ and X. Let ‖ · ‖X be a norm in X, and ‖ · ‖X∗ be a norm in X∗.

A Banach space X is said to be strictly convex if ‖x + y‖X <  for every x, y ∈ X with
‖x‖X ≤ , ‖y‖X ≤  and x �= y.

A Banach space X is said to be uniformly convex if for every ε > , there exists an in-
creasing positive function δ(ε) with δ() =  such that ‖x‖X ≤ , ‖y‖X ≤  with ‖x–y‖X ≥ ε

imply ‖x + y‖X ≤ ( – δ(ε)) for every x, y ∈ X.
It is well known that every Hilbert space is uniformly convex and every uniformly convex

Banach space is reflexive and strictly convex.
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A Banach space X is said to have a Gateaux differentiable norm (see, for example, [],
p.) if for every x, y ∈ X with ‖x‖X = , ‖y‖X =  the following limit exists:

lim
t→+

[‖x + ty‖X – ‖x‖X]
t

.

X is said to have a uniformly Gateaux differentiable norm if for all y ∈ X with ‖y‖X = , the
limit is attained uniformly for ‖x‖X = .

Hilbert spaces, Lp (or lp) spaces, and Sobolev spaces W 
p ( < p < ∞) are uniformly con-

vex and have a uniformly Gateaux differentiable norm.
The generalized duality mapping Jp, p >  from X to X∗ is defined by

Jp(x) =
{

x∗ ∈ X∗ :
〈
x∗, x

〉
= ‖x‖p

X ,
∥∥x∗∥∥

X∗ = ‖x‖p–
X

}
, ∀x ∈ X.

It is well known that (see, for example, [, ]) if the uniformly convex Banach space X is
a uniformly Gateaux differentiable norm, then Jp is single valued (we denote it by jp), one
to one and onto. In this case the inverse of jp will be denoted by j–

p .
Definition . above can easily be stated for mappings T from C to X∗. The only change

here is that one replaces the inner product (·, ·) by the bilinear form 〈·, ·〉.
Given a nonlinear mapping A of C into X∗. The variational inequality problem associ-

ated with C and A is to find

x ∈ C : 〈Ax – f , y – x〉 ≥ , ∀y ∈ C, f ∈ X∗. (.)

The set of solutions of the variational inequality (.) is denoted by VI(C, A).
It is well known (see, for example, [, , ]) that if A is pseudomonotone and coercive,

then VI(C, A) is a nonempty, closed, and convex subset of X. Further, if A = jp – T , then
F̃(jp, T) = {x ∈ C : jpx = Tx} = A–. In addition, there exists also a unique element z =
projA–() ∈ VI(A–, jp), called the minimum norm solution of variational inequality (.)
(or the metric projection of the origin onto A–). If X = H , then jp = I and hence F̃ = F.

Example . Let 
 be a bounded domain in R
n with Lipschitz continuous boundary.

Let us consider p ≥ , 
p + 

q = , and X = W̊ ()
p (
), X∗ = W (–)

q (
). The p-Laplacian is the
mapping –�p : W̊ ()

p (
) → W (–)
q (
), �pu = div(|∇u|p–∇u) for u ∈ W̊ ()

p (
).

It is well known that the p-Laplacian is in fact the generalized duality mapping jp (more
specifically, jp = –�p), i.e., 〈jpu, v〉 =

∫



|∇u|p–(∇u,∇u) dx, ∀u, v ∈ W̊ ()
p (
).

From [], p., we have

〈jpu – jpv, u – v〉 =
∫




((|∇u|p–∇u – |∇v|p–∇v
)
,∇(u – v)

)
dx

≥ M
∫




|∇u – ∇v|p dx for some M > ,

which implies that jp is uniformly monotone.
By [], p., we have

∣∣〈jpu – jpv, w〉∣∣ ≤ M‖u – v‖W̊ ()
p (
)

(‖u‖W̊ ()
p (
) + ‖v‖W̊ ()

p (
)

)p–‖w‖W̊ ()
p (
),
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or

‖jpu – jpv‖W (–)
q (
) = sup

w∈W̊ ()
p (
)

|〈jpu – jpv, w〉|
‖w‖W̊ ()

p (
)

≤ M‖u – v‖W̊ ()
p (
)

(‖u‖W̊ ()
p (
) + ‖v‖W̊ ()

p (
)

)p–,

this shows that jp is bounded Lipschitz continuous.
The generalized duality mapping jp = –�p is bounded, demicontinuous (and hence

hemicontinuous) and monotone, and hence jp is pseudomonotone.
From the definition of jp, it follows that jp is coercive.
Since jpu ∈ W (–)

q (
), ∀u ∈ W̊ ()
p (
) is the subgradient of 

p‖u‖p
W̊ ()

p (
)
, it follows that jp is

potential.
Since jp is pseudomonotone and coercive (it is surjective), then jp is demiclosed at  (see

Saddeek [] for an explanation).
The mapping jp is generalized strictly pseudocontractive with r(x, y) = .
The following two lemmas play an important role in the sequel.

Lemma . ([]) Let {an}, {bn}, and {cn} be nonnegative real sequences satisfying

an+ ≤ ( – γn)an + bn + cn, ∀n ≥ ,

where γn ⊂ (, ),
∑∞

n= γn = ∞, lim supn→∞
bn
γn

≤ , and
∑∞

n= cn < ∞. Then limn→∞ an = .

Lemma . ([]) Let X be a real uniformly convex Banach space with a uniformly
Gateaux differentiable norm, and let X∗ be its dual. Then, for all x∗, y∗ ∈ X∗, the following
inequality holds:

∥∥x∗ + y∗∥∥
X∗ ≤ ∥∥x∗∥∥

X∗ + 
〈
y∗, j–

p x∗ – y
〉
, y ∈ X,

where j–
p is the inverse of the duality mapping jp.

Let us now generalize the algorithm (.) for a pair of mappings as follows:

jpxn+ =
(
 – τh(xn)

)
jpxn + τTjp

τ xn, n ≥ , (.)

where x = x ∈ C, τ ∈ (, ), Tjp
τ = ( – τ )jp + τT , T : C → X∗ is a suitable mapping, and

jp : X → X∗ is the generalized duality mapping.
This algorithm can also be regarded as a modification of algorithm () in []. We shall

call this algorithm the generalized modified Krasnoselskii iterative algorithm.
In the case when X is uniformly convex Banach space, the generalized strictly pseudo-

contractive mapping (.) can be written as follows:

‖Tx – Ty‖p
X∗ ≤ r(x, y)‖jpx – jpy‖p

X∗

+ r(x, y)
∥∥(jp – T)(x) – (jp – T)(y)

∥∥p
X∗ , p ∈ [,∞), (.)

where r(x, y) and r(x, y) satisfy the same conditions as above.
Obviously, (.) and (.) reduce to (.) and (.), respectively, when X is a Hilbert space.
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The main purpose of this paper is to extend the results in [] to uniformly convex Banach
spaces and to generalized modified iterative processes with generalized strictly pseudo-
contractive mappings.

2 Main results
Now we are ready to state and prove the results of this paper.

Theorem . Let X be a real uniformly convex Banach space with a uniformly Gateaux
differentiable norm and X∗ be its dual. Let C be a nonempty closed convex subset of X. Let
jp : X → X∗ be the generalized duality mapping and let T : C → X∗ be a bounded Lipschitz
continuous nonlinear mapping. Define Sh(x) : C → X∗ by

Sh(x)x =
(
h(x) + τ – 

)
jpx – τTx, ∀x ∈ C,

where the function h(x) is defined as above and τ ∈ (, ).
Assume that Sh(x) is demiclosed at , coercive, potential, bounded, and generalized strictly

pseudocontractive in the sense of (.), here ri = ri(x, y), i = , , satisfy the following condi-
tion:

sup
x,y∈C

[
r +

(
 – h(x)

)pr
]

=
(
λ′)p < ∞, p ≥ .

Suppose that the constant α appearing in (.) is as follows:

α = sup
x,y∈C

[
‖x – y‖X +  sup

x∈C
‖x‖X

]p–‖x – y‖–p
X , p ≥ .

Then the iterative sequence {xn} generated by algorithm (.) with
∑∞

n= h(xn) = ∞ and
 < τ = min{, 

λ′M }, converges strongly to x̄ ∈ VI(S–
h(x̄), jp), x̄ = projS–

h(x̄)(), where S–
h(x̄) =

F̃(h(x̄)jp, Tjp
τ ).

Proof First observe that {xn} is well defined because Sh(x) is bounded and λ′ < ∞. Next, we
show that the sequence {xn} is bounded. Since Sh(x) is coercive, it is sufficient (see proof of
Theorem . in []) to show that

{xn} ⊂ S, ‖xn‖X ≤ R, n ≥ , (.)

where S = {x ∈ C : F(x) ≤ F(x)}, R = supx∈S ‖x‖X , and F : X → (–∞,∞] is a real func-
tion defined as follows:

F(x) =
∫ 



〈
Sh(x)(tx), x

〉
dt, ∀x ∈ X. (.)

From the definition of S, it follows immediately that x ∈ S. Suppose, for n ≥ , that
xn ∈ S. We now claim that xn+ ∈ S. Indeed, from (.), the bounded Lipschitz continuity
of jp, T , and the definition of Sh(x), we obtain

∥∥Sh(xn)
(
xn+ + t(xn – xn+)

)
– Sh(xn)(xn)

∥∥p
X∗

≤ r
∥∥jp

(
xn+ + t(xn – xn+)

)
– jpxn

∥∥p
X∗
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+ r
∥∥(jp – Sh(xn))

(
xn+ + t(xn – xn+)

)
– (jp – Sh(xn))(xn)

∥∥p
X∗

≤ r
∥∥jp

(
xn+ + t(xn – xn+)

)
– jp(xn)

∥∥p
X∗

+ r
[(

 – τ – h(xn)
)∥∥jp

(
xn+ + t(xn – xn+)

)
– jp(xn)

∥∥
X∗

+ τ
∥∥T

(
xn+ + t(xn – xn+)

)
– T(xn)

∥∥
X∗

]p

≤ ( – t)pMp[r +
(
 – h(xn)

)pr
]

× (∥∥xn+ + t(xn – xn+)
∥∥

X + ‖xn‖X
)p(p–)‖xn – xn+‖p

X

= ( – t)pMp[r +
(
 – h(xn)

)pr
]

× (∥∥xn+ + t(xn – xn+)
∥∥

X – ‖xn‖X + ‖xn‖X
)p(p–)‖xn – xn+‖p

X

≤ ( – t)pMp[r +
(
 – h(xn)

)pr
]

× [
( – t)‖xn – xn+‖X + ‖xn‖X

]p(p–)‖xn – xn+‖p
X

≤ Mp[r +
(
 – h(xn)

)pr
]

× [‖xn – xn+‖X + R
]p(p–)‖xn – xn+‖p

X for t ∈ [, ].

Hence

∥∥Sh(xn)
(
xn+ + t(xn – xn+)

)
– Sh(xn)(xn)

∥∥p
X∗

≤ Mλ′[‖xn – xn+‖X + R
]p–‖xn – xn+‖X . (.)

This implies that

∣∣〈Sh(xn)
(
xn+ + t(xn – xn+)

)
– Sh(xn)(xn), xn – xn+

〉∣∣
≤ Mλ′[‖xn – xn+‖X + R

]p–‖xn – xn+‖
X . (.)

Since Sh(x) is potential and jp is uniformly monotone, by (.), (.), and (.) it follows that

F(xn) – F(xn+) =
∫ 



(〈
Sh(xn)(txn), xn

〉
–

〈
Sh(xn)(txn+), xn+

〉)
dt

=
∫ 



(〈
Sh(xn)

(
xn+ + t(xn – xn+)

)
, xn – xn+

〉)
dt

=
∫ 



(〈
Sh(xn)

(
xn+ + t(xn – xn+)

)
, xn – xn+

〉)
dt

–
∫ 



〈
Sh(xn)(xn), xn – xn+

〉
dt +

〈
Sh(xn)(xn), xn – xn+

〉

≥ –
∫ 



∣∣〈Sh(xn)
(
xn+ + t(xn – xn+)

)
– Sh(xn)(xn), xn – xn+

〉∣∣dt

+
〈
Sh(xn)(xn), xn – xn+

〉
≥ –Mλ′[‖xn – xn+‖X + R

]p–‖xn – xn+‖
X

+

τ

〈jpxn – jpxn+, xn – xn+〉

≥ –Mλ′[‖xn – xn+‖X + R
]p–‖xn – xn+‖

X +
α

τ
‖xn – xn+‖p

X ,
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which together with the restriction on α implies that

F(xn) – F(xn+) ≥ μ
[‖xn – xn+‖X + R

]p–‖xn – xn+‖
X , μ =


τ

– Mλ′ > . (.)

Therefore, F(xn+) ≤ F(xn) ≤ F(x), which implies that xn+ ∈ S. Thus, by mathematical
induction we get xn ∈ S for all n ≥ . This shows that xn is bounded. This, together with
the definition of jp, the boundedness of Sh(xn), and (.), (.), implies that the sequences
{Sh(xn)(xn)}, {jp(xn)}, {Tjp

τ (xn)}, and {F(xn)} are also bounded.
Further, it follows from (.) that the sequence {F(xn)} is monotonically decreasing and

therefore convergent. Consequently, from (.), we have

lim
n→∞‖xn – xn+‖X = . (.)

Hence, by the bounded Lipschitz continuity of jp, we obtain

lim
n→∞‖jpxn – jpxn+‖X∗ = . (.)

Therefore, by (.) and the definition of Sh(x), we then have

lim
n→∞‖Sh(xn)xn‖X∗ = . (.)

Let x̄ be a weak limit point of {xn}, then there exists a subsequence {xnk } of {xn} such that

lim
k→∞

‖xnk – x̄‖X → σx̄. (.)

Since Sh(x) is demiclosed at , it follows from (.) and (.) that Sh(x̄)x̄ = , and hence

x̄ ∈ S–
h(x̄). (.)

Now, we show that

lim sup
n→∞

〈Sh(xn)xn, xn+ – x̃〉 ≤ , ∀x̃ ∈ S–
h(x̃). (.)

Using (.) and the definition of Sh(x), we get

〈
Sh(xn)(xn), xn+ – x̃

〉 ≤ 〈
Sh(xn)(xn), xn+ – xn

〉
+ τ–〈jp(xn) – jp(xn+), xn – x̃

〉
≤ ∥∥Sh(xn)(xn)

∥∥
X∗‖xn – xn+‖X

+ τ–‖jpxn – jpxn+‖X∗‖xn – x̃‖X . (.)

Taking the lim sup as n → ∞ in (.) and using (.), (.), and (.) yield the desired
inequality (.).

Now, let us show that

lim sup
n→∞

〈
–jp(x̄), xn+ – x̄

〉 ≤ , (.)

where x̄ is the metric projection of the origin onto S–
h(x̄).
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Let {xnk } be a subsequence of {xn} such that xnk+ → x̃ ∈ S–
h(x̃) and

lim sup
n→∞

〈
–jp(x̄), xn+ – x̄

〉
= lim sup

k→∞

〈
–jp(x̄), xnk+ – x̄

〉
.

It follows from Kato [] that

lim sup
n→∞

〈
–jp(x̄), xn+ – x̄

〉
=

〈
–jp(x̄), x̃ – x̄

〉 ≤ . (.)

This proves the desired inequality (.), and, hence by (.) and (.), we obtain

x̄ ∈ S–
h(x̄) ∩ VI

(
S–

h(x̄), jp
)
. (.)

Now, we prove that jpxn → jpx̄ as n → ∞.
By using (.) and Lemma ., we get

‖jpxn+ – jpx̄‖
X∗ =

∥∥(
 – τh(xn)

)
(jpxn – jpx̄) + τ

(
Tjp

τ xn – h(xn)jpx̄
)∥∥

X∗

≤ (
 – τh(xn)

)‖jpxn – jpx̄‖
X∗ + τ

〈
Tjp

τ xn – h(xn)jpx̄, xn+ – x̄
〉

≤ (
 – τh(xn)

)‖jpxn – jpx̄‖
X∗ + τ

[〈
Tjp

τ xn – h(xn)jpxn, xn+ – x̄
〉

+ h(xn)
〈
–jp(x̄), xn+ – x̄

]〉
+ τh(xn)

∥∥jp(xn)
∥∥

X∗‖xn+ – x̄‖X . (.)

Set γn = τh(xn)( – τh(xn)), an = ‖jpxn – jpx̄‖
X∗ , bn = τ [〈Tjp

τ xn – h(xn)jpxn, xn+ – x̄〉 +
h(xn)〈–jp(x̄), xn+ – x̄〉], and cn = τh(xn)‖jp(xn)‖X∗‖xn+ – x̄‖X .

Then inequality (.) becomes

an+ ≤ ( – γn)an + bn + cn, ∀n ≥ . (.)

From
∑∞

n= h(xn) = ∞, and (.), it follows that
∑∞

n= γn = ∞, lim supn→∞
bn
γn

≤ , and∑∞
n= cn < ∞. Consequently, applying Lemma . to (.), we conclude that

lim
n→∞‖jpxn – jpx̄‖X∗ = . (.)

Finally, we show that xn → x̄ as n → ∞.
From the uniform monotonicity of jp, we have

‖xn – x̄‖p
X ≤ 

α
〈jpxn – jpx̄, xn – x̄〉

≤ 
α

‖jpxn – jpx̄‖X∗
[‖xn‖X + ‖x̄‖X

]
. (.)

Letting n → ∞ in (.) and using (.) and the boundedness of {xn}, we obtain xn → x̄,
as n → ∞. This completes the proof. �

An immediate consequence of Theorem . is the following corollary.

Corollary . Let X = H be a real Hilbert space, and let C be a nonempty closed convex
subset of H . Let T : C → H be an M-Lipschitzian mapping. Define Ŝh(x) : C → H by

Ŝh(x)x = h(x)x – Tτ x, ∀x ∈ C,
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where Tτ = ( – τ )I + τT . Let Ŝh(x), τ , and h(x) be as in Theorem . and p =  (i.e., jp = I ,
α = , and supx,y∈C[r + ( – h(x))r] = (λ′) < ∞). Then the sequence {xn} defined by

xn+ =
(
 – τh(xn)

)
xn + τTτ xn, n ≥ , (.)

with
∑∞

n= h(xn) = ∞ converges strongly to x̄ ∈ VI(Ŝ–
h(x̄), I), x̄ = projS–

h(x̄)(), where Ŝ–
h(x̄) =

F̃(h(x̄)I, Tτ ).

A special case of Corollary . is the following theorem due to Saddeek [], who proved
it under the condition that T is generalized Lipschitzian, which in turn, is a generalization
of Theorem  of Saddeek and Ahmed [].

Corollary . Except for the M-Lipschitzian condition for the mapping T , let all the other
assumptions of Corollary . be satisfied and r = . Then the sequence {xn} defined by
(.) with

∑∞
n= h(xn) = ∞,  < τ = min{, 

λ
}, and supx,y∈C[r(x, y)] = (λ) < ∞, converges

strongly to x̄ = projS–
h(x̄)().

Remark . All conditions imposed in Theorem . on the mapping Sh(x) are quintessen-
tial to prove the main theorem, more precisely for the existence solution of Sh(x)x = , and
to ensure the strong convergence of the generalized modified Krasnoselski iterative algo-
rithm.

3 Application to nonlinear pseudomonotone equations
In this section, we study nonlinear equations for pseudomonotone mappings; that is; we
seek x ∈ C such that

Ax = f , f ∈ X∗, (.)

where A : C → X∗ is a nonlinear pseudomonotone mapping.
To ensure the existence of solutions of (.), we shall assume that A is pseudomonotone

and coercive on W̊ ()
p (
) ( < p < ∞) (see, for example, []). Such nonlinear equations

occur, in particular, in descriptions of a stabilized filtration and in problems of finding the
equilibria of soft shells (see, for example, [, ]).

Theorem . Besides the assumptions on A, let A be potential and satisfy the following
condition:

‖Ax – Ay‖X∗ ≤ ‖jpx – jpy‖X∗ , ∀x, y ∈ C. (.)

Then the sequence {xn} generated by x = x ∈ C,

jpxn+ = jpxn – τ
(
A(xn) – f

)
, n ≥ , (.)

where  < τ = min{, 
M }, converges strongly to the minimum norm solution of equation (.),

provided that
∑∞

n= h(xn) = ∞.
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Proof Define Sh(x) : C → X∗ by Sh(x)x = Ax – f , ∀x ∈ C. Since (.) has at least one solution,
then S–

h(x) �= φ. On the other hand, condition (.) with the bounded Lipschitz continuity
of jp clearly imply that A is bounded Lipschitz continuous and the potentiality of jp imply
that sh(x) is potential.

Now, we show that condition (.) is implied by (.). Indeed by (.) and the definition
of Sh(x), we get

‖Sh(x)x – Sh(x)y‖p
X∗ = ‖Ax – Ay‖p

X∗ ≤ ‖jpx – jpy‖p
X∗ .

Hence Sh(x) satisfies condition (.) with r(x, y) = , r(x, y) = , and λ′ = .
Finally, the pseudomonotonicity of A implies that Sh(x) is demiclosed at  can be proved

by proceeding as in the proof of Theorem . of []. Now we apply Theorem . to yield
the desired result. �

Remark . If we set X = H (i.e., jp = I and p = ), then the condition (.) reduces to the
M-Lipschitzian condition of the operator A. Hence from Theorem . we obtain Theo-
rem . of [], which in turn is a generalization of Theorem  of [].

4 Conclusion
In this work, we introduce a generalized modified Krasnoselskii iterative process involv-
ing a pair of a generalized strictly pseudocontractive mapping and a generalized duality
mapping and prove some strong convergence theorems of the proposed iterative process
to the minimum norm solutions of certain nonlinear equations in the framework of uni-
formly convex Banach spaces. These results improve and generalize recent work in this
direction.
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