
Lo’lo’ et al. Fixed Point Theory and Applications  (2016) 2016:56 
DOI 10.1186/s13663-016-0545-0

R E S E A R C H Open Access

Common best proximity points results for
new proximal C-contraction mappings
Parvaneh Lo’lo’1, Seiyed Mansour Vaezpour2 and Reza Saadati3*

*Correspondence: rsaadati@eml.cc
3Department of Mathematics, Iran
University of Science and
Technology, Tehran, Iran
Full list of author information is
available at the end of the article

Abstract
We define a new version of proximal C-contraction and prove the existence and
uniqueness of a common best proximity point for a pair of non-self functions. Then
we apply our main results to get some fixed point theorems and we give an example
to illustrate our results.

MSC: Primary 90C26; 90C30; secondary 47H09; 47H10

Keywords: common best proximity point; triangular α-proximal admissible;
proximal C-contraction

1 Introduction and preliminaries
Consider a pair (A, B) of nonempty subsets of a metric space (X, d). Assume that f is a
function from A into B. An w ∈ A is said to be a best proximity point whenever d(w, fw) =
d(A, B), where d(A, B) = inf{d(s, t) : s ∈ A, t ∈ B}.

Best proximity point theory of non-self functions was initiated by Fan [] and Kirk et
al. []; see also [–]. In this paper, we generalize some results of Kumam et al. [] to
obtain some new common best proximity point theorems. Next, by an example and some
fixed point results, we support our main results and show some applications of them.

Definition . Consider non-self functions f, f, . . . , fn : A → B. We say the a point s ∈ A
is a common best proximity point of f, f, . . . , fn if

d(s, fs) = d(s, fs) = · · · = d(s, fns) = d(A, B).

Definition . ([]) Let (X, d) be a metric space and ∅ �= A, B ⊂ X. We say the pair (A, B)
has the V -property if for every sequence {tn} of B satisfying d(s, tn) → d(s, B) for some
s ∈ A, there exists a t ∈ B such that d(s, t) = d(s, B).

2 Main results
We denote by � the family of all continuous functions from [, +∞) × [, +∞) to [, +∞)
such that ψ(u, v) =  if and only if u = v =  where ψ ∈ � .

Definition . Let (X, d) be a metric space, ∅ �= A, B ⊂ X, α : A × A → [,∞) a function
and f , g : A → B non-self mappings. We say that (f , g) is a triangular α-proximal admissible
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pair, if for all p, q, r, t, t, s, s ∈ A,

T :

⎧
⎪⎨

⎪⎩

α(t, t) ≥ ,
d(s, ft) = d(A, B),
d(s, gt) = d(A, B)

	⇒ α(s, s) ≥ ,

T :

{
α(p, r) ≥ ,
α(r, q) ≥ 

	⇒ α(p, q) ≥ .

Let (X, d) be a metric space and ∅ �= A, B ⊂ X. We define

A =
{

s ∈ A : d(s, t) = d(A, B) for some t ∈ B
}

,

B =
{

t ∈ B : d(s, t) = d(A, B) for some s ∈ A
}

.

Definition . Let (X, d) be a metric space, ∅ �= A, B ⊂ X, and f , g : A → B non-self map-
pings. We say that (f , g) is a generalized proximal C-contraction pair if, for all s, t, p, q ∈ A,

d(s, fp) = d(A, B),
d(t, gq) = d(A, B)

}

	⇒ d(s, t) ≤ 

(
d(p, t) + d(q, s)

)
– ψ

(
d(p, t), d(q, s)

)
, ()

in which ψ ∈ � .

Definition . Let (X, d) be a metric space, ∅ �= A, B ⊂ X, α : A × A → [,∞) a function
and f , g : A → B non-self functions. If, for all s, t, p, q ∈ A,

{
d(s, fp) = d(A, B),
d(t, gq) = d(A, B)

imply

α(p, q)d(s, t) ≤ 

(
d(p, t) + d(q, s)

)
– ψ

(
d(p, t), d(q, s)

)
, ()

then (f , g) is said to be an α-proximal C-contraction pair.
If in the definition above, we replace () by

(
α(p, q) + l

)d(s,t) ≤ (l + )

 (d(p,t)+d(q,s))–ψ(d(p,t),d(q,s)), ()

where l > , then (f , g) is said to be an α-proximal C-contraction pair.

Theorem . Let (X, d) be a metric space and ∅ �= A, B ⊂ X. Let A be complete and A

nonempty set. Moreover, assume that the non-self functions f , g : A → B satisfy:
(i) f , g are continuous,

(ii) f (A) ⊂ B and g(A) ⊂ B,
(iii) (f , g) is a generalized proximal C-contraction pair,
(iv) there exist s, s ∈ A such that d(s, fs) = d(A, B).

Then the functions f and g have a unique common best proximity point.
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Proof From (iv) we can get s, s ∈ A such that

d(s, fs) = d(A, B).

Since g(A) ⊂ B, there exists s ∈ A such that d(s, gs) = d(A, B).
We continue this process and construct a sequence {sn} such that

{
d(sn+, fsn) = d(A, B),
d(sn+, gsn+) = d(A, B)

()

for each n ∈ N.
We divide our further derivation into four steps.
Step . We have

lim
n→∞ d(sn, sn+) = . ()

Put s = sn+ and t = sn+. From (), we get

d(sn+, sn+) =


(
d(sn, sn+) + d(sn+, sn+)

)
– ψ

(
d(sn, sn+), d(sn+, sn+)

)

=



d(sn, sn+) – ψ
(
d(sn, sn+), 

)

≤ 


d(sn, sn+)

≤ 

(
d(sn, sn+) + d(sn+, sn+)

)
, ()

which implies d(sn+, sn+) ≤ d(sn, sn+).
Now, if we put dn := d(sn, sn+), then we get dn+ ≤ dn. Also, we have dn+ ≤ dn+,

which implies that the sequence {dn} is decreasing and so there is a d ≥  such that dn → d
as n → ∞. Now, take n → ∞ in () and get

d ≤ 


lim
n→∞ d(sn, sn+) ≤ 


(d + d) = d,

that is,

lim
n→∞ d(sn, sn+) = d. ()

Take again n → ∞ in (). By () and the continuity of ψ , we get

d ≤ d – ψ(d, ),

and so ψ(d, ) = . By the properties of ψ , we get d = .
Step . We claim that {sn} is a Cauchy sequence. By (), we show that the subsequence

{sn} of {sn} is a Cauchy sequence in A. Contrarily, let there exists an ε >  for which the
subsequences {sm(k)} and {sn(k)} of {sn} such that n(k) is the smallest integer satisfying,
for all k > ,

n(k) > m(k) > k implies d(sm(k), sn(k)) ≥ ε, ()
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which would imply that

d(sm(k), sn(k)–) < ε. ()

Using the triangular inequality, (), and (), we would get

ε ≤ d(sm(k), sn(k)) ≤ d(sm(k), sn(k)–) + d(sn(k)–, sn(k)–) + d(sn(k)–, sn(k))

< ε + d(sn(k)–, sn(k)–) + d(sn(k)–, sn(k)).

Letting k → ∞ in the above inequality and using (), we would get

lim
k→∞

d(sm(k), sn(k)) = ε. ()

On the other hand, we have

d(sm(k), sn(k)) ≤ d(sm(k), sn(k)+) + d(sn(k)+, sn(k)).

Now, we would have

ε ≤ lim
n→∞ d(sm(k), sn(k)+). ()

By the triangular inequality, we have

d(sm(k), sn(k)) ≤ d(sm(k), sm(k)–) + d(sm(k)–, sn(k)+) + d(sn(k)+, sn(k)).

Letting again k → ∞ in the above inequality and using () and (), we would get

ε ≤ lim
k→∞

d(sm(k)–, sn(k)+).

Also, we can get limk→∞ d(sm(k)–, sn(k)+) ≤ ε, and so

lim
n→∞ d(sm(k)–, sn(k)+) = ε. ()

From () we have

d(sn(k)+, sm(k)) ≤ 

(
d(sn(k), sm(k)) + d(sn(k)+, sm(k)–)

)

– ψ
(
d(sn(k), sm(k)), d(sn(k)+, sm(k)–)

)
. ()

Taking k → ∞ in the above inequality and using (), (), (), and the continuity of ψ ,
we would obtain

ε ≤ 


(ε + ε) – ψ(ε, ε),

and therefore ψ(ε, ε) = , which would imply ε = , a contradiction. Thus, {sn} is a Cauchy
sequence. Since A is complete, there is a z ∈ A such that sn → z.
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Step . Now, from

d(sn+, fsn) = d(A, B), d(sn+, gsn+) = d(A, B),

taking n → ∞ and by continuity of f and g , we have d(z, fz) = d(z, gz) = d(A, B). So, z is a
common best proximity point of the mappings f and g .

Step . Now, let f and g have another common best proximity point, say w, such that

d(w, fw) = d(w, gw) = d(A, B).

From () we have

d(z, w) ≤ 

(
d(z, w) + d(w, z)

)
– ψ

(
d(z, w), d(w, z)

)

= d(z, w) – ψ
(
d(z, w), d(z, w)

)
()

whence d(z, w) = , and therefore z = w. �

Theorem . Let (X, d) be a metric space and ∅ �= A, B ⊂ X such that A is complete and
A is nonempty. Moreover, suppose that the non-self functions f , g : A → B satisfy:

(i) f , g are continuous,
(ii) f (A) ⊂ B and g(A) ⊂ B,

(iii) (f , g) is an α-proximal C-contraction pair or an α-proximal C-contraction pair,
(iv) (f , g) is a triangular α-proximal admissible pair,
(iv) there exist s, s ∈ A such that d(s, fs) = d(A, B), α(s, s) ≥ .

Then f and g have a common best proximity point. Furthermore, if z, w ∈ X are common
best proximity points and α(z, w) ≥ , then common best proximity point is unique.

Proof By (iv), we can find s, s ∈ A such that

d(s, fs) = d(A, B), α(s, s) ≥ .

Define the sequence {sn} as in () of Theorem .. Since (f , g) is triangular α-proximal
admissible, we have α(sn, sn+) ≥ . Then

⎧
⎪⎨

⎪⎩

α(sn, sn+) ≥ ,
d(sn+, fsn) = d(A, B),
d(sn+, gsn+) = d(A, B).

()

If s = sn+, t = sn+, p = sn, q = sn+, and (f , g) is an α-proximal C-contraction pair or an
α-proximal C-contraction pair, then (f , g) is a generalized proximal C-contraction pair.
Then Step  of the proof of Theorem . implies that limn→∞ d(sn, sn+) = .

Now we prove that

α(sm(k)–, sn(k)) ≥ , n(k) > m(k) > k. ()

Since (f , g) is triangular α-proximal admissible and
{

α(sm(k)–, sm(k)) ≥ ,
α(sm(k), sm(k)+) ≥ ,
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from (T) of Definition ., we have

α(sm(k)–, sm(k)+) ≥ .

Again, since (f , g) is triangular α-proximal admissible and

{
α(sm(k)–, sm(k)+) ≥ ,
α(sm(k)+, sm(k)+) ≥ ,

from (T) of Definition . again, we have

α(sm(k)–, sm(k)+) ≥ .

By continuing this process, we get (). If s = sn(k)+, t = sm(k), p = sn(k), q = sm(k)–,
then α-proximal C-contraction (C-contraction) pair (f , g) is a generalized proximal
C-contraction pair. Therefore by Step  of Theorem ., there exists a z ∈ A such that
sn → z. Step  of Theorem . and continuity of f and g immediately imply that f and g
have a common best proximity point z. If w is another common best proximity point of
(f , g), then, since α(z, w) ≥ , Step  implies that z = w. �

Definition . Let α : X × X → (–∞, +∞) be a function and f , g : X → X self mappings.
We say that (f , g) is a triangular α-admissible pair if

(i) p, q ∈ X , α(p, q) ≥  	⇒ α(fp, gq) ≥  or α(gp, fq) ≥ ,
(ii) p, q, r ∈ X ,

{
α(p, r) ≥ ,
α(r, q) ≥ , 	⇒ α(p, q) ≥ .

The following corollary is a consequence of the last theorem.

Corollary . Let (X, d) be a complete metric space and f , g : X → X. Moreover, let the self
functions f and g satisfy:

(i) f and g are continuous,
(ii) there exists s ∈ X such that α(s, fs) ≥ ,

(iii) (f , g) is a triangular α-admissible pair,
(iv) for all p, q ∈ X , α(p, q)d(fp, gq) ≤ 

 (d(p, gq) + d(q, fp)) – ψ(d(p, gq), d(q, fp))
(or (α(p, q) + l)d(fp,gq) ≤ (l + ) 

 (d(p,gq)+d(q,fp))–ψ(d(p,gq),d(q,fp))).
Then f and g have a common fixed point. Moreover, if x, y ∈ X are common fixed points
and α(x, y) ≥ , then the common fixed point of f and g is unique, that is, x = y.

Now, we remove the continuity hypothesis of f and g , and get the following theorem.

Theorem . Let (X, d) be a metric space and ∅ �= A, B ⊂ X. Let A be complete, the pair
(A, B) have the V -property, and A be nonempty. Moreover, suppose that the non-self map-
pings f , g : A → B satisfy:

(i) f (A) ⊂ B and g(A) ⊂ B,
(ii) (f , g) is a generalized proximal C-contraction pair,

(iii) there are s, s ∈ A such that d(s, fs) = d(A, B).
Then the functions f and g have unique common best proximity point.
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Proof By Theorem ., there is a Cauchy sequence {sn} ⊂ A and z ∈ A such that () holds
and sn → z. Moreover, we have

d(z, B) ≤ d(z, fsn)

≤ d(z, sn+) + d(sn+, fsn)

= d(z, sn+) + d(A, B).

We take n → ∞ in the above inequality, and we get

lim
n→∞ d(z, fsn) = d(z, B) = d(A, B). ()

Since the pair (A, B) has the V -property, there is a p ∈ B such that d(z, p) = d(A, B) and so
z ∈ A. Moreover, since f (A) ⊂ B, there is a q ∈ A such that

d(q, fz) = d(A, B). ()

Furthermore d(sn+, gsn+) = d(A, B) for every n ∈ N.
Since (f , g) is a generalized proximal C-contraction pair, we have

d(q, sn+) ≤ 

(
d(z, sn+) + d(sn+, q)

)
– ψ

(
d(z, sn+), d(sn+, q)

)
.

Letting n → ∞ in the above inequality, we have

d(q, z) ≤ 


d(z, q) – ψ
(
d(z, q), 

)
.

Thus d(z, q) = , which implies that z = q. Then, by (), z is a best proximity point of f .
Similarly, it is easy to prove that z is a best proximity point of g . Then z is a common

best proximity point of the functions f and g . By the proof of Theorem . we conclude
that f and g have unique common best proximity point. �

Theorem . Let (X, d) be a metric space and ∅ �= A, B ⊂ X. Let A be complete, the pair
(A, B) have the V -property and A be a nonempty set. Moreover, suppose that the non-self
functions f , g : A → B satisfy:

(i) f (A) ⊂ B and g(A) ⊂ B,
(ii) (f , g) is an α-proximal C-contraction pair or an α-proximal C-contraction pair,

(iii) (f , g) is a triangular α-proximal admissible pair,
(iv) there exist s, s ∈ A such that d(s, fs) = d(A, B), α(s, s) ≥ ,
(v) if {sn} is a sequence in A such that α(sn, sn+) ≥  and sn → s as n → ∞, then

α(sn, s) ≥  for all n ∈N∪ {}.
Then f and g have a common best proximity point. Moreover, if z, w ∈ X are common best
proximity points and α(z, w) ≥ , then the common best proximity point is unique.

Proof We can derive from the proof of Theorem . that there exist a sequence {sn} and z
in A such that sn → z and α(sn, sn+) ≥ . Also, by (v), α(sn, z) ≥  for every n ∈ N∪ {}. Let
s = q, t = sn+, p = z, q = sn+. If (f , g) is an α-proximal C-contraction pair or α-proximal
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C-contraction pair, then (f , g) is a generalized proximal C-contraction pair. Then by the
proof of the last theorem, z is a common best proximity of f and g . �

The following corollary is an immediate consequence of the main theorem of this sec-
tion.

Corollary . Let (X, d) be a complete metric space and f , g : X → X. Moreover, let the
self functions f and g satisfy:

(i) (f , g) is a triangular α-admissible pair,
(ii) there exists an s ∈ X such that α(s, fs) ≥ ,

(iii) if {sn} is a sequence in A such that α(sn, sn+) ≥  and sn → s ∈ A as n → ∞, then
α(sn, s) ≥  for all n ∈N∪ {},

(iv) for all x, y ∈ X , α(p, q)d(fp, gq) ≤ 
 (d(p, gq) + d(q, fp)) – ψ(d(p, gq), d(q, fp))

(or (α(p, q) + l)d(fp,gq) ≤ (l + ) 
 (d(p,gq)+d(q,fp))–ψ(d(p,gq),d(q,fp))).

Then f and g have a common fixed point. Moreover, if x, y ∈ X are common fixed points
and α(x, y) ≥ , then the common fixed point of f and g is unique, that is, x = y.

In order to illustrate our results, we present the following example.

Example . Consider X = R with the usual metric d(x, y) = |x – y|, A = {–, , }, and
B = {–, –, }. Then A and B are nonempty closed subsets of X with d(A, B) = , A = {},
and B = {–}. We define f , g : A → B by

f () = –, f () = , f (–) = – and g(x) = – ∀x ∈ A,

and ψ : [,∞) × [,∞) → [,∞) by ψ(s, t) = st.
It is immediate to see that f (A) ⊂ B and g(A) ⊂ B. Also, if

{
d(u, fp) = d(A, B) = ,
d(v, gq) = d(A, B) = ,

then u = v = p =  and q ∈ A and therefore () is satisfied. Hence all the conditions of
Theorem . hold for this example and clearly  is the unique common best proximity of
f and g .

Example . Let X = [, ] × [, ] and d be the Euclidean metric. Let

A :=
{

(, m) :  ≤ m ≤ 
}

, B :=
{

(, n) :  ≤ n ≤ 
}

.

Then d(A, B) = , A = A, and B = B. We define f , g : A → B by

f (, m) = (, m), g(, m) = (, ).

Define α : A × A → [,∞) by

α(p, q) =

{
, if p, q ∈ (, ) × {(, ), (, )},
, otherwise,
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and ψ : [,∞) × [,∞) → [,∞) by

ψ(s, t) =



(s + t) for all s, t ∈ X.

Then f (A) ⊂ B, g(A) ⊂ B. Assume that

{
d(u, fp) = d(A, B) = ,
d(v, gq) = d(A, B) = .

Hence, u = p and v = (, ). If p = (, ), then u = v and () holds. If p �= (, ), then
α(p, q) =  and () holds, which implies that (f , g) is an α-proximal C-contraction. Hence,
all the hypotheses of Theorem . are satisfied. Moreover, if {sn} is a sequence such that
α(sn, sn+) ≥  for every n ∈ N∪ {} and sn → s, then sn = (, ) for all n ∈ N∪ {} and
hence s = (, ). Then α(sn, s) ≥  for every n ∈N∪ {}. Clearly, (A, B) has the V -property
and then all the conclusions of Theorem . hold. Clearly (, ) is the unique common best
proximity of f and g .

The following example shows that the triangular α-proximal admissible condition for
(f , g) cannot be relaxed from Theorem ..

Example . Let X = [, ] × [, ] and d be the Euclidean metric. Let

A :=
{

(, m) :  ≤ m ≤ 
}

, B :=
{

(, n) :  ≤ n ≤ 
}

.

Then d(A, B) = , A = A, and B = B. We define f , g : A → B by

f (, m) =

{
(, ), m = 

 ,
(, m

 ), m �= 
 ,

and g(, m) = (, ). Also we define α : A × A → [,∞) by

α(p, q) =

{
, if p, q ∈ {(, 

 )} × A,
, otherwise,

and ψ : [,∞) × [,∞) → [,∞) by

ψ(s, t) =



(s + t) for all s, t ∈ X.

It is easy to see that all the required hypotheses of Theorem . are satisfied unless (iii).
Clearly f and g do not have a common best proximity point. It is worth noting that the
pair (f , g) does not have the triangular α-proximal admissible property.
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