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Abstract

Many problems arising in image processing and signal recovery with
multi-regularization and constraints can be formulated as minimization of a sum of
three convex separable functions. Typically, the objective function involves a smooth
function with Lipschitz continuous gradient, a linear composite nonsmooth function,
and a nonsmooth function. In this paper, we propose a primal-dual fixed point (PDFP)
scheme to solve the above class of problems. The proposed algorithm for three-block
problems is a symmetric and fully splitting scheme, only involving an explicit
gradient, a linear transform, and the proximity operators which may have a
closed-form solution. We study the convergence of the proposed algorithm and
illustrate its efficiency through examples on fused LASSO and image restoration with
non-negative constraint and sparse regularization.

Keywords: primal-dual fixed point algorithm; convex separable minimization;
proximity operator; sparsity regularization

1 Introduction
In this paper, we aim to design a primal-dual fixed point algorithmic framework for solving

the following minimization problem:

minfi(x) + (5 0 B)®) + f5(x), (L1)
where f1, f2, and f; are three proper lower semi-continuous convex functions, and f; is dif-
ferentiable on R” with a 1/-Lipschitz continuous gradient for some 8 € (0, +o0], while
B:R"” — R™ is a linear transformation. This formulation covers a wide application in im-
age processing and signal recovery with multi-regularization terms and constraints. For
instance, in many imaging and data processing applications, the functional f; corresponds
to a data-fidelity term, and the last two terms are used for regularization. As a direct ex-
ample of (1.1), we can consider the fused LASSO penalized problem [1, 2] defined by

1
. 2
min — ||Ax — al||* + w1l Bx|l1 + w2|%|l1.
xeR" 2

On the other hand, in the imaging science, total variation regularization with B being
the discrete gradient operator together with ¢; regularization has been adopted in some
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image restoration applications, for example in [3]. Another useful application corresponds
to f3 = xc, where xc is the indicator function of a nonempty closed convex set C. In this

case, the problem reduces to
rjgigfl(x) + (f2 0 B)(x). (1.2)

As far as we know, Combettes and Pesquet first proposed a fully splitting algorithm in
[4] to solve monotone operator inclusions problems, which include (1.1) as a special case.
Condat [5] tackled the same problem and proposed a primal-dual splitting scheme. Exten-
sions to multi-block composite functions are also discussed in detail. For the special case
B =1 (I denotes the usual identity operator), Davis and Yin [6] proposed a three-operator
splitting scheme based on monotone operators. For the case that the problem (1.1) re-
duces to two-block separable functions, many splitting and proximal algorithms have been
proposed and studied in the literature. Among them, extensive research have been con-
ducted on the alternating direction of multiplier method (ADMM) [7] (also known as
split Bregman [3]; see for example [8] and the references therein). The primal-dual hybrid
gradient method (PDHG) [9-12], also known as the Chambolle-Pock algorithm [11], is
another class of popular algorithm, largely adopted in imaging applications. In [13-16],
several completely decoupled schemes, such as the inexact Uzawa solver and primal-dual
fixed point algorithm, are proposed to avoid subproblem solving for some typical ¢; min-
imization problems. Komodakis and Pesquet [17] recently gave a nice overview of recent
primal-dual approaches for solving large-scale optimization problems (1.1). A general class
of multi-step fixed point proximity algorithms is proposed in [18], which covers several ex-
isting algorithms [11, 12] as special cases. In the preparation of this paper, we notice that
Li and Zhang [19] also studied the problem (1.1) and introduced a quasi-Newton and the
overrelaxation strategies for accelerating the algorithms. Both algorithms can be viewed
as a generalization of Condat’s algorithm [5]. The theoretical analysis is established based
on the multi-step techniques present in [18].

In the following, we mainly review some most relevant work for a concise presentation.
Problem (1.2) has been studied in [20] in the context of maximum a posterior ECT recon-
struction, and a preconditioned alternating projection algorithm (PAPA) is proposed for
solving the resulting regularization problem. For f; = 0 in (1.1), we proposed the primal-
dual fixed point algorithm PDFP?O (primal-dual fixed point algorithm based on proximity
operator) in [15]. Based on the fixed point theory, we have shown the convergence of the
scheme PDFP?O and the convergence rate of the iteration sequence under suitable con-
ditions.

In this work, we aim to extend the ideas of the PDFP?O in [15] and the PAPA in [20]
for solving (1.1) without subproblem solving and provide a convergence analysis on the
primal-dual sequences. The specific algorithm, namely the primal-dual fixed point (PDFP)

algorithm, is formulated as follows:

Y= prox, . (k= y VAK) = ABTVF),
(PDFP) {1 =(I- prox%fz)(Byk+1 +15), (1.3)
Kkl = prox,,, (k= Yy VA — ABTVA,
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where 0 < A < 1/Amax(BBT), 0 < y < 28. Here prox; is the proximity operator [21] of a func-
tion f; see (2.2). When f; = x¢, the proposed algorithm (1.3) is reduced to the PAPA pro-
posed in [20]; see (4.1). For another special case, f; = 0 in (1.3), we obtain the PDFP?O
proposed in [15]; see (4.2). The convergence analysis of this PDFP algorithm is built upon
fixed point theory on the primal and dual pairs. The overall scheme is completely ex-
plicit, which allows for an easy implementation and parallel computing for many large-
scale applications. This will be further illustrated through application to the problems
arising in statistics learning and image restoration. The PDFP has a symmetric form and
it is different from Condat’s algorithm [5]. In addition, we point out that the ranges of
the parameters in PDFP are larger than those of [5, 19] and the rules for the parame-
ters in PDFP are well separated, which could be advantageous in practice compared to
[5,19].

The rest of the paper is organized as follows. In Section 2, we will present some pre-
liminaries and notations, and deduce PDFP from the first order optimality condition. In
Section 3, we will provide the convergence results and the linear convergence rate results
for some special cases. In Section 4, we will make a comparison on the form of the PDFP
algorithm (1.3) with some existing algorithms. In Section 5, we will show the numerical
performance and the efficiency of PDFP through some examples on fused LASSO and
PMRI (parallel magnetic resonance image) reconstruction.

2 Primal-dual fixed point algorithm
2.1 Preliminaries and notations
For the self completeness of this work, we list some relevant notations, definitions, as-
sumption and lemmas in convex analysis. We refer the reader to [15, 22] and the references
therein for more details.

For the ease of presentation, we restrict our discussion to Euclidean space R”, equipped

1/2

with the usual inner product (-,-) and norm || - | = (-, -)"/*. We first assume that the problem

(1.1) has at least one solution and f,, f5, B satisfy
0¢e ri(domf2 —B(domfg)), (2.1)

where the symbol ri(-) denotes the interior of a convex subset, and the effective domain of
f is defined as domy = {x € R" | f(x) < +00}.

The ¢; norm of a vector x € R” is denoted by || - ||; and the spectral norm of a matrix is
denoted by || - ||2. Let I'o(R") be the collection of all proper lower semi-continuous convex
functions from R” to (—o0, +00]. For a function f € I'g(R"), the proximity operator of f:
prox, [21] is defined by

. 1
prox;(x) = argminf(y) + = [lx - y|*. (2.2)
" 2
yeR

For a nonempty closed convex set C C R”, let x¢ be the indicator function of C, defined
by

0, xeC,
xcx) =
+00, x¢C.
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Let proj be the projection operator onto C, i.e.

proj¢(x) = argmin [lx — y[|*.
yeC

It is easy to see that prox,,, . = proj¢ for all ¥ > 0, and the proximity operator is a gener-
alization of projection operator. Note that many efficient splitting algorithms rely on the
fact that prox; has a closed-form solution. For example, when f = y | - [l1, the proximity so-
lution is given by element-wise soft-shrinking. We refer the reader to [22] for more details
as regards proximity operators. Let df be the subdifferential of £, i.e.

fx) ={veR"| (y-xv) <f(y) —f(x) forally e R"}, (2.3)

and f* be the convex conjugate function of f, defined by

S () = sup (x, ) - f().

yeR”

An operator T : R” — R” is nonexpansive if
ITx - Tyl < llx—yll forallx,yeR",
and T is firmly nonexpansive if
| T — Ty|® < (Tx — Ty,x—y) forallx,y e R".

It is obvious that a firmly nonexpansive operator is nonexpansive. An operator T is
8-strongly monotone if there exists a positive real number § such that

(Tx - Ty,x—y) = 8|lx—y|* forallx,yeR" (2.4)

Lemma 2.1 For any two functions f, € I'o(R™) and f3 € T'o(R"), and a linear transforma-
tion B:R" — R™, satisfying that 0 € ri(domy, —B(domy, )), we have

3(foB+f3) =BT 0 df, 0 B+ 0fs.
Lemma2.2 Letf € I'o(R"). Then prox, and I - prox, are firmly nonexpansive. In addition,

x=prox,(y) <& y-x€df(x) foragivenyeR" (2.5)
yedflx) < «x= proxf(x +9)
& y=0U- proxf)(x +y) forx,yeR", (2.6)

1
x = prox, ¢(x) + y ProX L. (;x) forallx e R" and y > 0. (2.7)

Iff has 1/ B-Lipschitz continuous gradient further, we have

B H Vf(x) - Vf(j/)”2 < <Vf(x) - Vf(@y),x —y) forall x,y € R". (2.8)
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Lemma 2.3 Let T be an operator and u* be a fixed point of T. Let {u**'} be the sequence
generated by the fixed point iteration u**' = T (u"). Suppose (i) T is continuous, (ii) {||u* -

k+1

u* ||} is non-increasing, (iii) limy_, ,o0 ||**' — uX|| = 0. Then the sequence {u*} is bounded

and converges to a fixed point of T .

The proof of Lemma 2.3 is standard, and we refer the reader to the proof of Theorem 3.5
in [15] for more details.
Let y and A be two positive numbers. To simplify the presentation, we use the following

notations:
To(v,x) = prox,,, (x—y VAl - ABTV), (2.9)
Ty(v,%) = (I = proxy ) (Bo To(v,x) + v), (2.10)
Tr(v,x) = prox, (x - yVfi(x) - ABT o Ty (v, x)), (2.11)
T(v,%) = (T1(v,%), T2 (v,%)). (2.12)
Denote
gx)=x-yVfi(x) foralxeR”, (2.13)
M=1-2BB". (2.14)

Let Amax(A) denote the largest eigenvalue of a square matrix A. When 0 < A < 1/Amax(BBT),

M is a symmetric and positive definite matrix, so we can define a norm
vlia = \/W for all v € R™. (2.15)
For a pair u = (v,x) € R” x R”, we also define a norm on the product space R” x R” as
lzells. = VAIVIP + 112 (2.16)

2.2 Derivation of PDFP
On extending the ideas of the PAPA proposed in [20] and the PDFP?O proposed in [15],
we derive the primal-dual fixed point algorithm (1.3) for solving the minimization problem
(1.1).

Under the assumption (2.1), by using the first order optimality condition of (1.1) and
Lemma 2.1, we have

0€yVfi(x*) +AB"d (%fz) (Bx*) + yof3(x*),
where x* is an optimal solution. Let

v ed (%fz) (Bx*). (2.17)
By applying (2.6), we have

vi=(- prox%fZ)(Bx* +vY), (2.18)
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x" = prox, (x* -y VA(") - ABTV*). (2.19)
By inserting (2.19) into (2.18), we get
v = (I - proxy,)(B o prox, ; (x* - y VA (x*) - ABTV) +v¥),

or equivalently, v* = T1(v*,x*). Next, replacing v* in (2.19) by T1(v*,x*), we can get x* =
To(v*,x*). In other words u* = T(u*) for u* = (v*,x*). Meanwhile, if u* = T(u*), we can
see that x* meets the first order optimality condition of (1.1) and thus x* is a minimizer
of (1.1).

To sum up, we have the following theorem.

Theorem 2.1 Suppose that x* is a solution of (1.1) and v* € R"™ is defined as (2.17). Then
we have

ve=Ti(v",x%),

x* = TZ(V*;x*)x

e u* = (v*,x*) is a fixed point of T. Conversely, if u* = (v*,x*) € R™ x R" is a fixed point
of T, then x* is a solution of (1.1).

It is easy to confirm that the sequence {(V**!,x*1)} generated by the PDFP algorithm
(1.3) is the Picard iteration (vf*1,x%*1) = T(1X,x%). So we will use the operator T to analyze
the convergence of the PDFP in Section 3.

3 Convergence analysis
In the following, let {y**!} and {u**! = (V**!,xK*1)} be the sequences generated by the PDFP
algorithm (1.3), i.e. y** = Ty (vF, &%) and (V**1, &%) = T(V,&5). Let u* = (v*,4*) be a fixed

point of the operator 7.

3.1 Convergence
Lemma 3.1 We have the following estimates:

||vk” o ”2 < ||vk o ”2 _ ||Vk+1 _ ”2 + 2(BT(vk” _ v*),yk” —x*), 3.1)
||xk+1 e “2 < ”xk e ”2 _ kau _yk+1H2 _ “xk _yk+1||2
+ 2k — yf Ly VA (6F) + ABTV)

- 2<xk+1 -x*, yVf (xk) + )LBTV]‘“) +2y (fg(x*) -f3 (yk”)) (3.2)

Proof We first prove (3.1). By Lemma 2.2, we know / — proxy ;, is firmly nonexpansive, and
using (1.3), and (2.18) we further have

||Vk+l ) ”2 < (Vk+1 _ V*, (B_)/k+1 + Vk) _ (Bx* + V*)>,
which implies

(Vk+1 _ V*, Vk+1 _ Vk> < <Vk+1 _ V*,B(yk+1 _ x*)) - (BT(Vk+1 _ V*),_yk+1 _ x*>.
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Thus

”vk+1 o ”2 _ ||vk o ”2 _ ”vk+1 _ ”2 + 2(1/<+1 TR o Vk>

< v A A 2T (R ) A ),
Next we prove (3.2). By the optimality condition of (1.3); (cf. (2.5)), we have
(#* =y VAR) = 2BTV) — 6 e yafy (x4 ).
By the property of subdifferentials (cf. (2.3)),

(x* _xk+1’ (xk _ )/Vﬁ(xk) _ A.BTVk+1) _xk+1> < )/(f?,(x*) —fg,(xkﬂ)),

(xk+1 _x*’xk+1 _xk> < _<xk+1 —x*,nyl(xk) + )\,BTVk+1> + )/(fg(x*) _f3(xk+l))'

Therefore,

||xk+1 _

< ||xk _x* ”2 _ kau _xk||2 _ Z(xk” —x*,yVﬁ(xk) + )LBTVku)

2 (7)),
On the other hand, by the optimality condition of (1.3);, it follows that
(xk _yVf (xk) _ }LBTVk) P e yaf; (yk+1)‘
Thanks to the property of subdifferentials, we have

(xk+l _y/<+1’ (xk _ }/Vfl (xk) _ )\,BTVk) _yk+1> < ]/(f?,(xkﬂ) _fS (yk+1)).

So

(xk+1 _yk+1,xk _yk+1> < <xk+l _yk+1, ]/Vfi (xk) + )\BTVk> + )/(fg(xkﬂ) _ﬁ‘s (yk+1))'

Thus

_||x/<+1 —xk||2 _ _kau _yk+1 ”2 _ ||xk _yk+1 ”2 + 2<xk+1 —yk”,xk —yk“)

x* “2 _ ”xk _ it ”2 _ ka+1 _xk||2 n 2<xk+1 _x*,xk+1 —xk>

< _kau _yk+1 ”2 _ ||xk _yk+1 ”2 + 2<xk+1 —yk+1, yVfi (xk) + ABTvk>

+ 2}/(f3(xk+l) _fB (yk+l))'

Page 7 of 18

(3.3)

Replacing the term —[|x**! — x||2 in (3.3) with the right side term of the above inequality,

we immediately obtain (3.2).

O
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Lemma 3.2 We have

e O e ST
@ =) = (VAR - v VAE))
—y2B-)|VAE) - VAR (3.4)

Proof Summing the two inequalities (3.1) and (3.2) and re-arranging the terms, we have

A e I Ca
e B e B L e B D
+2(ABT (V= %), yF T — ) 4 2k — 4y VA (6F) + ABTVE)
=2 — &%, y VA (X)) + ABTVY) + 2y (s (x%) - (1))
s e B e Ry e R e s e P
+2(ABT (V1 =),y — ) 1 2(x — yF Y VA (RF) - y VA (x))
=2 — &%, y VA (&) -y VA ("))
+2( - -y VARE) - 2B ) +y () A1)
e R e Y R - Ao
& =) = VAR VA + [y VAR -y VAR
—2(x* — ", y VA (x") - y VA(x"))
2 =2, =y VAR - 2BV + v (=) -£0/))), (3.5)

| 2

where || - |5 is given in (2.14) and (2.15). Meanwhile, by the optimality condition of (2.19),
we have

~yVA(x*) - ABTv* € yafs (x*),
which implies
= x*, —y VA () = ABTv) + v (F(x°) - £(4) < 0. (3.6)

On the other hand, it follows from (2.8) that

—(x* — &%, VA () - VA()) < -B| VA(R) - VA(xY) ||2 (3.7)
Recalling (2.16), we immediately obtain (3.4) in terms of (3.5)-(3.7). O

Lemma 3.3 Let 0 < A < 1/Amax(BBT) and 0 < y < 2B. Then the sequence {||uf — u*||;} is
non-increasing and limy_, .o, ||u*** — u* ||, = 0.

Proof 10 < A < 1/Amax(BBT) and 0 < y < 28, it follows from (3.4) that [|**! — u* |, < ||u* -
u*||,, i.e. the sequence {|| uk—u*||,) is non-increasing. Moreover, summing the inequalities
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(3.4) from k = 0 to k = +o0, we get

kErPooHVk+1 v, =0 (3.8)
klim ka” —yk+1 + )\BT(vk+1 - vk) || =0, (3.9)
Jim [ (@ - - (rVARE) - v VAR =0, (310)
Jim [ VA () - VA7) | = 0. (3.11)

The combination of (3.10) and (3.11) gives

lim [«% - = 0. (3.12)

k—+00

Noting that 0 < A < 1/Amax(BBT), we know M is symmetric and positive definite, so (3.8)
is equivalent to

lim | k| = 0. (3.13)

k—+00

Hence, we have from the above inequality and (3.9) that

lim [J«**! -y = 0. (3.14)

k—+00

The combination of (3.12) and (3.14) then gives rise to

Jim [kt =&k = 0. (3.15)
According to (3.13), (3.15), and (2.16), we have limg_, , o, [|l#**! — uX ||, = 0. |

As a direct consequence of Lemma 3.3 and Lemma 2.3, we obtain the convergence of
the PDEP as follows.

Theorem 3.1 Let 0 < A < 1/Amax(BBT) and 0 < y < 2. Then the sequence {u*} is bounded
and converges to a fixed point of T, and both {x*} and {y*} converge to a solution of (1.1).

Proof By Lemma 2.2, both prox, ;, and I — prox vy, are firmly nonexpansive, thus the oper-
ator T defined by (2.9)-(2.12) is continuous. From Lemma 3.3, we know that the sequence

K+l _ K|, = 0. By using Lemma 2.3, we

{llu* = u*|),} is non-increasing and limy_, ,o, ||
know that the sequence {«*} is bounded and converges to a fixed point of T. By using
Theorem 2.1 and (3.14), we can conclude that both {x*} and {y*} converge to a solution

of (1.1). a

Remark 3.1 For the special case f; = 0, the PDFP reduces naturally to the PDFP*O (4.2)
proposed in [15], where the conditions for the parameters are 0 < A < 1/Amax(BBT), 0 <
y < 2. In the proof of Lemma 3.3, we utilize the positive definitiveness of M to obtain
(3.13) from (3.8). So the condition for the parameter X is slightly more restricted as 0 <
A < 1/Amax(BBT) in Lemma 3.3 and Theorem 3.1. When f; = 0, the conditions in the proof
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of Lemma 3.3 can also be relaxed to 0 < A < 1/Amax(BBT). As a matter of fact, it is easy to
check by the definition of y**! (see (1.3);) and the optimality condition of (2.19) that

| =) = (VA E) -y VA ) | = 187 (0 - v) 316)

Observing that [|[VK*1 — k|12 = [[v%*1 &2 4 4| BT (V**1 —1/)||2, we have by (3.16), (3.10) and
(3.8) that limy_, ,o0 |[|[Vf*! — v¥|| = 0. Therefore we can derive the convergence whenever M
is semi-positive definite for f5 = 0.

Remark 3.2 For the special case f; = 0, the problem (1.1) only corresponds to two proper
lower semi-continuous convex functions. The convergence condition 0 < y < 2 in the
PDFP becomes 0 < y < +00. Although y is an arbitrary positive number in theory, the
range of y will affect the convergence speed and it is also a difficult problem to choose a
best value in practice.

3.2 Linear convergence rate for special cases

In the following, we will show the convergence rate results with some additional as-
sumptions on the basic problem (1.1). In particular, for f; = 0, the algorithm reduces to
the PDFP?O proposed in [15]. The conditions for a linear convergence given there as
Condition 3.1 in [15] is as follows: for 0 < A < 1/Amax(BBT) and 0 < y < 28, there exist
11,02 € [0,1) such that

|1-xBB"|, <},

lg@) —gO)|| <mallx—yll forallx,y e R, (3.17)

where g(x) is given in (2.13). It is easy to see that a strongly convex function f; satisfies the
condition (3.17). For a general f3, we need stronger conditions on the functions.

Theorem 3.2 Suppose that (3.17) holds and f; is strongly convex. Then we have

* —u| ey =1 T (L+A8/y)3?

where 0 < n < 1 is the convergence rate (indicated in the proof) and § > 0 is a parameter
describing the strongly monotone property of of;" (cf. (2.4)).

Proof Use Moreau’s identity (cf. (2.7)) to get
A A
(- prox%fz)(Byk” +°) = %prox%f; (;Byk"l + ;vk>.
So (1.3), is equivalent to

A A A
ZVR = proxs . | =Byt + S05 ). (3.18)
y %\ Ty

According to the optimality condition of (3.18),

&Byk+1 +
14

A A A A
Tk Dkl e —3f;(—vk+l>. (3.19)
Y Y 14 Y
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Similarly, according to the optimality condition of (2.18),

A A A
—Bx* € —9fy (—v*). (3.20)
Y 14 14

Observing that df;" is §-strongly monotone, we have by (3.19) and (3.20)

2

’

(Vk+1 —v (Byk+l + Vk _ l/(+l) —Bx*) > %3 ||vk+1 Y

(Vk+1 _ V*, Vk+1 _ Vk> < <BT(V/<+1 _ V*),_)/k+1 _x*> _ %5 ||Vk+1 _ ||2
Thus

”vk+1 o ”2 _ ||vk o ”2 _ ”vk+1 _ “2 + 2(1/”1 Y Lo Vk>
< ||vk o ”2 _ ”vk+1 _ “2 + 2(BT(vk*1 _ v*),yk” —x*)

_ A(SHVIHI —v*||2,

v

(3.21)

Summing the two inequalities (3.21) and (3.2), and then using the same argument for
driving (3.5), we arrive at

A
(“ JS)AW“ o R Gl e U R R ol

¥ (3.22)

5)\||Vk—v*H2+n§||xk—x*

where we have also used the condition (3.17) and the inequality (3.6).
Let n3 =1/4/1+ A8/y and n = max{n,, ns}. It is clear that 0 < < 1. Hence, according to
the notation (2.16), the estimate (3.22) can be rewritten as required. O

We note that a linear convergence rate for strongly convex f;* and f; are obtained in
[19]. They introduced two preconditioned operators for accelerating the algorithm, while
a clear relation between the convergence rate and the preconditioned operators is still
missing. Meanwhile, introducing preconditioned operators could be beneficial in practice,
and we can also introduce a preconditioned operator to deal with Vf; in our scheme. Since
the analysis is rather similar to the current one, we will omit it in this paper.

4 Connections to other algorithms
In this section, we present the connections of the PDFP algorithm to some algorithms
proposed previously in the literature.

In particular, when f; = xc, due to prox, . = projc, the proposed algorithm (1.3) is re-
duced to the PAPA proposed in [20]

Y+ = proj(xk — y VA (K) — ABTVF),
(PDFP) {1 =(I- prox%fz)(Byk+1 +15), (4.1)
xk+1 — prOjC(xk _ )/Vﬁ(xk) _ kBTVk+1),
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where 0 < A < 1/Am.c(BBT), 0 < y < 28. We note that the conditions of the parameters for
the convergence of the PDFP are larger than those in [20]. Here we still refer to (4.1) as
the PDFP, since the PAPA originally proposed in [20] incorporates other techniques such
as diagonal preconditioning.

For the special case f; = 0, due to prox, ;, = I, we obtain the PDFP?O scheme proposed
in [15]

YR = wk — VA (xF) — ABTVK,
(PDEP?0) 1941 = (I - proxy ;) (By**! + ), (4.2)
xk+l _ xk _ )/Vfl (xk) _ )\.BTVk+1,

where 0 < A < 1/Amax(BBT), 0 < y < 28. Recently, we notice that the PDFP?O reduces to
the algorithm previously proposed for f;(x) = % |Ax — a||? by Loris and Verhoeven in [14].
The convergence and the convergence rate of the objective function were established in
[14], but the convergence conditions are slightly more restrictive than the ones given in
[15]. On the other hand, we emphasize that the PDFP?O algorithm can also be interpreted
from the point of view of forward-backward operator splitting, as shown in [15, 16]. More-
over, the multi-block formulation was devised and analyzed in [16].
Based on the PDFP?O, we also proposed the PDFP?>Oc in [23] for f5 = xc as

Pt = ok — y VAGE) - ABTv - i,

k+1 + vl{),

Vi‘*l = - prOngz)(By
VAL = (I = proj o) (! + V%),

okt = pk )’Vfl(xk) _ )\BTV]1<+1 _ )\V12<+1’

(PDFP?Oc)

where 0 < 4 < 1/(Amax(BBT) + 1), 0 < y < 28. A similar technique of extension to multi-
composite functions has also been used in [5, 18, 24]. Compared to the PDFP (4.1), the
algorithm PDFP?Oc introduces an extra variable, while the PDFP requires two times pro-
jections. Most importantly, the primal variable at each iterate of the PDFP is feasible, but
maybe not for that of the PDFP?Oc. In addition, the permitted ranges of the parameters
are also tighter in the PDFP?Oc.

Another interesting special case is f; = 0. The scheme (1.3) reduces to

y**1 = prox g, (xF — ABTWA),
(PDFP) {v*1=(I- proxy ) By 45, (4.4)

Kkl = prox)/fs (xk _ )\BTVk+1),

where 0 < A < 1/Amax(BBT), 0 < ¥ < +00. It is easy to see that (4.4) is different from the
PDHG method in [10, 11] and (4.4) has a symmetric step (4.4); compared to the extrapo-
lation step in the PDHG method.

Combettes and Pesquet first proposed a fully split algorithm in [4] to solve monotone
inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone op-
erators, which include (1.1) as a special case. The problem is recast as two-block inclusions
and then solved with an error-tolerant primal-dual forward-backward-forward algorithm
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Table 1 The comparison between Condat (o = 1) and PDFP

Condat (ox = 1) PDFP
Form YR = Prox, K=y VAKX - yBTTF),
v PrOXe s (o Bk +7), VT =prox;, (%Byk” +75),
V2
K4 = proxg, (K =T VAN -TB QP -74) X4 = prox,,p, (X - y VA () - y BTH)
fi #0 0 ThmaxBBT) +T/(2B) <1 0<A<1/Amax(BB),0<y <28

fi=0 0<0T <1/ Amax(B8") 0< A</ Amax(B87),0<y < +00

Relation o=Ay, 1=y

as studied in [25]. Condat [5] tackled the same problem as given in (1.1) and proposed a
primal-dual splitting scheme. For the special case with f; = 0, Condat’s algorithm reduces
to the PDHG method in [11]. By grouping the multi-block as two blocks, the authors in [24]
extended the PDHG algorithm [12] to the minimization of sum of multi-composite func-
tions. The authors in [18] proposed a class of multi-step fixed point proximity algorithms,
including several existing algorithms as special examples, for example the algorithms in
[11, 12].In [6], Davis and Yin proposed a three-operator splitting method for solving three-
block monotone inclusions in a very tricky way. When solving the problem (1.1) with B = I,
the scheme is different from Condat’s algorithm and PDFP algorithm. But it requires sub-
problem solving if B # I. Li and Zhang [19] studied (1.1) based on the techniques present
in [18] and including Condat’s algorithm in [5] as a special case, and further introduced
quasi-Newton and the overrelaxation strategies to accelerate the algorithms.

In the following, we mainly compare PDFP to the basic Algorithm 3.2 proposed by
Condat in [5] to simplify the presentation. We first change the form of the PDFP algo-
rithm (1.3) by using Moreau’s identity, see (2.7), i.e.

y A _
(I- prox%fz)(Byk” +) = T ProXsp (;Byk+1 + Vk>,

where 7

= %vk . A direct comparison is presented in Table 1. From Table 1, we can see
that the ranges of the parameters in Condat’s algorithm are relatively smaller than PDFP.
Also since the condition for Condat’s algorithm is mixed with all the parameters, it is not
always easy to choose them in practice. This is also pointed out in [5]. While the rules
for the parameters in PDFP are separate, and they can be chosen independently accord-
ing to the Lipschitz constant and the operator norm of BB”. In this sense, our parame-
ter rules are relatively more practical. In the numerical experiments, we can set A to be
close to 1/Amax(BBT) and y to be close to 28 for most of tests. Moreover, the results of
xF — y V£ (x*) and ABTvF*! can be stored as two intermediate variables that can be reused
in (1.3); and (1.3); during the iterations. Nevertheless, PDFP has an extra step (1.3); com-
pared to Condat’s algorithm and the computation cost may increase due to the compu-
tation of prox, .. In practice, this step is often related to the ¢; shrinkage or projection
operation being easy to implement, so the cost could be still ignorable in practice.

5 Numerical experiments

In this section, we will apply the PDFP algorithm to solve two problems: the fused LASSO
penalized problem and parallel magnetic resonance imaging (pMRI) reconstruction. All
the experiments are implemented under MATLAB 7.00 (R14) and conducted on a com-
puter with Intel (R) core (TM) i5-4300U CPU@1.90G.
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5.1 The fused LASSO penalized problem

The fused LASSO (least absolute shrinkage and selection operator) penalized problem is
proposed for group variable selection, and we refer the reader to [1, 2, 26] for more details
for the applications of this model. It can be described as

n-1

1
. 2
min —||Ax - a|” + w1 E [oie1 = | + pallx
xeR" 2 1
i=

Here A e R™", a € R". The row of A: A; for i =1,2,...,r represent the ith observation of
the independent variables and «; denotes the response variable, and the vector x € R” is
the regression coefficient to recover. The first term is corresponding to the data-fidelity
term, and the last two terms aim to ensure the sparsity in both x and their successive

differences in x. Let

Then the forgoing problem can be reformulated as
.1 2
min ~[|Ax — al|” + 1 [[Bxly + pallxllr (5.1)
xeRM 2

For this example, we can set fi (x) = %||Ax—a||2,f2 =l -l fs = mall - l1- We want to show
that the PDFP algorithm (1.3) can be applied to solve this generic class of problems (5.1)
directly and easily.

The following tests are designed for the simulation. We set r = 500, » = 10,000, and
the data a is generated as Ax + ae, where A and e are random matrices whose elements
are normally distributed with zero mean and variance 1, and « = 0.01, and x is a generated
sparse vector, whose nonzero elements are showed in Figure 1 by green ‘+. We set 11; = 200,
o =20, and the maximum iteration number as Itn = 1,500.

We compare the PDFP algorithm with Condat’s algorithm [5]. For the PDFP algo-
rithm, the parameters A and y are chosen according to Theorem 3.1. In practice, we set
A to be close to 1/Ama(BBT) and y to be close to 2. Here we set A = 1/4 as the n — 1
eigenvalues of BBT can be analytically computed as 2 — 2 cos(i/n), i = 1,2,...,n — 1 and
¥ =1.99/Amax(ATA). For Condat’s algorithm, we set A = 0.19/4, ¥ = 1.9/Amax(ATA), which
is chosen for a relative better numerical performance. The computation time, the attained
objective function values, and the relative errors to the true solution are close for Condat’s
algorithm and PDFP. From Figure 1, we see that both Condat’s algorithm and PDFP can
quite correctly recover the positions of the non-zeros and the values.

5.2 Image restoration with non-negative constraint and sparse regularization
A general image restoration problem with non-negative constraint and sparse regulariza-

tion can be written as

o1
min = [|Ax — a|l* + j1|| Bx|1, (5.2)
xeC 2
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Figure 1 Recovery results for fused LASSO with Condat’s algorithm and PDFP.

PDFP20 PDFP?0c¢ PDFP

R=2

AP 0.002523 0.001294 0.001021
SNR 34.94 35.35 36.01
Itn 8 8 8
time 0.73 0.75 0.67

R=4

AP 0.040011 0.009718 0.009802
SNR 38.06 39.55 39.57
Itn 500 250 250
time 43.76 22.35 19.30

Figure 2 Recovery results from four-channel in-vivo spine data with the subsampling ratio R =2, 4.
For PDFP20 and PDFP, A = 1/8, ¥ = 2, and for PDFP2O¢, A =1/9, y = 2.

where A is some linear operator describing the image formation process, || Bx||; is the usual
£; based regularization in order to promote sparsity under the transform B, > 0 is the
regularization parameter. Here we use the isotropic total variation as the regularization
functional, thus the matrix B represents the discrete gradient operator. For this example,
we can set fi(x) = 3 | Ax — al f5 = ul| - I, and f; = xc.

We consider pMRI reconstruction, where A = (A],Al,..., AT)T for each A; is composed
of a diagonal downsampling operator D, the Fourier transform F, and a diagonal coil sen-
sitivity mapping S; for receiver j, i.e. A; = DFS; and §; are often estimated in advance. It
is well known in the total variation application that Ap.(BBT) = 8. The related Lipschitz
constant of Vf] can be estimated as 8 = 1. Therefore the two parameters in PDFP are set as
A =1/8 and y = 2. The same simulation setting as in [15] is used in this experiment and we
still use the artifact power (AP) and the two-region signal to noise ratio (SNR) to measure
the image quality. We refer the reader to [15, 27] for more details.
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PDFP20

R=2

AP 0.000822 0.000469 0.000465
SNR 39.36 39.75 40.38
Itn 25 25 25
time 3.96 4.01 3.63
R=4

AP 0.002502 0.001528 0.001535
SNR 43.06 43.86 44.13
Itn 150 75 75
time 23.02 11.74 10.79

Figure 3 Recovery results from eight-channel in-vivo brain data with the subsampling ratio R = 2, 4.
For PDEP20 and PDFP, A = 1/8, ¥ = 2, and for PDFP?O¢, L =1/9, y = 2.

In the following, we compare PDFP algorithm (4.1) with the previously proposed algo-
rithms PDFP?O (4.2) and PDFP?O¢ (4.3). From Figures 2 and 3, we can first see that the
introduction of non-negative constraint in the model (5.2) is beneficial and we can recover
a better solution with higher two-region SNR and lower AP value. The non-negative con-
straint leads to a faster convergence for a stable recovery. Second, PDFP?O¢ and PDFP are
both efficient. For a subsampling rate R = 2, PDFP>*O¢ and PDFP can both recover bet-
ter solutions in terms of AP values compared to PDFP?O under the same iterative num-
bers. For R = 4, the solutions of PDFP?O¢ and PDFP have better AP values than those of
PDFP?0, but only use half iteration numbers of PDFP?0. The computation time for PDFP
is slightly less than PDFP?Ov. Finally, the iterative solutions of PDFP are always feasible,
which could be useful in practice.

6 Conclusion

We have extended the algorithm PAPA [20] and PDFP?O [15] to derive a primal-dual fixed
point algorithm PDFP (see (1.3)) for solving the minimization problem of three-block con-
vex separable functions (1.1). The proposed PDFP algorithm is a symmetric and fully split-
ting scheme, only involving explicit gradient and linear operators without any inversion
and subproblem solving, when the proximity operator of nonsmooth functions can easily
be handled. The scheme can easily be adapted to a variety of inverse problems involving
many terms minimization and it is suitable for large-scale parallel implementation. In ad-
dition, the parameter range determined by the convergence analysis is rather simple and
clear, and it could be useful for practical applications. Finally, as discussed in Section 5 in
[5], we can also extend the current PDFP algorithm to solve multi-block composite (more
than three) minimization problems. Preconditioning operators, as proposed in [16, 19, 24,
28], can also be introduced to accelerate the PDFP, which could be a future work for some
specific applications.
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