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Abstract
We discuss Panayanak’s results on the existence of an endpoint of a multivalued
nonexpansive mapping. We show that all of his results can be extended and some
can be established in a wider class of mappings. Out of his three open questions, two
of them are solved in affirmative.

1 Introduction
Let (X, d) be a metric space. The distance from an element x ∈ X to a nonempty subset
E ⊂ X is defined by

d(x, E) := inf
{

d(x, y) : y ∈ E
}

.

For a nonempty subset E ⊂ X, we denote by BC(E) (K(E), respectively) the family of
nonempty bounded and closed subsets (nonempty compact subsets, respectively) of E.
Note that K(E) ⊂ BC(E) and the inclusion may be proper. The Pompeiu-Hausdorff dis-
tance on BC(X) is defined by

H(A, B) := max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

for all A, B ∈ BC(X).
An element x ∈ E is a fixed point of a multivalued mapping T : E → BC(X) if x belongs

to the set Tx. Moreover, if {x} = Tx, then x is called an endpoint of T (or a stationary point
of T ). The set of all endpoints (all fixed points, respectively) of T is denoted by End(T)
(Fix(T), respectively). It is clear that End(T) ⊂ Fix(T) and the inclusion may be proper
(see Example ). In the case of single-valued mappings, both notions coincide.

The existence of an endpoint and of a fixed point of a multivalued mapping has been
widely investigated by many researchers (see, e.g., [–]). Corley [] proved that a max-
imization with respect to a cone, which subsumes ordinary and Pareto optimization, is
equivalent to the problem of finding an endpoint of certain multivalued mapping. Note
that the results in multivalued case are suggested but do not follow directly from the one
in the single-valued case. In spite of the Michael selection theorem, which gives a contin-
uous selection for multivalued upper semicontinuos mappings, almost nothing is known
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about obtaining a nonexpansive selection. In our problem studied below, we do not know
how they can be proved via the classical results for single-valued mappings.

First, let us recall the following simple example of Ko []. It suggests that fixed point re-
sults in the single-valued case should be extended to endpoint results in the corresponding
multivalued one.

Example  Let X be the two-dimensional Euclidean space (R,‖ ·‖), and E = [, ]× [, ].
Let T : E →K(E) be defined by

T(a, b) := the closed convex hull of
{

(, ), (a, ), (, b)
}

.

Note that H(T(a, b), T(c, d)) ≤ ‖(a, b) – (c, d)‖ for all (a, b), (c, d) ∈ E. Moreover, we remark
the following facts.

• It is clear that Fix(T) = {(a, b) ∈ E : ab = } and End(T) = {(, )}. Hence, End(T) is
convex, but Fix(T) is not.

• This example shows that even in a Hilbert space the class of �-type mappings, which
is given analogously to Bruck’s theorem does not include all nonexpansive mappings
(see [], Example ., for more details).

• For a fixed element (a, b) ∈ E and t ∈ (, ), define St : E →K(E) by

St(a, b) := ( – t)(a, b) + tT(a, b).

It follows that, as t ↑ , the net {Fix(St)}t∈(,) does not converge to the fixed point of T
nearest to (a, b) even in the weaker convergence of sets (see []).

Recall that a multivalued mapping T : E → BC(X) has the approximate endpoint prop-
erty if

inf
x∈E

sup
y∈Tx

d(x, y) = .

Obviously, if End(T) �= ∅, then T has the approximate endpoint property. In this paper, we
investigate the following statement:

T has the approximate endpoint property 	⇒ End(T) �= ∅. (A)

This research problem has been investigated by many mathematicians (see [–] for the
single-valued case and [, , ] for the multivalued one).

Recently, Panyanak [] showed that (A) holds in some situations. We first quote all main
results recently proved in his paper. Some relevant definitions and concept will be given
in the next section.

Theorem P Suppose that E is a nonempty bounded closed convex subset of a uniformly
convex Banach space X. If T : E →K(E) is a nonexpansive mapping, then (A) holds.

Theorem P Suppose that E is a nonempty bounded closed convex subset of a reflexive
Banach space X with the Opial property. If T : E →K(X) is a nonexpansive mapping, then
(A) holds.
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Theorem P Suppose that E is a nonempty bounded closed convex subset of a complete
CAT() space X. If T : E →K(X) is a nonexpansive mapping, then (A) holds.

Note that the proofs of Theorems P, P, and P are based on the technique of asymp-
totic center introduced by Lim [].

Theorem P Suppose that E is a nonempty convex subset of a complete CAT() space X.
If T : E →K(X) is a nonexpansive mapping, then End(T) is convex.

We also quote some of his questions.

Question P Let E be a nonempty bounded closed convex subset of a uniformly convex
Banach space X, and T : E →K(X) be a nonexpansive mapping. Does (A) hold?

Question P Let E be a nonempty closed convex subset of a uniformly convex Banach
space X, and T : E → BC(X) be a nonexpansive mapping. Is End(T) convex?

The purpose of this paper is to give significant extensions of all theorems above. We also
give affirmative answers to the preceding two questions. It should be noted that our proofs
are different from those in Panyanak’s paper. Moreover, many results are established under
weaker assumptions.

2 Main results
For an element x in a metric space X := (X, d) and for a nonempty bounded subset E of X,
we write

D(x, E) := sup
{

d(x, y) : y ∈ E
}

.

Using this notation, for any mapping T : E → BC(X), we have the following statements:
• T has an end point if and only if there exists an element x ∈ E such that D(x, Tx) = .
• T has the approximate endpoint property if and only if there exists a sequence {xn} in

E such that D(xn, Txn) → .
Recall that a multivalued mapping T : E → BC(X) is nonexpansive if it does not increase

the distances, that is,

H(Tx, Ty) ≤ d(x, y) for all x, y ∈ E.

Let us first start with the following easy observation.

Proposition  Let E be a nonempty subset of a metric space X, and T : E → BC(X) be
given. Let x, y ∈ E. Then the following statements hold.

• If y′ ∈ Ty, then d(x, y′) ≤ D(x, Tx) + H(Tx, Ty).
• If y′ ∈ Ty and T is nonexpansive, then d(x, y′) ≤ D(x, Tx) + d(x, y).

Proof We prove only the first assertion. Let x, y ∈ E, and x′ ∈ Tx and y′ ∈ Ty. It follows that

d
(
x, y′) ≤ d

(
x, x′) + d

(
x′, y′) ≤ D(x, Tx) + d

(
x′, y′).
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Since x′ ∈ Tx is arbitrary, we have

d
(
x, y′) ≤ D(x, Tx) + d

(
y′, Tx

) ≤ D(x, Tx) + H(Ty, Tx).

This completes the proof. �

The following result follows easily from the preceding proposition.

Lemma  Let E be a nonempty subset of a metric space X, and T : E → BC(X) be a contin-
uous mapping. If {un} is a sequence in E such that limn D(un, Tun) =  and {un} converges
to some element u ∈ E, then u ∈ End(T).

Proof Let u′ ∈ Tu. It follows from Proposition  that d(un, u′) ≤ D(un, Tun) + H(Tu, Tun).
Since T is continuous, we have limn H(Tu, Tun) = . Then the sequence {un} converges to
u′, and hence u = u′ ∈ Tu. This finishes the proof. �

2.1 Endpoint results in strictly convex spaces and uniformly convex spaces
A Banach space X is strictly convex if the following implication holds:

‖u‖ ≤ , ‖v‖ ≤ , ‖u – v‖ >  	⇒ 

‖u + v‖ < .

The uniform version of this property is as follows: X is uniformly convex [] if for each
ε > , there exists δ >  such that

‖u‖ ≤ , ‖v‖ ≤ , ‖u – v‖ ≥ ε 	⇒ 

‖u + v‖ ≤  – δ.

Every uniformly convex space is strictly convex. The converse is not true (see [], Exam-
ple ..).

First, we give an affirmative answer to Question P. Moreover, we show that the uniform
convexity can be weaken to the strict convexity. The following lemma seems to be known,
but we give a proof for completeness.

Lemma  If u and v are two elements in a strictly convex space such that ‖u + v‖ = ‖u‖ +
‖v‖, then ‖v‖u = ‖u‖v.

Proof If either u =  or v = , then the conclusion holds. We now assume that u �=  and
v �= . Let t = ‖u‖/(‖u‖ + ‖v‖). Then t ∈ (, ). Since ‖u + v‖ = ‖u‖ + ‖v‖, we have

∥∥∥∥t
u

‖u‖ + ( – t)
v

‖v‖
∥∥∥∥ = .

Without loss of generality, we may assume that t ≤ /. (Otherwise, let t = ‖v‖/(‖u‖+‖v‖).)
It follows then that

 =
∥∥∥∥t

u
‖u‖ + ( – t)

v
‖v‖

∥∥∥∥ =
∥∥∥∥t

(



u
‖u‖ +




v
‖v‖

)
+ ( – t)

v
‖v‖

∥∥∥∥

≤ t
∥∥∥∥




u
‖u‖ +




v
‖v‖

∥∥∥∥ +  – t.
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In particular,




∥∥∥∥
u

‖u‖ +
v

‖v‖
∥∥∥∥ = .

Since the space is strictly convex, we have

u
‖u‖ =

v
‖v‖ .

This completes the proof. �

Theorem  Let E be a nonempty closed convex subset of a strictly convex Banach space X .
If T : E → BC(X) is a nonexpansive mapping, then End(T) is convex.

Proof Let u, v ∈ End(T) and z = ( – t)u + tv where t ∈ (, ). We may assume that u �= v. To
see that z ∈ End(T), let z′ ∈ Tz. It follows from Proposition  that

∥∥u – z′∥∥ ≤ ‖u – z‖ and
∥∥v – z′∥∥ ≤ ‖v – z‖.

We consider the following:

‖u – v‖ =
∥∥(

u – z′) +
(
z′ – v

)∥∥

≤ ∥∥u – z′∥∥ +
∥∥z′ – v

∥∥

≤ ‖u – z‖ + ‖z – v‖
= t‖u – v‖ + ( – t)‖u – v‖
= ‖u – v‖.

It follows from Lemma  that

∥∥z′ – v
∥∥(

u – z′) =
∥∥u – z′∥∥(

z′ – v
)
.

Moreover,

∥∥z′ – v
∥∥ = ‖z – v‖ = ( – t)‖u – v‖,

∥∥u – z′∥∥ = ‖u – z‖ = t‖u – v‖.

Hence, ( – t)(u – z′) = t(z′ – v), that is, z = ( – t)u + tv = z′ ∈ Tz. This completes the proof.
�

We simultaneously extend Theorem P and give an affirmative answer to Question P.
We also introduce the following concept, which is a multivalued version of [].

Definition  Let E be a nonempty convex subset of a Banach space X. A multivalued
mapping T : E → BC(X) is of convex type if limn D(zn, Tzn) =  whenever {un} and {vn} are
sequences in E such that limn D(un, Tun) = limn D(vn, Tvn) =  and zn = 

 un + 
 vn for all

n ≥ .
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In the presence of uniform convexity, this class of mappings includes all nonexpansive
ones. Note that X is uniformly convex if and only if limn ‖xn – yn‖ =  whenever {xn} and
{yn} are sequences in X satisfying limn ‖xn‖ = limn ‖yn‖ = limn


‖xn + yn‖ =  (see [],

Proposition ..).

Lemma  Let E be a nonempty bounded closed convex subset of a uniformly convex Banach
space X. If T : E → BC(X) is a nonexpansive mapping, then it is of convex type.

Proof Let {un} and {vn} be sequences in E such that limn D(un, Tun) = limn D(vn, Tvn) = 
and zn = 

 un + 
 vn for all n ≥ . For each n, let z′

n ∈ Tzn be such that

D(zn, Tzn) –

n

≤ ∥∥zn – z′
n
∥∥ ≤ D(zn, Tzn).

It follows from Proposition  that

lim sup
n

∥∥un – z′
n
∥∥ ≤ lim

n
D(un, Tun) + lim sup

n
‖un – zn‖

=



lim sup
n

‖un – vn‖.

Similarly, we have

lim sup
n

∥∥vn – z′
n
∥∥ ≤ 


lim sup

n
‖un – vn‖.

Without loss of generality, we may assume that α := limn ‖un – z′
n‖, β := limn ‖vn – z′

n‖, and
γ := limn ‖un – vn‖ do exist. If γ = , then we are done. We now assume that γ > . Let us
consider the following:

γ = lim
n

‖un – vn‖

= lim
n

∥∥(
un – z′

n
)

+
(
z′

n – vn
)∥∥

≤ lim
n

∥∥un – z′
n
∥∥ + lim

n

∥∥z′
n – vn

∥∥

= α + β ≤ 

γ +



γ = γ .

It then follows that α = β = 
γ > . In particular,

lim
n

∥∥∥∥
un – z′

n
α

∥∥∥∥ = lim
n

∥∥∥∥
z′

n – vn

β

∥∥∥∥

= lim
n




∥∥∥∥
un – z′

n
α

+
z′

n – vn

β

∥∥∥∥ = .

By the uniform convexity of X we have

lim
n

∥∥∥∥
un – z′

n
γ /

–
z′

n – vn

γ /

∥∥∥∥ = lim
n

∥∥∥∥
un – z′

n
α

–
z′

n – vn

β

∥∥∥∥ = .
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Hence, limn ‖zn – z′
n‖ = limn ‖ 

 (un + vn) – z′
n‖ = . This implies that

lim
n

D(zn, Tzn) ≤ lim
n

(∥∥zn – z′
n
∥∥ +


n

)
= .

Consequently, T is of convex type. �

Theorem  Suppose that E is a nonempty bounded closed convex subset of a uniformly
convex Banach space X. If T : E → BC(X) is a continuous multivalued mapping of convex
type, then (A) holds.

Proof For each r > , let B(r) denote the closed ball centered at zero and radius r. Set

R :=
{

r >  : E ∩ B(r) �= ∅ and inf
x∈E∩B(r)

D(x, Tx) = 
}

.

It follows from the boundedness of E that α := inf R < ∞. If α = , then it follows that  ∈ E
and  ∈ End(T). We now consider the case α > . For each n ≥ , let xn ∈ E ∩B(α + /n) and
D(xn, Txn) ≤ /n. In particular, lim supn ‖xn‖ ≤ α and limn D(xn, Txn) = . If {xn} contains a
convergent subsequence, then its limit point is an endpoint of T . Suppose that there are a
constant ε >  and a subsequence {xnk } such that ‖xnk –xnk+‖ ≥ ε for all k ≥ . Set uk ≡ xnk ,
vk ≡ xnk+ , and zk ≡ 

 uk + 
 vk . It follows that limk D(uk , Tuk) = limk D(vk , Tvk) = . Note

that lim supk ‖uk‖ ≤ α and lim supk ‖vk‖ ≤ α. By the uniform convexity of X there exists
δ >  such that lim supk ‖zk‖ ≤ ( – δ)α < α. Moreover, it follows from the convexity type
of T that limn D(zn, Tzn) = . We now obtain a contradiction. The proof is finished. �

2.2 Endpoint results in reflexive spaces with Opial property
A Banach space X is said to have the Opial property [] if whenever {xn} is weakly con-
vergent to x and y �= x, it follows that

lim sup
n

‖xn – x‖ < lim sup
n

‖xn – y‖.

The following result is related to the demiclosedness property.

Proposition  Let E be a nonempty subset of a Banach space X with the Opial prop-
erty, and T : E → BC(X) be a nonexpansive mapping. If {un} is a sequence in E such that
D(un, Tun) →  and {un} converges weakly to u ∈ E, then u ∈ End(T).

Proof Let u′ ∈ Tu. It follows from Proposition  that

∥∥un – u′∥∥ ≤ D(un, Tun) + ‖un – u‖.

In particular,

lim sup
n

∥∥un – u′∥∥ ≤ lim sup
n

‖un – u‖.

It follows from the Opial property that u = u′ ∈ Tu. This completes the proof. �

The following result extends Theorem P from T : E →K(X) to T : E → BC(X).
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Theorem  Suppose that E is a nonempty bounded closed convex subset of a reflexive
Banach space X with the Opial property. If T : E → BC(X) is a nonexpansive mapping,
then (A) holds.

Proof Assume that T has an approximate endpoint property. Let {un} be a sequence in E
such that D(un, Tun) → . Since {un} is bounded, there exists a subsequence {unk } of {un}
such that {unk } converges weakly to some element u ∈ E. It follows from the preceding
proposition that u ∈ End(T). �

2.3 Endpoint results in geodesic spaces whose curvature is bounded above
In this section, we extend both Theorems P and P in a more general setting, that is,
we consider geodesic spaces whose curvature is bounded above. Let us recall relevant
definitions and a concept as follows. For more details on the subject, we refer to [].

For κ ∈ R, let Mκ := (Mκ , dκ ) denote the unique simply connected surface (real two-
dimensional Riemannian manifold) with constant curvature κ . That is,

Mκ :=

⎧
⎪⎪⎨

⎪⎪⎩

(/
√

κ)S if κ > ,

R
 if κ = ,

(/
√

–κ)H if κ < .

Here S
, R, and H

 represent the two-dimensional sphere, Euclidean space, and hyper-
bolic space, respectively. In particular,

Dκ := diam Mκ =

⎧
⎨

⎩
π/

√
κ if κ > ,

∞ if κ ≤ .

A geodesic path joining two elements x, y in a metric space (X, d) is an isometry c :
[, l] → X, where d(x, y) = l, such that c() = x and c(l) = y. The image of a geodesic path
is called a geodesic segment. A metric space for which every two points can be joined
by a geodesic segment is called a geodesic space. For any three elements x, y, z ∈ X, a
geodesic triangle �(x, y, z) is the union of three geodesic segments joining each two of
them. Since there may be more than one geodesic segment joining each two points, the
triangle �(x, y, z) depends on the geodesic paths we choose. We say that a geodesic tri-
angle �(x, y, z), where x, y, z ∈ X and d(x, y) + d(y, z) + d(z, x) < Dκ , satisfies the CAT(κ)
inequality if there exists corresponding three points x, y, z ∈ Mκ such that

• d(x, y) = dMκ (x, y), d(y, z) = dMκ (y, z), and d(x, z) = dMκ (x, z);
• d(p, q) ≤ dMκ (p, q) for all p, q ∈ �(x, y, z) and p, q ∈ �(x, y, z).

A geodesic metric space (X, d) is a CAT(κ) space if every geodesic triangle � in X with
perimeter less than Dk satisfies the CAT(κ) inequality. If X is a CAT(κ) space, then it is
Dκ -uniquely geodesic, that is, there exists a unique geodesic path joining x and y for all
x, y ∈ X with d(x, y) < Dκ . In this case, we denote the unique geodesic segment joining x
and y by [x, y], and the element z ∈ [x, y] satisfying d(z, x) = (– t)d(x, y) and d(z, y) = td(x, y)
for some t ∈ [, ] is also denoted by tx⊕ (– t)y. A subset Y of a CAT(κ) space is Dκ -convex
if [x, y] ⊂ Y for all x, y ∈ Y with d(x, y) < Dκ .
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Note that in this study we can consider only CAT() spaces because all the results can
be easily extended to CAT(κ) spaces with κ >  by resizing the space. Moreover, every
CAT(κ) space is a CAT(κ) space whenever κ ≤ κ.

Lemma  ([], Lemma .) Let �(x, y, z) be a geodesic triangle in a CAT() space such
that d(x, y) + d(x, z) + d(y, z) < π , and let w ∈ [x, y]. Then

cos d(w, z) sin d(x, y) ≥ cos d(x, z) sin d(y, w) + cos d(y, z) sin d(x, w).

Theorem  Let E be a nonempty convex subset of a complete CAT() space X. If T : E →
BC(X) is a nonexpansive mapping, then End(T) is π -convex.

Proof Let u, v ∈ End(T) be such that  < d(u, v) < π . Let w ∈ [u, v]. Note that w ∈ E. We
show that w ∈ End(T). To see this, let w′ ∈ Tw. It follows from Proposition  that

d
(
u, w′) ≤ d(u, w) and d

(
v, w′) ≤ d(v, w).

Moreover, we have the following:

sin d(u, v) ≥ cos d
(
w, w′) sin d(u, v)

≥ cos d
(
u, w′) sin d(v, w) + cos d

(
v, w′) sin d(u, w)

≥ cos d(u, w) sin d(v, w) + cos d(v, w) sin d(u, w)

= sin
(
d(u, w) + d(v, w)

)

= sin d(u, v).

In particular, cos d(w, w′) = . This implies that d(w, w′) = , that is, w = w′ ∈ Tw. �

Let E be a nonempty subset of a CAT() space X such that d(u, v) < π for all u, v ∈ E.
Analogously to Definition , we introduce the following concept: T : E → BC(X) is of
convex type if limn D(zn, Tzn) =  whenever {un} and {vn} are sequences in E such that
limn D(un, Tun) = limn D(vn, Tvn) =  and zn = 

 un ⊕ 
 vn for all n ≥ . It is shown in the

following theorem that this class of mappings includes all nonexpansive ones.

Theorem  Let E be a nonempty convex subset of a complete CAT() space X such that
diam(E) < π . If T : E → BC(X) is nonexpansive, then it is of convex type.

Proof Let {un} and {vn} be sequences in E such that limn D(un, Tun) = limn D(vn, Tvn) = 
and zn = 

 un ⊕ 
 vn for all n ≥ . We show that limn D(zn, Tzn) = . To see this, let z′

n ∈ Tzn

be such that

D(zn, Tzn) –

n

≤ d
(
zn, z′

n
)
.

It follows from Proposition  that

lim sup
n

d
(
un, z′

n
) ≤ lim

n
D(un, Tun) + lim sup

n
d(un, zn) =




lim sup
n

d(un, vn).
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Similarly, we have

lim sup
n

d
(
vn, z′

n
) ≤ 


lim sup

n
d(un, vn).

Passing to subsequences, we may assume that α := limn d(un, z′
n), β := limn d(vn, z′

n), and
γ := limn d(un, vn) exist. Note that α ≤ 

γ and β ≤ 
γ . If γ = , then limn d(zn, z′

n) ≤
limn(d(zn, un) + d(un, z′

n)) ≤  limn d(zn, un) + limn D(un, Tun) = limn d(un, vn) + limn D(un,
Tun) = . This implies that limn D(zn, Tzn) ≤ limn(d(zn, z′

n) + 
n ) = . We now assume that

γ > . Now let us consider the following:

sinγ ≥ lim sup
n

cos d
(
zn, z′

n
)

sinγ

= lim sup
n

cos d
(
zn, z′

n
)

sin d(un, vn)

≥ lim sup
n

(
cos d

(
un, z′

n
)

sin d(zn, vn) + cos d
(
vn, z′

n
)

sin d(zn, un)
)

= cosα sin


γ + cosβ sin



γ

≥ cos


γ sin



γ + cos



γ sin



γ = sinγ .

In particular, since γ < π , we have lim supn cos d(zn, z′
n) = . This implies that limn d(zn, z′

n) =
, that is, limn D(zn, Tzn) ≤ limn(d(zn, z′

n) + 
n ) = . The proof is finished. �

The proof of the following result is very similar to that of Theorem .

Theorem  Let E be a nonempty closed convex subset of a complete CAT() space X such
that diam(E) < π and d(x, y) + d(y, z) + d(z, x) < π for all x, y, z ∈ E. If T : E → BC(X) is of
convex type and continuous, then (A) holds.

Proof Assume that T has the approximate endpoint property. Let x ∈ E be fixed and B(r)
denote the closed ball centered at x and radius r > . Set

R :=
{

r >  : E ∩ B(r) �= ∅ and inf
x∈E∩B(r)

D(x, Tx) = 
}

.

Note that α := inf R < ∞. If α = , then it follows that x ∈ End(T). We now consider
the case α > . For each n ≥ , let xn ∈ E ∩ B(α + /n) and D(xn, Txn) ≤ /n. In partic-
ular, lim supn d(xn, x) ≤ α and limn D(xn, Txn) = . If {xn} contains a convergent subse-
quence {xnk } such that {xnk } converges to some element x ∈ E, then x ∈ End(T). On the
other hand, we suppose that there are a constant ε >  and a subsequence {xnk } such that
d(xnk , xnk+ ) ≥ ε for all k ≥ . Set uk ≡ xnk , vk ≡ xnk+ , and zk ≡ 

 uk ⊕ 
 vk . It follows that

limk D(uk , Tuk) = limk D(vk , Tvk) = . Since T is of convex type, we have limk D(zk , Tzk) = .
Note that lim supk d(uk , x) ≤ α, lim supk d(vk , x) ≤ α, and ε ≤ d(uk , vk) ≤ diam(E) < π for
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all k ≥ . Since d(x, uk) + d(uk , vk) + d(vk , x) < π , we have

cos d(zk , x) sin d(uk , vk)

≥ cos d(uk , x) sin d(vk , zk) + cos d(vk , x) sin d(uk , zk)

=
(
cos d(uk , x) + cos d(vk , x)

)
sin




d(uk , vk).

In particular,

cos d(zk , x) ≥ (
cos d(uk , x) + cos d(vk , x)

) sin 
 d(uk , vk)

sin d(uk , vk)

=
cos d(uk , x) + cos d(vk , x)

 cos 
 d(uk , vk)

.

This implies that

lim inf
k

cos d(zk , x) ≥ cosα

cos 
ε

> cosα.

Since t �→ cos t is strictly decreasing on (,π ), there exists δ >  such that

lim sup
k

d(zk , x) ≤ α – δ < α,

which is a contradiction. The proof is finished. �

The following result improves that of Espínola and Fernández-León []. It is clear that
the condition diam(E) < π/ implies diam(E) < π and d(x, y) + d(y, z) + d(z, x) < π for all
x, y, z ∈ E. In the proof above, we do not use the modulus of convexity of S endowed with
the spherical distance as was the case in [].

Corollary  Let E be a nonempty closed convex subset of a complete CAT() space X such
that diam(E) < π and d(x, y) + d(y, z) + d(z, x) < π for all x, y, z ∈ E. Suppose that T : E → X
is of convex type and is continuous. Then Fix(T) �= ∅ if and only if inf{d(x, Tx) : x ∈ E} = .
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